Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Yung LC, Fei CC, Mandeep J, Binti Abdullah H, Wee LK
    PLoS One, 2014;9(5):e97484.
    PMID: 24830317 DOI: 10.1371/journal.pone.0097484
    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
    Matched MeSH terms: Silanes/chemistry
  2. Wan Ibrahim WA, Veloo KV, Sanagi MM
    J Chromatogr A, 2012 Mar 16;1229:55-62.
    PMID: 22326188 DOI: 10.1016/j.chroma.2012.01.022
    A novel sol-gel hybrid methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was produced and applied as sorbent for solid phase extraction (SPE). Five selected organophosphorus pesticides (OPPs) were employed as model compounds to evaluate the extraction performance of the synthesized sol-gel organic-inorganic hybrid MTMOS-TEOS. Analysis was performed using gas chromatography-mass spectrometry. Several important SPE parameters were optimized. Under the optimum extraction conditions, the method using the sol-gel organic-inorganic hybrid MTMOS-TEOS as SPE sorbent showed good linearity in the range of 0.001-1 μg L(-1), good repeatability (RSD 2.1-3.1%, n=5), low limits of detection at S/N=3 (0.5-0.9 pg mL(-1)) and limit of quantification (1-3 pg mL(-1), S/N=10). The performance of the MTMOS-TEOS SPE was compared to commercial C18 Supelclean SPE since C18 SPE is widely used for OPPs. The MTMOS-TEOS SPE method LOD was 500-600 × lower than the LOD of commercial C18 SPE. The LOD achieved with the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent allowed the detection of these OPPs in drinking water well below the level set by European Union (EU) at 0.1 μg L(-1) of each pesticides. The developed MTMOS-TEOS SPE method was successfully applied to real sample analysis of the selected OPPs from several water samples and its application extended to the analysis of several fruits samples. Excellent recoveries and RSDs of the OPPs were obtained from the various water samples (recoveries: 97-111%, RSDs 0.4-2.8%, n=3) and fruit samples (recoveries: 96-111%), RSDs 1-4%, n=5) using the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent. Recoveries and RSDs of OPPs from river water samples and fruit samples using C18 Supelclean SPE sorbent were 91-97%, RSD 0.9-2.6, n=3 and 86-96%, RSD 3-8%, n=5, respectively). The novel sol-gel hybrid MTMOS-TEOS SPE sorbent demonstrate the potential as an alternative inexpensive extraction sorbent for OPPs with higher sensitivity for the OPPs.
    Matched MeSH terms: Silanes/chemistry*
  3. Veloo KV, Ibrahim NAS
    J Sep Sci, 2020 Aug;43(15):3027-3035.
    PMID: 32386268 DOI: 10.1002/jssc.201901237
    A new sol-gel hybrid methyltrimethoxysilane-chloropropyltriethoxysilane was prepared as sorbent for solid-phase extraction. The extraction efficiency of the prepared sol-gel hybrid methyltrimethoxysilane-chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography-mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid-phase extraction-methyltrimethoxysilane-chloropropyltriethoxysilane method showed good linearity range (0.05-1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01-0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3-6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33-120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3-100.2%) and relative standard deviations (6.3-8.8%). The solid-phase extraction-methyltrimethoxysilane-chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.
    Matched MeSH terms: Silanes/chemistry*
  4. Vakili M, Rafatullah M, Salamatinia B, Ibrahim MH, Abdullah AZ
    Carbohydr Polym, 2015 Nov 05;132:89-96.
    PMID: 26256328 DOI: 10.1016/j.carbpol.2015.05.080
    The adsorption behavior of chitosan (CS) beads modified with 3-aminopropyl triethoxysilane (APTES) for the removal of reactive blue 4 (RB4) in batch studies has been investigated. The effects of modification conditions, such as the APTES concentration, temperature and reaction time on RB4 removal, were studied. The adsorbent prepared at a concentration of 2 wt% APTES for 8h at 50 °C was the most effective one for RB4 adsorption. The adsorption capacity of modified CS beads (433.77 mg/g) was 1.37 times higher than that of unmodified CS beads (317.23 mg/g). The isotherm data are adequately described by a Freundlich model, and the kinetic study revealed that the pseudo-second-order rate model was in better agreement with the experimental data. The negative values of the thermodynamic parameters, including ΔG° (-2.28 and -4.70 kJ/mol at 30 ± 2 °C), ΔH° (-172.18 and -43.82 kJ/mol) and ΔS° (-560.71 and -129.08 J/mol K) for CS beads and APTES modified beads, respectively, suggest that RB4 adsorption is a spontaneous and exothermic process.
    Matched MeSH terms: Silanes/chemistry*
  5. Ullah F, Othman MB, Javed F, Ahmad Z, Akil HM, Rasib SZ
    Int J Biol Macromol, 2016 Feb;83:376-84.
    PMID: 26597568 DOI: 10.1016/j.ijbiomac.2015.11.040
    A new approach to design multifunctional chitosan based nanohydrogel with enhanced glucose sensitivity, stability, drug loading and release profile are reported. Two approaches were followed for functionalization of chitosan based nanohydrogel with 3-APBA via EDC and 3-APTES. The effective functionalization, structure and morphology of Chitosan based IPN respectively were confirmed by FTIR, SEM and AFM. At physiological conditions, the glucose-induced volume phase transition and release profile of the model drug Alizarin Red with 1,2-diol structure (comparative to insulin as a drug as well as a dye for bio separation) were studied at various glucose concentrations, pH and ionic strengths. The results suggested a new concept for diabetes treatment and diols sensitivity in view of their potential hi-tech applications in self-regulated on-off response to the treatment (drug delivery and bio separation concurrently).
    Matched MeSH terms: Silanes/chemistry
  6. Taniselass S, Arshad MKM, Gopinath SCB, Fathil MFM, Ibau C, Anbu P
    Mikrochim Acta, 2021 07 15;188(8):257.
    PMID: 34268634 DOI: 10.1007/s00604-021-04922-x
    A label-free chemical bonding strategy mediated by reduced graphene oxide (rGO) basal plane functional groups has been developed for cardiac Troponin I (cTnI) detection. Four different chemical strategies on respective electrode sensing surface were precedingly examined using electrochemical impedance spectroscopy. The impedimetric assessment was carried out by sweeping frequency at the range 0.1-500 kHz perturbated at a small amplitude of AC voltage (25 mV). The chemical strategy-4 denoted as S-4 shows a significant analytical performance on cTnI detection in spiked buffer and human serum, whereby the pre-mixture of rGO and (3-Aminopropyl)triethoxysilane (APTES) creates a large number of amine sites (-NH2), which significantly enhanced the antibody immobilization without excessive functionalization. The as-fabricated immunosensor exhibited an ultra-low limit of detection of 6.3 ag mL-1 and the lowest antigen concentration measured was at 10 ag mL-1. The immunosensor showed a linear and wide range of cTnI detection (10 ag mL-1-100 ng mL-1) in human serum with a regression coefficient of 0.9716, rapid detection (5 min of binding time), and stable and highly reproducible bioelectrode response with RSD 
    Matched MeSH terms: Silanes/chemistry
  7. Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H
    Chemosphere, 2017 Mar;171:19-30.
    PMID: 28002763 DOI: 10.1016/j.chemosphere.2016.12.049
    An effective organoalkoxysilanes-grafted lignocellulosic waste biomass (OS-LWB) adsorbent aiming for high removal towards inorganic and organic mercury (Hg(II) and MeHg(II)) ions was prepared. Organoalkoxysilanes (OS) namely mercaptoproyltriethoxylsilane (MPTES), aminopropyltriethoxylsilane (APTES), aminoethylaminopropyltriethoxylsilane (AEPTES), bis(triethoxysilylpropyl) tetrasulfide (BTESPT), methacrylopropyltrimethoxylsilane (MPS) and ureidopropyltriethoxylsilane (URS) were grafted onto the LWB using the same conditions. The MPTES grafted lignocellulosic waste biomass (MPTES-LWB) showed the highest adsorption capacity towards both mercury ions. The adsorption behavior of inorganic and organic mercury ions (Hg(II) and MeHg(II)) in batch adsorption studies shows that it was independent with pH of the solutions and dependent on initial concentration, temperature and contact time. The maximum adsorption capacity of Hg(II) was greater than MeHg(II) which respectively followed the Temkin and Langmuir models. The kinetic data analysis showed that the adsorptions of Hg(II) and MeHg(II) onto MPTES-LWB were respectively controlled by the physical process of film diffusion and the chemical process of physisorption interactions. The overall mechanism of Hg(II) and MeHg(II) adsorption was a combination of diffusion and chemical interaction mechanisms. Regeneration results were very encouraging especially for the Hg(II); this therefore further demonstrated the potential application of organosilane-grafted lignocellulosic waste biomass as low-cost adsorbents for mercury removal process.
    Matched MeSH terms: Silanes/chemistry*
  8. Rosly NZ, Ahmad SA, Abdullah J, Yusof NA
    Sensors (Basel), 2016 Aug 25;16(9).
    PMID: 27571080 DOI: 10.3390/s16091365
    In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.
    Matched MeSH terms: Silanes/chemistry*
  9. Razak AA, Abu-Hassan MI, Al-Makramani BM, Al-Sanabani FA, Al-Shami IZ, Almansour HM
    J Contemp Dent Pract, 2016 Nov 01;17(11):920-925.
    PMID: 27965501
    AIM: The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan).

    MATERIALS AND METHODS: Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests.

    RESULTS: The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups.

    CONCLUSION: In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks.

    CLINICAL SIGNIFICANCE: The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.

    Matched MeSH terms: Silanes/chemistry
  10. Oyekanmi AA, Saharudin NI, Hazwan CM, H P S AK, Olaiya NG, Abdullah CK, et al.
    Molecules, 2021 Apr 13;26(8).
    PMID: 33924692 DOI: 10.3390/molecules26082254
    Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films' modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.
    Matched MeSH terms: Silanes/chemistry*
  11. Omar MM, Wan Ibrahim WA, Elbashir AA
    Food Chem, 2014 Sep 1;158:302-9.
    PMID: 24731346 DOI: 10.1016/j.foodchem.2014.02.045
    A sol-gel hybrid sorbent, methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was successfully used as new dispersive solid phase extraction (dSPE) sorbent material in the determination of acrylamide in several Sudanese foods and analysis using GC-MS. Several important dSPE parameters were optimised. Under the optimised conditions, excellent linearity (r(2)>0.9998) was achieved using matrix matched standard calibration in the concentration range 50-1000 μg kg(-1). The limits of detection (LOD) and limit of quantification ranged from 9.1 to 12.8 μg/kg and 27.8-38.9 μg/kg, respectively. The precision (RSD%) of the method was ⩽6.6% and recoveries of acrylamide obtained were in the range of 88-103%, (n=3). The LOD obtained is comparable with the LODs of primary secondary amine dSPE. The proposed MTMOS-TEOS dSPE method is direct and safe for acrylamide analysis, showed reliable method validation performances and good cleanup effects. It was successfully applied to the analysis of acrylamide in real food samples.
    Matched MeSH terms: Silanes/chemistry
  12. Mustafa AA, Matinlinna JP, Saidin S, Kadir MR
    J Prosthet Dent, 2014 Dec;112(6):1498-506.
    PMID: 24993375 DOI: 10.1016/j.prosdent.2014.05.011
    STATEMENT OF PROBLEM: The inconsistency of dentin bonding affects retention and microleakage.

    PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.

    MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.

    RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.

    CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.

    Matched MeSH terms: Silanes/chemistry*
  13. Mustafa AA, Matinlinna JP, Razak AA, Hussin AS
    J Investig Clin Dent, 2015 Aug;6(3):161-9.
    PMID: 24415731 DOI: 10.1111/jicd.12083
    AIM: To evaluate in vitro the effect of different concentrations of 2-hydroxyethyl methacrylate (HEMA) in experimental silane-based primers on shear bond strength of orthodontic adhesives.

    METHODS: Different volume percentages of HEMA were tested in four experimental silane-based primer solutions (additions of HEMA: 0, 5.0 vol%, 25.0 vol% and 50.0 vol%). An experimental silane blend (primer) of 1.0 vol% 3-isocyanatopropyltrimethoxysilane (ICMS) + 0.5% bis-1,2-(triethoxysilyl) ethane (BTSE) was prepared and used. The experimental primers together with the control group were applied onto acid-etched premolars for attachment of orthodontic brackets. After artificial aging by thermocycling the shear-bond strength was measured. The fractured surfaces of all specimens were examined under scanning electron microscopy (SEM) to evaluate the failure mode on the enamel surface.

    RESULTS: The experimental primers showed the highest shear-bond strength of 21.15 MPa (SD ± 2.70 MPa) and with 25 vol% showed a highly significant increase (P < 0.05) in bond strength. The SEM images showed full penetration of adhesive agents when using silane-based primers. In addition, the SEM images suggested that the predominant failure type was not necessarily the same as for the failure propagation.

    CONCLUSIONS: This preliminary study suggested that nonacidic silane-based primers with HEMA addition might be an alternative to for use as adhesion promoting primers.

    Matched MeSH terms: Silanes/chemistry*
  14. Miskam M, Abu Bakar NK, Mohamad S
    Talanta, 2014 Mar;120:450-5.
    PMID: 24468395 DOI: 10.1016/j.talanta.2013.12.037
    A solid phase extraction (SPE) method has been developed using a newly synthesized titanium (IV) butoxide-cyanopropyltriethoxysilane (Ti-CNPrTEOS) sorbent for polar selective extraction of aromatic amines in river water sample. The effect of different parameters on the extraction recovery was studied using the SPE method. The applicability of the sorbents for the extraction of polar aromatic amines by the SPE was extensively studied and evaluated as a function of pH, conditioning solvent, sample loading volume, elution solvent and elution solvent volume. The optimum experimental conditions were sample at pH 7, dichloromethane as conditioning solvent, 10 mL sample loading volume and 5 mL of acetonitrile as the eluting solvent. Under the optimum conditions, the limit of detection (LOD) and limit of quantification (LOQ) for solid phase extraction using Ti-CNPrTEOS SPE sorbent (0.01-0.2; 0.03-0.61 µg L(-1)) were lower compared with those achieved using Si-CN SPE sorbent (0.25-1.50; 1.96-3.59 µg L(-1)) and C18 SPE sorbent (0.37-0.98; 1.87-2.87 µg L(-1)) with higher selectivity towards the extraction of polar aromatic amines. The optimized procedure was successfully applied for the solid phase extraction method of selected aromatic amines in river water, waste water and tap water samples prior to the gas chromatography-flame ionization detector separation.
    Matched MeSH terms: Silanes/chemistry*
  15. Karim AH, Jalil AA, Triwahyono S, Sidik SM, Kamarudin NH, Jusoh R, et al.
    J Colloid Interface Sci, 2012 Nov 15;386(1):307-14.
    PMID: 22889626 DOI: 10.1016/j.jcis.2012.07.043
    In this work, mesostructured silica nanoparticles (MSN(AP)) with high adsorptivity were prepared by a modification with 3-aminopropyl triethoxysilane (APTES) as a pore expander. The performance of the MSN(AP) was tested by the adsorption of MB in a batch system under varying pH (2-11), adsorbent dosage (0.1-0.5 g L(-1)), and initial MB concentration (5-60 mg L(-1)). The best conditions were achieved at pH 7 when using 0.1 g L(-1) MSN(AP) and 60 mg L(-1)MB to give a maximum monolayer adsorption capacity of 500.1 mg g(-1) at 303 K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Harkins-Jura isotherms and fit well to the Freundlich isotherm model. The adsorption kinetics was best described by the pseudo-second order model. The results indicate the potential for a new use of mesostructured materials as an effective adsorbent for MB.
    Matched MeSH terms: Silanes/chemistry*
  16. Jaafar J, Watanabe Y, Ikegami T, Miyamoto K, Tanaka N
    Anal Bioanal Chem, 2008 Aug;391(7):2551-6.
    PMID: 18458888 DOI: 10.1007/s00216-008-2063-3
    An anion exchange monolithic silica capillary column was prepared by surface modification of a hybrid monolithic silica capillary column prepared from a mixture of tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS). The surface modification was carried out by on-column copolymerization of N-[3-(dimethylamino)propyl]acrylamide methyl chloride-quaternary salt (DMAPAA-Q) with 3-methacryloxypropyl moieties bonded as an anchor to the silica surface to form a strong anion exchange stationary phase. The columns were examined for their performance in liquid chromatography (LC) and capillary electrochromatography (CEC) separations of common anions. The ions were separated using 50 mM phosphate buffer at pH 6.6. Evaluation by LC produced an average of 30,000 theoretical plates (33 cm column length) for the inorganic anions and nucleotides. Evaluation by CEC, using the same buffer, produced enhanced chromatographic performance of up to ca. 90,000 theoretical plates and a theoretical plate height of ca. 4 mum. Although reduced efficiency was observed for inorganic anions that were retained a long time, the results of this study highlight the potential utility of the DMAPAA-Q stationary phase for anion separations.
    Matched MeSH terms: Silanes/chemistry
  17. Indarti E, Marwan, Rohaizu R, Wanrosli WD
    Int J Biol Macromol, 2019 Aug 15;135:106-112.
    PMID: 31128174 DOI: 10.1016/j.ijbiomac.2019.05.161
    Silylated cellulose has been successfully synthesized using TEMPO-oxidized nanocellulose (TEMPO-NC) from oil palm empty fruit bunch and 3-aminopropyltriethoxysilane (APS) in an ethanol/water medium at a low curing temperature of 40 °C as compared to those reported in the literature of above 100 °C. Confirmation of the grafting process can be seen from the new FTIR peaks at 810 cm-1 and 749 cm-1 which are attributed to the SiC stretching and SiC, and new 13C NMR signals at 10.3, 21.7 and 42.7 ppm which are assigned to C7, C8, and C9 of the silylated TEMPO-NC. The decrease in the intensities of the cellulose peaks of C2, C3, C6 and C6' in the 13C NMR indicates that silylation not only occurs on the hydroxyls, but more importantly on the TEMPO-NC carboxylic moiety of C6', which is postulated as being the primary factor for this successful modification. This is further corroborated by the emergence of three signals at 43, 61, and 69 ppm in the 29Si NMR spectrum which corresponds to Si(OSi)(OR)2R', Si(OSi)2(OR)R', and Si(OSi)3R' units respectively. Additional evidence is provided by the EDX which shows an increase in Si weight percent of 1.94 after reaction. This silylated cellulose from OPEFB has the potentials to be used as bionanocomposite reinforcing elements.
    Matched MeSH terms: Silanes/chemistry*
  18. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Silanes/chemistry*
  19. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH
    J Dent, 2017 Jan;56:121-132.
    PMID: 27916635 DOI: 10.1016/j.jdent.2016.11.012
    OBJECTIVES: This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied.

    METHODS: Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated.

    RESULTS: NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (p<0.05). While the fracture toughness of untreated samples was reduced by 8%, an enhancement of 25% was achieved after titanation. In addition, the fracture toughness of the titanated samples was higher than the silanated ones by 10%.

    CONCLUSION: Formation of a monolayer on the surface of TCA enhanced the NBT dispersion, however agglomeration of silanated NBT was observed due to insufficient coverage of NBT surface. Such behaviour led to reducing the porosity level and improving fracture toughness of titanated NBT/PMMA composites. Thus, TCA seemed to be more effective than silane.

    CLINICAL SIGNIFICANCE: Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity.

    Matched MeSH terms: Silanes/chemistry*
  20. Daood U, Gopinath D, Pichika MR, Mak KK, Seow LL
    Molecules, 2021 Apr 12;26(8).
    PMID: 33921378 DOI: 10.3390/molecules26082214
    To determine whether quaternary ammonium (k21) binds to Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) spike protein via computational molecular docking simulations, the crystal structure of the SARS-CoV-2 spike receptor-binding domain complexed with ACE-2 (PDB ID: 6LZG) was downloaded from RCSB PD and prepared using Schrodinger 2019-4. The entry of SARS-CoV-2 inside humans is through lung tissues with a pH of 7.38-7.42. A two-dimensional structure of k-21 was drawn using the 2D-sketcher of Maestro 12.2 and trimmed of C18 alkyl chains from all four arms with the assumption that the core moiety k-21 was without C18. The immunogenic potential of k21/QA was conducted using the C-ImmSim server for a position-specific scoring matrix analyzing the human host immune system response. Therapeutic probability was shown using prediction models with negative and positive control drugs. Negative scores show that the binding of a quaternary ammonium compound with the spike protein's binding site is favorable. The drug molecule has a large Root Mean Square Deviation fluctuation due to the less complex geometry of the drug molecule, which is suggestive of a profound impact on the regular geometry of a viral protein. There is high concentration of Immunoglobulin M/Immunoglobulin G, which is concomitant of virus reduction. The proposed drug formulation based on quaternary ammonium to characterize affinity to the SARS-CoV-2 spike protein using simulation and computational immunological methods has shown promising findings.
    Matched MeSH terms: Silanes/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links