Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Majid Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah AU, et al.
    Steroids, 2019 08;148:56-62.
    PMID: 31085212 DOI: 10.1016/j.steroids.2019.05.001
    The current study was aimed to evaluate the anti-leishmanial potentials of β-sitosterol isolated from Ifloga spicata. The anti-leishmanial potential of β-sitosterol is well documented against Leishmania donovani and Leishmania amazonensis but unexplored against Leishmania tropica. Structure of the compound was elucidated by FT-IR, mass spectrometry and multinuclear (1H and 13C) magnetic resonance spectroscopy. The compound was evaluated for its anti-leishmanial potentials against L. tropica KWH23 using in vitro anti-promastigote, DNA interaction, apoptosis, docking studies against leishmanolysin (GP63) and trypanothione reductase (TR) receptors using MOE 2016 software. β-sitosterol exhibited significant activity against leishmania promastigotes with IC50 values of 9.2 ± 0.06 μg/mL. The standard drug glucantaime showed IC50 of 5.33 ± 0.07 µg/mL. Further mechanistic studies including DNA targeting and apoptosis induction via acridine orange assay exhibited promising anti-leishmanial potentials for β-sitosterol. Molecular docking with leishmanolysin (GP63) and trypanothione reductase (TR) receptors displayed the binding scores of β-sitosterol with targets TR and GP63 were -7.659 and -6.966 respectively. The low binding energies -61.54 (for TR) and -33.24 (for GP63) indicate that it strongly bind to the active sites of target receptors. The results confirmed that β-sitosterol have considerable anti-leishmanial potentials and need further studies as potential natural anti-leishmanial agent against L. tropica.
    Matched MeSH terms: Sitosterols/isolation & purification; Sitosterols/pharmacology*; Sitosterols/chemistry
  2. Baraya YS, Yankuzo HM, Wong KK, Yaacob NS
    J Ethnopharmacol, 2021 Mar 01;267:113522.
    PMID: 33127562 DOI: 10.1016/j.jep.2020.113522
    ETHNOPHARMACOLOGICAL RELEVANCE: Locally known as 'pecah batu', 'bayam karang', 'keci beling' or 'batu jin', the Malaysian medicinal herb, Strobilanthes crispus (S. crispus), is traditionally used by the local communities as alternative or adjuvant remedy for cancer and other ailments and to boost the immune system. S. crispus has demonstrated multiple anticancer therapeutic potential in vitro and in vivo. A pharmacologically active fraction of S. crispus has been identified and termed as F3. Major constituents profiled in F3 include lutein and β-sitosterol.

    AIM OF THE STUDY: In this study, the effects of F3, lutein and β-sitosterol on tumor development and metastasis were investigated in 4T1-induced mouse mammary carcinoma model.

    MATERIALS AND METHODS: Tumor-bearing mice were fed with F3 (100 mg/kg/day), lutein (50 mg/kg/day) and β-sitosterol (50 mg/kg/day) for 30 days (n = 5 each group). Tumor physical growth parameters, animal body weight and development of secondary tumors were investigated. The safety profile of F3 was assessed using hematological and histomorphological changes on the major organs in normal control mice (NM).

    RESULTS: Our findings revealed significant reduction of physical tumor growth parameters in all tumor-bearing mice treated with F3 (TM-F3), lutein (TM-L) or β-sitosterol (TM-β) as compared with the untreated group (TM). Statistically significant reduction in body weight was observed in TM compared to the NM or treated (TM-F3, TM-L and TM-β) groups. Histomorphological examination of tissue sections from the F3-treated group showed normal features of the vital organs (i.e., liver, kidneys, lungs and spleen) which were similar to those of NM. Administration of F3 to NM mice (NM-F3) did not cause significant changes in full blood count values.

    CONCLUSION: F3 significantly reduced the total tumor burden and prevented secondary tumor development in metastatic breast cancer without significant toxicities in 4T1-induced mouse mammary carcinoma model. The current study provides further support for therapeutic development of F3 with further pharmacokinetics studies.

    Matched MeSH terms: Sitosterols/pharmacology
  3. Kamisah Y, Othman F, Qodriyah HM, Jaarin K
    PMID: 23956777 DOI: 10.1155/2013/709028
    Parkia speciosa Hassk., or stink bean, is a plant indigenous to Southeast Asia. It is consumed either raw or cooked. It has been used in folk medicine to treat diabetes, hypertension, and kidney problems. It contains minerals and vitamins. It displays many beneficial properties. Its extracts from the empty pods and seeds have a high content of total polyphenol, phytosterol, and flavonoids. It demonstrates a good antioxidant activity. Its hypoglycemic effect is reported to be attributable to the presence of β -sitosterol, stigmasterol, and stigmast-4-en-3-one. The cyclic polysulfide compounds exhibit antibacterial activity, while thiazolidine-4-carboxylic acid possesses anticancer property. The pharmacological properties of the plant extract are described in this review. With ongoing research conducted on the plant extracts, Parkia speciosa has a potential to be developed as a phytomedicine.
    Matched MeSH terms: Sitosterols
  4. Ahmed, Y., Rahman, S., Akhtar, P., Islam, F., Rahman, M., Yaakob, Z.
    MyJurnal
    General phytochemical screening of the leaves of Saurauia roxburghii (Actinidiaceae) revealed the presence of alkaloids, flavonoids, glycosides, O-glycosides, terpenoids, carbohydrates, steroids, reducing sugar, tannins, phlobatannins and saponin are present in this plant whereas cardiac glycosides are absent. Two steroid compounds were isolated from the n-hexane extract of the leaves from S. roxburghii. Based on the spectral evidence IR, 1H-NMR and 13C-NMR, structures were determined to be stigmasterol (1) and β-sitosterol (2) This is the first report so far of occurrence and details spectroscopic description of these compounds from S. roxburghii.
    Matched MeSH terms: Sitosterols
  5. Nusaibah SA, Siti Nor Akmar A, Idris AS, Sariah M, Mohamad Pauzi Z
    Plant Physiol Biochem, 2016 Dec;109:156-165.
    PMID: 27694009 DOI: 10.1016/j.plaphy.2016.09.014
    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring.
    Matched MeSH terms: Sitosterols/analysis
  6. Ibrahim M, Abdul Azziz SSS, Wong CF, Bakri YM, Abdullah F
    Curr Comput Aided Drug Des, 2020;16(6):698-706.
    PMID: 31648647 DOI: 10.2174/1573409915666191015112320
    BACKGROUND: Obesity is one serious health condition that contributes to various chronic diseases. The inhibition of pancreatic lipase is a promising treatment for obesity.

    OBJECTIVE: The present study was designed to investigate anti-porcine pancreatic lipase effect of isolated compounds from Aquilaria subintegra and its mechanism.

    METHODS: Compounds were isolated with serial column chromatography and their structure were identified using spectroscopic methods. Isolated compounds were tested for anti-lipase potential activity using colorimetric assay. The prediction of energy binding between isolated compounds and enzyme was described using YASARA software.

    RESULTS: Four compounds were successfully isolated from the bark of A. subintegra, namely, 5- hydroxy-7,4'-dimethoxyflavone, luteolin-7,3',4'-trimethyl ether, 5,3'-dihydroxy-7,4'-dimethoxyflavone and β-sitosterol. The results indicated that all compounds displayed promising pancreatic lipase inhibitory activity ranging between of 6% to 53% inhibition. Compound 5-hydroxy-7,4'- dimethoxyflavone was a competitive inhibitor and decreases the enzyme catalysis. Meanwhile, β- sitosterol was a non- competitive inhibitor since the latter was bind allosterically toward enzyme.

    CONCLUSION: This finding is significant for further investigation of bioactive compounds from A. subintegra on animal study.

    Matched MeSH terms: Sitosterols
  7. Syed Abdul Rahman SN, Abdul Wahab N, Abd Malek SN
    PMID: 23762112 DOI: 10.1155/2013/257108
    Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β -sitosterol (8). Alismol has never been reported to be present in Curcuma zedoaria. All isolated compounds except (3) were evaluated for their cytotoxic activity against MCF-7, Ca Ski, and HCT-116 cancer cell lines and noncancer human fibroblast cell line (MRC-5) using neutral red cytotoxicity assay. Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7, Ca Ski, and HCT-116 in a dose-dependent manner. Cytological observations by an inverted phase contrast microscope and Hoechst 33342/PI dual-staining assay showed typical apoptotic morphology of cancer cells upon treatment with curzerenone and alismol. Both compounds induce apoptosis through the activation of caspase-3. It can thus be suggested that curzerenone and alismol are modulated by apoptosis via caspase-3 signalling pathway. The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemopreventive and chemotherapeutic strategies.
    Matched MeSH terms: Sitosterols
  8. Toopkanloo SP, Tan TB, Abas F, Alharthi FA, Nehdi IA, Tan CP
    Nanomaterials (Basel), 2020 Dec 05;10(12).
    PMID: 33291386 DOI: 10.3390/nano10122432
    This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
    Matched MeSH terms: Sitosterols
  9. Intan S. Ismail, NorAkmar Ismail, Nordin Lajis
    MyJurnal
    The preliminary ichthyotoxic test on all parts of Syzygium malaccense (Myrtaceae) revealed that the leaves fraction was the most ichthyotoxic against tilapia-fish (Tilapia oreochromis). Three compounds, namely ursolic acid (1), β-sitosterol (2) and sitost-4-en-3-one (3), were isolated and their structures were elucidated with the aid of spectroscopic data and comparison with previously reported investigations. However none of these compounds gave any significant ichthyotoxicity. The volatile constituents of the leaves and fruit were determined by Gas Chromatography-Mass Spectrometer (GC-MS), with 180 and 203 compounds being identified in the aroma concentrates, respectively.
    Matched MeSH terms: Sitosterols
  10. Che Omar MT
    Data Brief, 2020 Dec;33:106350.
    PMID: 33083505 DOI: 10.1016/j.dib.2020.106350
    Inactivation of smoothened protein (SMO) by the antagonists in SHH-driven cancer types is essential for inhibition of cancer progression. This article presents molecular dynamics (MD) trajectories of water solution of three protein-ligand complexes smoothened-β-sitosterol (SMO-BST), smoothened-sonidegib (SMO-SNG) and smoothened-cholesterol (SMO-CLR) using CHARMM36 and SPC/E water model combination. Additionally, the work presents the topologies and trajectories of GROMACS files that were employed to analyse the protein-ligand interaction types (PyContact) and binding energy calculation (g_mmpbsa). The data demonstrated that equilibrated models of SMO-SNG and SMO-CLR complexes showed crucial residues that almost similar for interaction and contribution energy as previously reported in laboratory setup (in vitro). Initial simulations confirmed the role of ARG451 and TRP535 in the dynamic regulation of SMO. These data then were used as a reference for understanding the molecular dynamics of SMO-BST complex and thus predicted its mechanism of action.
    Matched MeSH terms: Sitosterols
  11. Malek SN, Shin SK, Wahab NA, Yaacob H
    Molecules, 2009;14(5):1713-24.
    PMID: 19471192 DOI: 10.3390/molecules14051713
    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.
    Matched MeSH terms: Sitosterols/pharmacology
  12. Abd Ghafar SA, Ismail M, Saiful Yazan L, Fakurazi S, Ismail N, Chan KW, et al.
    PMID: 23606884 DOI: 10.1155/2013/549705
    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.
    Matched MeSH terms: Sitosterols
  13. Othman N, Pan L, Mejin M, Voong JC, Chai HB, Pannell CM, et al.
    J Nat Prod, 2016 Apr 22;79(4):784-91.
    PMID: 26974604 DOI: 10.1021/acs.jnatprod.5b00810
    Four new 2,3-secodammarane triterpenoids, stellatonins A-D (3-6), together with a new 3,4-secodammarane triterpenoid, stellatonin E (7), and the known silvestrol (1), 5‴-episilvestrol (2), and β-sitosterol, were isolated from a methanol extract of the stems of Aglaia stellatopilosa through bioassay-guided fractionation. The structures of the new compounds were elucidated using spectroscopic and chemical methods. The compounds were evaluated for their cytotoxic activity against three human cancer cell lines and for their antimicrobial activity using a microtiter plate assay against a panel of Gram-positive and Gram-negative bacteria and fungi.
    Matched MeSH terms: Sitosterols
  14. Saim N, Osman R, Sari Abg Spian DR, Jaafar MZ, Juahir H, Abdullah MP, et al.
    Water Res, 2009 Dec;43(20):5023-30.
    PMID: 19896157 DOI: 10.1016/j.watres.2009.08.052
    Faecal sterols detection is a promising method for identifying sources of faecal pollution. In this study, faecal contamination in water samples from point source (sewage treatment plants, chicken farms, quail farms and horse stables) was extracted using the solid phase extraction (SPE) technique. Faecal sterols (coprostanol, cholesterol, stigmasterol, beta-sitosterol and stigmastanol) were selected as parameters to differentiate the source of faecal pollution. The results indicated that coprostanol, cholesterol and beta-sitosterol were the most significant parameters that can be used as source tracers for faecal contamination. Chemometric techniques, such as cluster analysis, principal component analysis and discriminant analysis were applied to the data set on faecal contamination in water from various pollution sources in order to validate the faecal sterols' profiles. Cluster analysis generated three clusters: coprostanol was in cluster 1, cholesterol and beta-sitosterol formed cluster 2, while cluster 3 contained stigmasterol and stigmastanol. Discriminant analysis suggested that coprostanol, cholesterol and beta-sitosterol were the most significant parameters to discriminate between the faecal pollution source. The use of chemometric techniques provides useful and promising indicators in tracing the source of faecal contamination.
    Matched MeSH terms: Sitosterols/analysis; Sitosterols/chemistry
  15. Osman R, Saim N, Juahir H, Abdullah MP
    Environ Monit Assess, 2012 Jan;184(2):1001-14.
    PMID: 21494831 DOI: 10.1007/s10661-011-2016-8
    Increasing urbanization and changes in land use in Langat river basin lead to adverse impacts on the environment compartment. One of the major challenges is in identifying sources of organic contaminants. This study presented the application of selected chemometric techniques: cluster analysis (CA), discriminant analysis (DA), and principal component analysis (PCA) to classify the pollution sources in Langat river basin based on the analysis of water and sediment samples collected from 24 stations, monitored for 14 organic contaminants from polycyclic aromatic hydrocarbons (PAHs), sterols, and pesticides groups. The CA and DA enabled to group 24 monitoring sites into three groups of pollution source (industry and urban socioeconomic, agricultural activity, and urban/domestic sewage) with five major discriminating variables: naphthalene, pyrene, benzo[a]pyrene, coprostanol, and cholesterol. PCA analysis, applied to water data sets, resulted in four latent factors explaining 79.0% of the total variance while sediment samples gave five latent factors with 77.6% explained variance. The varifactors (VFs) obtained from PCA indicated that sterols (coprostanol, cholesterol, stigmasterol, β-sitosterol, and stigmastanol) are strongly correlated to domestic and urban sewage, PAHs (naphthalene, acenaphthene, pyrene, benzo[a]anthracene, and benzo[a]pyrene) from industrial and urban activities and chlorpyrifos correlated to samples nearby agricultural sites. The results demonstrated that chemometric techniques can be used for rapid assessment of water and sediment contaminations.
    Matched MeSH terms: Sitosterols
  16. Taib MNAM, Anuar N, Hanafiah KM, Al-Shammary AAK, Saaid M, Awang K
    Trop Life Sci Res, 2020 Apr;31(1):159-178.
    PMID: 32963717 DOI: 10.21315/tlsr2020.31.1.10
    Alpinia conchigera Griff. is a plant species from the family Zingiberaceae. Coloquially known as wild ginger, Alpinia conchigera Griff. is used as food condiment and for traditional treatment of skin diseases. Isolation studies to identify bioactive compounds of rhizomes of Alpinia conchigera yielded seven compounds; 1'S-1'-acetoxychavicol acetate (1), trans-p-coumaryl diacetate (2), p-hydroxycinnamyl acetate (3), 1'S-1'-hydroxychavicol acetate (4) p-hydroxybenzaldehyde (5), stigmasterol (6) and β-sitosterol (7). Compounds 1, 2 and 5 were evaluated for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Among the compounds tested, Compound 1 showed good antimicrobial activity against the strain of MRSA with minimum inhibition concentration (MIC) value of 0.5 mg/mL. Meanwhile, Compounds 2 and 5 exhibited moderate activity with MIC value between 1.0 and 2.0 mg/mL. These findings indicate antimicrobial potential of 1'S-1'-acetoxychavicol acetate (1), compound derived from rhizome of Alpinia conchigera Griff. against MRSA, which warrant further investigation.
    Matched MeSH terms: Sitosterols
  17. Fatmawati S, Yuliana, Purnomo AS, Abu Bakar MF
    Heliyon, 2020 Jul;6(7):e04396.
    PMID: 32685725 DOI: 10.1016/j.heliyon.2020.e04396
    Cassia alata or locally known as Ketepeng Cina (Indonesia) and Gelenggang (Malaysia) has been used as a traditional medicine to treat various diseases, especially skin diseases. In addition, C. alata has been reported to have potential anti allergic, anti inflammatory, antioxidant, anticancer, antidiabetic, and antifungal. Metabolite compounds that have been isolated from C. alata include flavones, flavonols, flavonoids glycosides, alatinon, alanonal and β-sitosterol-β-D-glucoside. The compounds have been isolated mainly from the leaves. Further identification is needed to discover the secondary metabolites from other parts of the plant such as seed, flower and bark which are reported to have potent antibacterial and antifungal activity. Therefore, this article highlights the secondary metabolites and biological activity of this plant which has been shown to have pharmacological properties against selected diseases.
    Matched MeSH terms: Sitosterols
  18. Kamarulzaman, F. A., Mohamad, K., Awang, K., Lee, H. B.
    MyJurnal
    Our continuing research on the Aglaia genus (family Meliaceace) has led us to this first study on the chemical constituents of Aglaia lanuginose (bark). The dichloromethane extract from the bark of Aglaia lanuginose showed cytotoxicity against HL-60 leukaemia cell line (45% inhibition) at 20 µg/ml and was prioritised for further investigation. Repeated chromatography of the dichloromethane extract yielded the known dammarane triterpenes which were identified as cabralealactone (1), methyl eichlerianate (2), cabraleone (3), ocotillone (4), eichleriatone (5), eichlerianic acid (6) and shoreic acid (7) together with the known sterols, sitosterol (9) and stigmasterol (10). Another isolated compound was the aromatic 4-hydroxycinnamyl-acetate (8), which has not been reported to be present in a plant from the Meliaceae family. The structures of all the compounds were elucidated on the basis of spectroscopic methods (IR, MS and NMR). Cytotoxicity testing of 1-10 showed activity only for mixtures of (3, 4), and (5, 6).
    Matched MeSH terms: Sitosterols
  19. Ee, G.C.L., Cheow, Y.L.
    MyJurnal
    Detail chemical studies on Carcinia maingayi have yielded one xanthone, 1,3,7-trihydroxy-2-(3-methylbut-2-enyl)-xanthone, one benzophenone, isoxanthochymol, one benzoic acid derivative 3,4-dihydroxy-methylbenzoate and two triterpenoids, stigmasterol and sitosterol. Meanwhile, investigations on Carcinia parvifolia have afforded one triterpenoid, a-amyrin and two xanthones, cowanin and rubraxanthone. Their structures were derived based on spectroscopic evidence, mainly ID and 2D NMR spectroscopy. Acetylation reaction was carried out on rubraxanthone to yield triacetate rubraxanthone. It was found that the pure rubraxanthone was strongly active against the larvae of Aedes aegypti with LC50 value of 15.49 {lg/ ml and HL-60 cells line with an IC50 value of 7.5 {lg/ ml.
    Matched MeSH terms: Sitosterols
  20. Norazah, M.A., Rahmani, M., Khozirah, S., Ismail, H.B.M., Sukari, M.A., Ali, A.M., et al.
    MyJurnal
    The extract of Cinnamomum microphyllum showed strong antioxidant activity when it was tested against auto-oxidation of linoleic acid, superoxide, and DPPH radical scavenging activity. Further detailed investigations of the plant constituents and bioactivity studies led to the isolation and identification of known compounds consisting of three lignans, a coumarin, an ester and β-sitosterol. The structures of the compounds were determined using detailed spectroscopic analysis. The lignans were found to possess a significant antioxidant activity when tested against the three assay systems.
    Matched MeSH terms: Sitosterols
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links