Displaying publications 1 - 20 of 591 in total

Abstract:
Sort:
  1. Zolkiflee NF, Affandi MMRMM, Majeed ABA
    Eur J Pharm Sci, 2020 Jan 01;141:105111.
    PMID: 31629916 DOI: 10.1016/j.ejps.2019.105111
    Lovastatin (LVS) is an effective therapeutic and prophylactic agent in several cardiovascular disorders. However, it has low bioavailability. This study investigated solute-solvent and solute-cosolute interactions and assessed thermodynamic parameters that contributed to LVS solubility enhancement in the presence of arginine (ARG) as a hydrotropic agent. The electrolytic conductance of LVS-ARG binary system was measured at temperatures from 298.15 K to 313.15 K. Conductometric parameters such as limiting molar conductance was evaluated. Additionally, thermodynamic parameters (ΔG0, ΔH0, ΔS0 and ES) involved in the association process of the solute in the aqueous solution of ARG solution were determined systematically. Solubility markedly improved 43-fold in the LVS-ARG complex compared to LVS alone. The analysed data from values of molar conductance and activation energy suggested favourable solubilisation, with a stronger solute-solvent interaction between LVS-ARG in water at higher temperatures. ARG and LVS complexation caused by strong molecular interactions was confirmed by spectral results. Hence, the addition of ARG as a co-solute was proven to enhance LVS solubility in water. The obtained data will ultimately enable the development of desired highly soluble, more efficient and safer LVS preparations.
    Matched MeSH terms: Solvents/chemistry*
  2. Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124829.
    PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829
    Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
    Matched MeSH terms: Solvents/chemistry
  3. Zhan SZ, Chen W, Zheng J, Ng SW, Li D
    Dalton Trans, 2021 Jan 18.
    PMID: 33459321 DOI: 10.1039/d0dt03661g
    Five luminescent polymorphic aggregates of trinuclear Cu(i)-pyrazolate, namely [anti-Cu3L3]2 (1), [syn-Cu3L3·C2H5OH]2 (2), [anti-Cu3L3·C2H5OH]n (3), [anti-Cu3L3·0.5C7H8]n (4) and [syn-Cu3L3·C8H10]n (5) (HL = 4-(pyridin-4-ylthio)-3,5-dimethyl-1H-pyrazole), were reported. The trimeric Cu3L3 fragments present syn- and anti-conformations dependent on the dangled direction of 4-pyridyl groups on the two sides of the Cu3Pz3 plane (Pz = pyrazolate). Intertrimeric NPyCu weak coordination bonds associate these Cu3L3 fragments together to form dimeric or polymeric structures, which are further stabilized by crystallized solvent molecules or intertrimeric CuCu interactions. The solvated complexes (3-5) may be transformed into the unsolvated complex 1 by evacuation of the crystallized solvents upon heating. All these complexes emit from green to yellow under UV irradiation, which originated from the triplet excited states of metal to ligand charge transfer (3MLCT) mixed with intertrimeric CuCu interactions. This work provides a novel kind of supramolecular aggregate based on Cu3Pz3 beyond the classical π-acidbase adducts and metallophilicity-dependent dimers/oligomers.
    Matched MeSH terms: Solvents
  4. Zhan SZ, Li M, Zheng J, Wang QJ, Ng SW, Li D
    Inorg Chem, 2017 Nov 06;56(21):13446-13455.
    PMID: 29023107 DOI: 10.1021/acs.inorgchem.7b02144
    Six daughter complexes based on two-dimensional (2-D) luminescent Cu4I4-Cu3Pz3(Pz = pyrazolate) coordination networks, which exhibit an uncommon Cu4I4L3L' (L = pyridine; L' = acetonitrile, pyridine, pyrazine, 1,4-diazabicyclo[2.2.2]octane, triphenylphosphine, none) local configuration, were prepared through a postsynthetic modification method starting from a parent complex (L' = NH3). This work has successfully implemented the single-site substitution of Cu4I4-based coordination frameworks, which have rarely been reported for isolated Cu4I4-type compounds, by taking advantage of the solvent-assisted ligand substitution strategy recently developed in metal-organic framework (MOF) chemistry. Such a procedure not only resulted in the variation of local geometry in the Cu4I4units but also led to interlayer network displacement and entanglement. Particularly, an interesting topological transformation (from 2-D to 2-D → 3-D interpenetration) occurred when linear bidentate linkers (e.g., pyrazine and 1,4-diazabicyclo[2.2.2]octane) are inserted between the 2-D layers. Moreover, the variation in the L' sites can effectively tune the emission colors, ranging from green to orange (λemmax540-605 nm at room temperature). The photoluminescence origins are tentatively assigned to be a mixture of3MLCT and3XLCT, different from that of the well-studied isolated Cu4I4-type complexes.
    Matched MeSH terms: Solvents
  5. Zetty Shafiqa Othman, Nurul Huda Abd Karim, Saiful Irwan Zubairi, Nur Hasyareeda Hassan, Mamoru Koketsu
    Sains Malaysiana, 2018;47:1473-1482.
    [BMIM]OTf and alcohol-based DES combination with a selected organic solvent (acetone and acetonitrile) have
    been proven to efficiently extracting rotenone (isoflavonoid biopesticide) compound compared to individual organic
    solvents. Their efficiency builds up interest to study the solvent-solute interaction that occurs between both selected
    solvent systems with rotenone. The interaction study was analyzed using FTIR, 1D-NMR and 2D- NMR (NOESY, HMBC).
    Correlation portrayed by NOESY and HMBC of [BMIM]OTf - standard rotenone mixture predicted probable hydrogen
    bonding between the oxygen of rotenone with acidic proton C2-H of [BMIM]OTf. While for the alcohol-based DESrotenone
    mixture, the correlation shows probable interaction to occur between methyl and methoxy group rotenone
    with the hydroxyl group of 1,4-butanediol. In conclusion, potential hydrogen bonding that occurs between solvent
    and solute aid towards the solvent efficiency in extracting rotenone compound while emphasizing on the low cost and
    green mediated solvent systems.
    Matched MeSH terms: Solvents
  6. Zaulkiflee ND, Ahmad AL, Che Lah NF, Shah Buddin MMH
    Environ Sci Pollut Res Int, 2022 Feb;29(9):12997-13023.
    PMID: 35048340 DOI: 10.1007/s11356-021-16658-5
    Emerging contaminants (ECs) originated from different agricultural, biological, chemical, and pharmaceutical sectors have been detected in our water sources for many years. Several technologies are employed to minimise EC content in the aqueous phase, including solvent extraction processes, but there is not a solution commonly accepted yet. One of the studied alternatives is based on separation processes of emulsion liquid membrane (ELM) that benefit low solvent inventory and energy needs. However, a better understanding of the process and factors influencing the operating conditions and the emulsion stability of the extraction/stripping process is crucial to enhancing ELM's performance. This article aims to describe the applications of this technique for the EC removal and to comprehensively review the ELM properties and characteristics, phase compositions, and process parameters.
    Matched MeSH terms: Solvents
  7. Zarina, Z., Tan S.Y.
    MyJurnal
    The peels of pomelo contribute 30% of the fruit weight and yet it has been dump without recognizing the possible nutritional value of the peels. Study has been carried out to identify flavonoid content of the peels and analysed the activity of the flavonoid towards inhibition of lipid peroxidation. Optimization of flavonoid extraction was conducted using aqueous solvent (methanol and ethanol), extraction time (1-3 h) and extraction temperature (50°C-80°) via water bath extraction. The total content of flavonoids was quantitatively determined by using coloration methods with chromogenic system of NaNO2–Al (NO3)3–NaOH and and it was found that the extraction at 65ºC for 2 h in aqueous ethanol was the optimized condition for maximum flavonoids i.e. 190.42mg/L. A spectrophometric analysis was performed to evaluate flavonoid activity towards lipid peroxidation in the fish tissue. There was reduction in Peroxide value (PV) indicated the inhibition of lipid peroxidation in fish treated with pomelo peel as evidence of concurrency of positive flavonoid activity.
    Matched MeSH terms: Solvents
  8. Zamindar N, Bashash M, Khorshidi F, Serjouie A, Shirvani MA, Abbasi H, et al.
    J Food Sci Technol, 2017 Jun;54(7):2077-2084.
    PMID: 28720965 DOI: 10.1007/s13197-017-2646-0
    The aim of this study was to evaluate the presence and possibility of extracting compounds with antioxidant properties of soybean cake to extend the storage stability of soybean oil. Results showed that the highest DPPH radical scavenging activity was observed for sample to solvent ratio 1:25 while extracting by 70% ethanol for 3 h). The most phenolic compounds equivalents (Gallic acid) was observed for sample to solvent ratio 1:25 while extracting by 70% methanol for 14 h. In addition, the soybean cake extract at concentrations of 50, 100, 150 and 200 ppm in soybean oil could significantly lower the peroxide, diene and p-anisidine values of soy oil during storage at 65 °C.
    Matched MeSH terms: Solvents
  9. Zakaria ZA, Kumar GH, Mat Jais AM, Sulaiman MR, Somchit MN
    Methods Find Exp Clin Pharmacol, 2008 Jun;30(5):355-62.
    PMID: 18806894 DOI: 10.1358/mf.2008.30.5.1186084
    The present study was carried out to elucidate the antinociceptive, antiinflammatory and antipyretic properties of the aqueous and lipid-based extracts of Channa striatus fillet in rats. The antinociceptive activity was assessed using the formalin test, and the antiinflammatory and antipyretic activities were assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. Both types of extracts were prepared in concentrations of 10%, 50% and 100% by serial dilution in distilled water or dimethyl sulfoxide, respectively, and were administered subcutaneously 30 min prior to each test. Except for the 10% aqueous extract which exhibits activity only in the early phase, the extracts were found to exhibit significant (P < 0.05) activity in the early and late phases of the formalin test. Furthermore, the aqueous and lipid-based extracts were also found to show significant (P < 0.05) antiinflammatory activity, with the former showing a greater effect at the lowest concentration used. The lipidbased, but not the aqueous, extract was found to have significant (P < 0.05) activity in the pyrexia test. In conclusion, the present study demonstrated that C. striatus extracts possess antinociceptive, antiinflammatory and antipyretic activities.
    Matched MeSH terms: Solvents
  10. Zakaria ZA, Mahmood ND, Mamat SS, Nasir N, Omar MH
    Front Pharmacol, 2017;8:982.
    PMID: 29497375 DOI: 10.3389/fphar.2017.00982
    Methanol extract ofMuntingia calaburaL. (family Muntingiaceae) leaf has been reported to exert various pharmacological activities including hepatoprotection. The present study was carried out to identify the most effective hepatoprotective partition derived from the extract and to determine the mechanisms of action involved. The extract was partitioned using solvents with different polarity to yield petroleum ether (PEMC), ethyl acetate (EAMC), and aqueous (AQMC) extracts. Each extract, at 250 mg/kg, was subjected to the paracetamol (PCM)-induced hepatotoxic assay and several parameters such as liver weight, liver/body weight ratio, serum liver enzymes' level, and histopathological examinations were determined. Each partition was also tested for their antioxidant and anti-inflammatory potentials. The most effective extract (AQMC) was prepared in additional dose of 50 and 500 mg/kg, and then subjected to the same liver toxicity test in addition to the endogenous antioxidant enzymes assay. Moreover, AQMC was also subjected to the phytochemical screening and HPLC analysis. Overall, from the results obtained: AQMC exerted significant (p< 0.05): (i) antioxidant activity when assessed using the DPPH, SOD and ORAC assays with high TPC detected; (ii) anti-inflammatory activity via LOX, but not XO pathway; (iii) hepatoprotective activity indicated by its ability to reverse the effect of PCM on the liver weight and liver/body weight ratio, the level of serum liver enzymes (ALT, AST, and ALP), and activity of several endogenous antioxidant enzymes (SOD and CAT). Phytochemicals analyses demonstrated the presence of several flavonoid-based bioactive compounds such as gallic acid and quercetin, which were reported to possess hepatoprotective activity. In conclusion, AQMC exerts hepatoprotective activity against the PCM-induced toxicity possibly by having a remarkable antioxidant potential and ability to activate the endogenous antioxidant system possibly via the synergistic action of its phytoconstituents.
    Matched MeSH terms: Solvents
  11. Zainuddin Z, Wan Daud WR, Pauline O, Shafie A
    Bioresour Technol, 2011 Dec;102(23):10978-86.
    PMID: 21996481 DOI: 10.1016/j.biortech.2011.09.080
    In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained.
    Matched MeSH terms: Solvents/chemistry
  12. Zainuddin MF, Fai CK, Ariff AB, Rios-Solis L, Halim M
    Microorganisms, 2021 Jan 27;9(2).
    PMID: 33513696 DOI: 10.3390/microorganisms9020251
    The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and "green" solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
    Matched MeSH terms: Solvents
  13. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF, Looi CY
    J Control Release, 2019 12 28;316:168-195.
    PMID: 31669211 DOI: 10.1016/j.jconrel.2019.09.019
    The applications of eutectic systems, including deep eutectic solvents (DESs), in diverse sectors have drawn significant interest from researchers, academicians, engineers, medical scientists, and pharmacists. Eutecticity increases drug dissolution, improves drug penetration, and acts as a synthesis route for drug carriers. To date, DESs have been extensively explored as potential drug delivery systems on account of their unique properties such as tunability and chemical and thermal stability. This review discusses two major topics: first, the application of eutectic mixtures (before and after the introduction of DES) in the field of drug delivery systems, and second, the most promising examples of DES pharmaceutical activity. It also considers future prospects in the medical and biotechnological fields. In addition to the application of DESs in drug delivery systems, they show greatly promising pharmaceutical activities, including anti-fungal, anti-bacterial, anti-viral, and anti-cancer activities. Eutecticity is a valid strategy for overcoming many obstacles inherently associated with either introducing new drugs or enhancing drug delivery systems.
    Matched MeSH terms: Solvents/chemistry*
  14. Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS
    Anal Chim Acta, 2017 08 01;979:1-23.
    PMID: 28599704 DOI: 10.1016/j.aca.2017.05.012
    With the rapid development of ionic liquid analogues, termed 'deep eutectic solvents' (DESs), and their application in a wide range of chemical and biochemical processes in the past decade, the extraction of bioactive compounds has attracted significant interest. Recently, numerous studies have explored the extraction of bioactive compounds using DESs from diverse groups of natural sources, including animal and plant sources. This review summarizes the-state-of-the-art effort dedicated to the application of DESs in the extraction of bioactive compounds. The aim of this review also was to introduce conventional and recently-developed extraction techniques, with emphasis on the use of DESs as potential extractants for various bioactive compounds, such as phenolic acid, flavonoids, tanshinone, keratin, tocols, terpenoids, carrageenans, xanthones, isoflavones, α-mangostin, genistin, apigenin, and others. In the near future, DESs are expected to be used extensively for the extraction of bioactive compounds from various sources.
    Matched MeSH terms: Solvents*
  15. Zahra MH, Salem TAR, El-Aarag B, Yosri N, El-Ghlban S, Zaki K, et al.
    Molecules, 2019 Jul 08;24(13).
    PMID: 31288458 DOI: 10.3390/molecules24132495
    BACKGROUND/AIM: Plants play an important role in anti-cancer drug discovery, therefore, the current study aimed to evaluate the biological activity of Alpinia zerumbet (A. zerumbet) flowers.

    METHODS: The phytochemical and biological criteria of A. zerumbet were in vitro investigated as well as in mouse xenograft model.

    RESULTS: A. zerumbet extracts, specially CH2Cl2 and MeOH extracts, exhibited the highest potent anti-tumor activity against Ehrlich ascites carcinoma (EAC) cells. The most active CH2Cl2 extract was subjected to bioassay-guided fractionation leading to isolatation of the naturally occurring 5,6-dehydrokawain (DK) which was characterized by IR, MS, 1H-NMR and 13C-NMR. A. zerumbet extracts, specially MeOH and CH2Cl2 extracts, exhibited significant inhibitory activity towards tumor volume (TV). Furthermore, A. zerumbet extracts declined the high level of malonaldehyde (MDA) as well as elevated the levels of superoxide dismutase (SOD) and catalase (CAT) in liver tissue homogenate. Moreover, DK showed anti-proliferative action on different human cancer cell lines. The recorded IC50 values against breast carcinoma (MCF-7), liver carcinoma (Hep-G2) and larynx carcinoma cells (HEP-2) were 3.08, 6.8, and 8.7 µg/mL, respectively.

    CONCLUSION: Taken together, these findings open the door for further investigations in order to explore the potential medicinal properties of A. zerumbet.

    Matched MeSH terms: Solvents
  16. Zaharani L, Ghaffari Khaligh N, Shahnavaz Z, Rafie Johan M
    Turk J Chem, 2020;44(3):535-542.
    PMID: 33488175 DOI: 10.3906/kim-2002-26
    In the current protocol, the arene diazonium saccharin derivatives were initially produced from various substituted aromatic amines; subsequently, these intermediates were treated with a greener organic iodide for the preparation of the aryl iodide. We tried to choose low-cost, commercially available, biodegradable, recoverable, ecofriendly, and safe reagents and solvents. The arene diazonium saccharin intermediates could be stored in the liquid phase into a refrigerator for a long time with no significant loss activity. The outstanding merits of the current protocol (a) included the partial recovering of saccharin and tetraethylammonium salt, (b) reduce the use of solvents and the reaction steps due to eliminating separation and purification of intermediates, (c) good yield of the sterically hindered substrates, and (d) avoid the generation of heavy metal or corrosive waste.
    Matched MeSH terms: Solvents
  17. Zafira Madzin, Faradiella Mohd Kusin, Mohd Shakirin Md Zahar, Siti Nurjaliah Muhammad
    MyJurnal
    The contamination of water bodies from heavy metals, either from natural sources or
    anthropogenic sources, has become a major concern to the public. Industrial activities with improper
    water treatment, and then leach into the water body, have become contaminated and harmful to
    consume. Passive remediation is one of the treatments introduced to counter this problem as it is a low
    cost but effective technique. After being widely acknowledged and through research conducted, the
    most suitable remediation technique found is the permeable reactive barriers (PRBs). PRB is defined
    as an in situ permeable treatment zone filled with reactive materials, designed to intercept and
    remediate a contaminant plume under natural hydraulic gradients. There have been many findings
    made from PRB which can be used to remove contaminants such as heavy metal, chlorinated solvents,
    carbonates and aromatic hydrocarbons. The most crucial criteria in making a successful PRB is the
    reactive media used to remove contaminants. The current paper presents an overview of the PRB
    selective medias that have been used and also the unresolved issue on the long term performance of
    PRB. The overall methodology for the application of PRB at a given site is also discussed in this
    paper. This inexpensive but effective technique is crucial as a sustainable technology in order to treat
    the drainage before it enters water tables to prevent water pollution and can be used as an alternative
    raw water source.
    Matched MeSH terms: Solvents
  18. Yusri NM, Chan KW, Iqbal S, Ismail M
    Molecules, 2012 Oct 25;17(11):12612-21.
    PMID: 23099617 DOI: 10.3390/molecules171112612
    A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract), total flavonoid content (2.49 mg RE/g extract), and antioxidant activities (p < 0.05). DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05). As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications.
    Matched MeSH terms: Solvents/chemistry
  19. Yusop Nurida M, Norfadilah D, Siti Aishah MR, Zhe Phak C, Saleh SM
    Int J Anal Chem, 2020;2020:9830685.
    PMID: 32089691 DOI: 10.1155/2020/9830685
    The analytical methods for the determination of the amine solvent properties do not provide input data for real-time process control and optimization and are labor-intensive, time-consuming, and impractical for studies of dynamic changes in a process. In this study, the potential of nondestructive determination of amine concentration, CO2 loading, and water content in CO2 absorption solvent in the gas processing unit was investigated through Fourier transform near-infrared (FT-NIR) spectroscopy that has the ability to readily carry out multicomponent analysis in association with multivariate analysis methods. The FT-NIR spectra for the solvent were captured and interpreted by using suitable spectra wavenumber regions through multivariate statistical techniques such as partial least square (PLS). The calibration model developed for amine determination had the highest coefficient of determination (R2) of 0.9955 and RMSECV of 0.75%. CO2 calibration model achieved R2 of 0.9902 with RMSECV of 0.25% whereas the water calibration model had R2 of 0.9915 with RMSECV of 1.02%. The statistical evaluation of the validation samples also confirmed that the difference between the actual value and the predicted value from the calibration model was not significantly different and acceptable. Therefore, the amine, CO2, and water models have given a satisfactory result for the concentration determination using the FT-NIR technique. The results of this study indicated that FT-NIR spectroscopy with chemometrics and multivariate technique can be used for the CO2 solvent monitoring to replace the time-consuming and labor-intensive conventional methods.
    Matched MeSH terms: Solvents
  20. Yusof, F., Chowdhury, S., Faruck, M. O., Sulaiman, N.
    MyJurnal
    Cancer still presents enormous challenges in the medical world. Currently, the search for
    anticancer compounds has garnered a lot of interest, especially in finding them from the natural
    sources. In this study, by using Sulforhodamine B (SRB) colorimetric assay, compounds,
    extracted from supermeal worm (Zophobas morio) larvae using two types of acidified organic
    solvent (ethanol and isopropanol), were shown to inhibit the growth of a breast cancer line,
    MCF-7. A comparative study of the effect was carried out on a normal cell line, Vero. Results
    showed that, the two types of extracts inhibits growth of MCF-7 cell at varying degrees, on
    the other hand, have much less effect on Vero cell. Extracts analysed by UV-vis spectroscopy,
    showed peaks in the range of 260 to 280 nm, inferring the presence of aromatic amino acids,
    whereas the highest peak of 3.608 AU at 230 nm indicates the presence of peptide bonds. By
    Raman spectroscopy, peaks are observed at 1349 cm-1, 944 cm-1 and 841 cm-1 indicating the
    presence of Tyr, Try and Gly, confirming the UV-vis analyses. All results of analyses implied
    that the anticancer compounds contain peptides.
    Matched MeSH terms: Solvents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links