Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Naher L, Tan SG, Ho CL, Yusuf UK, Ahmad SH, Abdullah F
    ScientificWorldJournal, 2012;2012:647504.
    PMID: 22919345 DOI: 10.1100/2012/647504
    Basal stem rot (BSR) disease caused by the fungus Ganoderma boninense is the most serious disease affecting the oil palm; this is because the disease escapes the early disease detection. The biocontrol agent Trichoderma harzianum can protect the disease only at the early stage of the disease. In the present study, the expression levels of three oil palm (Elaeis guineensis Jacq.) chitinases encoding EgCHI1, EgCHI2, and EgCHI3 at 2, 5, and 8 weeks inoculation were measured in oil palm leaves from plants treated with G. boninense or T. harzianum alone or both.
    Matched MeSH terms: Trichoderma*
  2. Khan MH, Ali S, Fakhru'l-Razi A, Alam Z
    J Environ Sci Health B, 2007 May;42(4):381-6.
    PMID: 17474017
    Cellulase production was carried out by solid state bioconversion (SSB) method using rice straw, a lignocellulosic material and agricultural waste, as the substrate of three Trichoderma spp. and Phanerochaete chrysosporium in lab-scale experiments. The results were compared to select the best fungi among them for the production of cellulase. Phanerochaete chrysosporium was found to be the best among these species of fungi, which produced the highest cellulase enzyme of 1.43 IU/mL of filter paper activity (FPase) and 2.40 IU/mL of carboxymethylcellulose activity (CMCase). The "glucosamine" and "reducing sugar" parameters were observed to evaluate the growth and substrate utilization in the experiments. In the case of Phanerochaete Chrysosporium, the highest glucosamine concentration was 1.60 g/L and a high concentration of the release of reducing sugar was measured as 2.58 g/L obtained on the 4th day of fermentation. The pH values were also recorded. The range of the pH was about 5.15 to 5.56 in the case of Phanerochaete Chrysosporium.
    Matched MeSH terms: Trichoderma/enzymology*; Trichoderma/growth & development
  3. Sulaiman AZ, Ajit A, Chisti Y
    Biotechnol Prog, 2013 Nov-Dec;29(6):1448-57.
    PMID: 23926080 DOI: 10.1002/btpr.1786
    A recombinant Trichoderma reesei cellulase was used for the ultrasound-mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4-11.8 W cm(-2) sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis-Menten kinetics. The Michaelis-Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm(-2) . Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm(-2) power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose.
    Matched MeSH terms: Trichoderma/enzymology*
  4. Nurul ‘Izzah Mohd Sarmin, Noraziah M. Zin, Nik Marzuki Sidik, Franco CM, Ng KT, Kaewkla O
    Sains Malaysiana, 2012;41:547-551.
    Sembilan aktinomiset endofit telah berjaya dipencilkan daripada pokok yang mempunyai nilai ubatan dari beberapa tempat di Semenanjung Malaysia. Pencilan tersebut telah dikenalpasti melalui pemerhatian morfologi, amplifikasi gen 16S rRNA dan analisis penjujukan 16S rRNA. Saringan awal terhadap aktiviti antimikrob telah dilakukan dengan menggunakan teknik calitan plat. Pembentukan miselium substrat dan aerial, warna jisim spora, pigmen larut dan morfologi rantai spora pada semua pencilan menyerupai Streptomyces sp. dan Microbispora sp. Analisis filogenetik jujukan separa 16S rRNA mendapati pencilan SUK 08, SUK 10 dan SUK 15 saling berkaitan dengan Streptomyceseurythermus ATCC 14975T. Walau bagaimanapun pencilan ini telah dipencilkan dari tumbuhan yang berbeza. Pencilan ini didapati mempunyai aktiviti antimikrob terhadap bakteria dan kulat kajian. Empat pencilan aktif iaitu SUK 08, SUK10, SUK 12 dan SUK 15 berupaya untuk membunuh dan merencat sehingga 100% satu atau lebih organisma patogen seperti Bacillus subtilis, Aspergillus fumigatus, Aspergillus niger, Fusarium solani, Rhizoctonia solani dan Trichoderma viride. Kajian ini mengesahkan bahawa tumbuhan etnoperubatan adalah sumber pencarian aktinomiset endofit bioaktif yang berupaya menjadi sumber novel dalam pencarian agen antibakteria dan antimikotik.
    Matched MeSH terms: Trichoderma
  5. Marcharchand S, Ting ASY
    J Environ Manage, 2017 Dec 01;203(Pt 1):542-549.
    PMID: 28693968 DOI: 10.1016/j.jenvman.2017.06.068
    Trichoderma asperellum (Ta) was first cultured in synthetic medium (Potato Dextrose Broth, PDB) of various concentrations (100, 75, 50, 25%). The biomass was harvested and inoculated into dye solutions (crystal violet, CV; methyl violet, MV; malachite green, MG; and cotton blue, CB). Reduced concentrations (20, 50, 75%) affected growth rate but their decolourization efficacies remained unaffected. This was attributed to similar numbers and types of functional groups (hydroxyl, amine, ester-lipid, alkane groups) found on the surface of fungal biomass, as revealed by the Fourier transformed infrared spectroscopy (FTIR) analysis. Their production of NADH-reductase for degradation, and their biosorption activities were also unaffected. In general, Ta cultured in reduced concentrations (20, 50, 75%) retained the ability to perform biosorption and biodegradation, similar to cultures from control (100% PDB). This suggested that reduced nutrient levels (as a cost-feasible strategy) could be used to cultivate biomass of Ta for dye removal activities.
    Matched MeSH terms: Trichoderma*
  6. Chutrakul C, Alcocer M, Bailey K, Peberdy JF
    Chem Biodivers, 2008 Sep;5(9):1694-706.
    PMID: 18816522 DOI: 10.1002/cbdv.200890158
    Trichoderma spp. are regularly found as a constituent of the mycoflora of many soils and are noted for their antagonistic activity against bacteria and other fungi. This latter property is the basis for the widespread interest in their use in the biological control of soil-borne fungal plant pathogens. This antagonism is partly based on their ability to produce an impressive inventory of secondary metabolites. An important group of bioactive metabolites produced by Trichoderma spp. are the non-ribosomal peptides (NRPs), especially the peptaibols. A virulent antagonistic strain, T. asperellum, which had been used in biological control strategies in Malaysia and previously examined for mycolytic enzyme production, has been studied for its potential for peptaibol production. The present research demonstrated the ability of T. asperellum to produce at least two metabolites which were identified as acid trichotoxin 1704E (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Ala-Aib-Pro-Leu-Aib-Iva-Glu-Vol) and neutral trichotoxin 1717A (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Aib-Aib-Pro-Leu-Aib-Iva-Gln-Vol). Addition of free Aib to the culture medium enhanced the production of trichotoxins. Biological activity of these substances was investigated against Bacillus stearothermophilus. The general characteristics of peptaibols, also found in the trichotoxins, include the presence of high proportions of the uncommon amino acid Aib, the protection of the N- and C-termini by an acetyl group and reduction of the C-terminus to 2-amino alcohols, respectively, amphipathy and microheterogeneity.
    Matched MeSH terms: Trichoderma/metabolism*; Trichoderma/chemistry*
  7. Bahaman AH, Abdul Wahab R, Hamid AAA, Halim KBA, Kaya Y, Edbeib MF
    J Biomol Struct Dyn, 2020 Sep;38(14):4246-4258.
    PMID: 31608812 DOI: 10.1080/07391102.2019.1679667
    Fungi of the Trichoderma species are valued industrial enzymes in support of the 'zero-waste' technology to convert agro-industrial biomass into valuable products, i.e. nanocellulose (NC). In this study, an in silico approach using substrate docking and molecular dynamic (MD) simulation was used to predict the order of which the multilayers of cellulosic polymers, i.e. lignin, hemicellulose and cellulose in oil palm leaves (OPL) are degraded by fungal enzymes, endocellulase and exocellulase. The study aimed to establish the catalytic tendencies of the enzymes to optimally degrade the cellulosic components of OPL for high yield production of NC. Energy minimized endocellulase and exocellulase models revealed satisfactory scores of PROCHECK (90.0% and 91.2%), Verify3D (97.23% and 98.85%) and ERRAT (95.24% and 91.00%) assessments. Active site prediction by blind docking, COACH meta-server and multiple sequence alignment indicated the catalytic triads for endocellulase and exocellulase were Ser116-His205-Glu249 and Ser382-Arg124-Asp385, respectively. Binding energy of endocellulase docked with hemicellulose (-6.0   kcal mol-1) was the most favourable followed by lignin (-5.6   kcal mol-1) and cellulose (-4.4   kcal mol-1). Exocellulase, contrarily, bonded favorably with lignin (-8.7   kcal mol-1), closely followed by cellulose (-8.5   kcal mol-1) and hemicellulose (-8.4   kcal mol-1). MDs simulations showed that interactions of complexes, endocellulase-hemicellulose and the exocellulase-cellulose being the most stable. Thus, the findings of the study successfully identified the specific actions of sugar-acting enzymes for NC production. Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Trichoderma
  8. Abjani F, Khan NA, Jung SY, Siddiqui R
    Exp Parasitol, 2017 Dec;183:187-193.
    PMID: 28919333 DOI: 10.1016/j.exppara.2017.09.007
    The aim of this study was (i) to assess the antimicrobial effects of contact lens disinfecting solutions marketed in Malaysia against common bacterial eye pathogens and as well as eye parasite, Acanthamoeba castellanii, and (ii) to determine whether targeting cyst wall would improve the efficacy of contact lens disinfectants. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal and amoebicidal assays of six different contact lens solutions including Oxysept®, AO SEPT PLUS, OPTI-FREE® pure moist®, Renu® fresh™, FreshKon® CLEAR and COMPLETE RevitaLens™ were performed using Manufacturers Minimum recommended disinfection time (MRDT). The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, and Acanthamoeba castellanii. In addition, using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, we determined whether combination of both agents can enhance efficacy of marketed contact lens disinfectants against A. castellanii trophozoites and cysts, in vitro. The results revealed that all contact lens disinfectants tested showed potent bactericidal effects exhibiting 100% kill against all bacterial species tested. In contrast, none of the contact lens disinfectants had potent effects against Acanthamoeba cysts viability. When tested against trophozoites, two disinfectants, Oxysept Multipurpose and AO-sept Multipurpose showed partial amoebicidal effects. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents in contact lens disinfectants abolished viability of A. castellanii cysts and trophozoites. Given the inefficacy of contact lens disinfectants tested in this study, these findings present a significant concern to public health. These findings revealed that targeting cyst wall by using cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy against this devastating eye infection.
    Matched MeSH terms: Trichoderma/enzymology
  9. Alam MZ, Muyibi SA, Wahid R
    Bioresour Technol, 2008 Jul;99(11):4709-16.
    PMID: 17981027
    A two-level fractional factorial design (FFD) was used to determine the effects of six factors, i.e. substrate (domestic wastewater sludge - DWS) and co-substrate concentration (wheat flour - WF), temperature, initial pH, inoculum size and agitation rate on the production of cellulase enzyme by Trichoderma harzianum in liquid state bioconversion. On statistical analysis of the results from the experimental studies, optimum process conditions were found to be temperature 32.5 degrees C, substrate concentration (DWS) 0.75% (w/w), co-substrate (WF) concentration 2% (w/w), initial pH 5, inoculum size 2% (v/w) and agitation 175 rpm. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 0.975. Cellulase activity reached 10.2 FPU/ml at day 3 during the fermentation process which indicated about 1.5-fold increase in production compared to the cellulase activity obtained from the results of design of experiment (6.9 FPU/ml). Biodegradation of DWS was also evaluated to verify the efficiency of the bioconversion process as a waste management method.
    Matched MeSH terms: Trichoderma/enzymology*
  10. Mohamad Ikubar MR, Abdul Manan M, Md Salleh M, Yahya A
    3 Biotech, 2018 May;8(5):259.
    PMID: 29765817 DOI: 10.1007/s13205-018-1268-1
    In current practice, oil palm frond leaflets and stems are re-used for soil nutrient recycling, while the petioles are typically burned. Frond petioles have high commercialization value, attributed to high lignocellulose fiber content and abundant of juice containing free reducing sugars. Pressed petiole fiber is the subject of interest in this study for the production of lignocellulolytic enzyme. The initial characterization showed the combination of 0.125 mm frond particle size and 60% moisture content provided a surface area of 42.3 m2/g, porosity of 12.8%, and density of 1.2 g/cm3, which facilitated fungal solid-state fermentation. Among the several species of Aspergillus and Trichoderma tested, Aspergillus awamori MMS4 yielded the highest xylanase (109 IU/g) and cellulase (12 IU/g), while Trichoderma virens UKM1 yielded the highest lignin peroxidase (222 IU/g). Crude enzyme cocktail also contained various sugar residues, mainly glucose and xylose (0.1-0.4 g/L), from the hydrolysis of cellulose and hemicellulose. FT-IR analysis of the fermented petioles observed reduction in cellulose crystallinity (I900/1098), cellulose-lignin (I900/1511), and lignin-hemicellulose (I1511/1738) linkages. The study demonstrated successful bioconversion of chemically untreated frond petioles into lignin peroxidase and xylanase-rich enzyme cocktail under SSF condition.
    Matched MeSH terms: Trichoderma
  11. Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL
    Mol Biol Rep, 2013 Jan;40(1):147-58.
    PMID: 23065213 DOI: 10.1007/s11033-012-2043-8
    Chitinases are glycosyl hydrolases that cleave the β-1,4-glycosidic linkages between N-acetylglucosamine residues in chitin which is a major component of fungal cell wall. Plant chitinases hydrolyze fungal chitin to chitin oligosaccharides that serve as elicitors of plant defense system against fungal pathogens. However, plants synthesize many chitinase isozymes and some of them are not pathogenesis-related. In this study, three full-length cDNA sequences encoding a putative chitinase (EgChit3-1) and two chitinase-like proteins (EgChit1-1 and EgChit5-1) have been cloned from oil palm (Elaeis guineensis) by polymerase chain reaction (PCR). The abundance of these transcripts in the roots and leaves of oil palm seedlings treated with Ganoderma boninense (a fungal pathogen) or Trichoderma harzianum (an avirulent symbiont), and a combination of both fungi at 3, 6 and 12 weeks post infection were profiled by real time quantitative reverse-transcription (qRT)-PCR. Our findings showed that the gene expression of EgChit3-1 increased significantly in the roots of oil palm seedlings treated with either G. boninense or T. harzianum and a combination of both; whereas the gene expression of EgChit1-1 in the treated roots of oil palm seedlings was not significantly higher compared to those of the untreated oil palm roots. The gene expression of EgChit5-1 was only higher in the roots of oil palm seedlings treated with T. harzianum compared to those of the untreated oil palm roots. In addition, the gene expression of EgChit1-1 and EgChit3-1 showed a significantly higher gene expression in the leaf samples of oil palm seedlings treated with either G. boninense or T. harzianum.
    Matched MeSH terms: Trichoderma/physiology*
  12. Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL
    J Plant Physiol, 2012 Oct 15;169(15):1565-70.
    PMID: 22854183 DOI: 10.1016/j.jplph.2012.07.006
    Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum.
    Matched MeSH terms: Trichoderma/pathogenicity*
  13. Siddiquee S, Cheong BE, Taslima K, Kausar H, Hasan MM
    J Chromatogr Sci, 2012 Apr;50(4):358-67.
    PMID: 22407347 DOI: 10.1093/chromsci/bms012
    A simple, fast, repeatable and less laborious sample preparation protocol was developed and applied for the analysis of biocontrol fungus Trichoderma harzianum strain FA1132 by using gas chromatography-mass spectrometry. The match factors for sample spectra with respect to the mass spectra library of fungal volatile compounds were determined and used to study the complex hydrocarbons and other volatile compounds, which were separated by using different capillary columns with nonpolar, medium polar and high polar stationary phases. To date, more than 278 volatile compounds (with spectral match factor at least 90%) such as normal saturated hydrocarbons (C7-C30), cyclohexane, cyclopentane, fatty acids, alcohols, esters, sulfur-containing compounds, simple pyrane and benzene derivatives have been identified. Most of these compounds have not previously been reported. The method described in this paper is a more convenient research tool for the detection of volatile compounds from the cultures of T. harzianum.
    Matched MeSH terms: Trichoderma/metabolism*
  14. Linggang S, Phang LY, Wasoh MH, Abd-Aziz S
    Appl Biochem Biotechnol, 2012 May;167(1):122-31.
    PMID: 22528646 DOI: 10.1007/s12010-012-9592-0
    Sago pith residue is one of the most abundant lignocellulosic biomass which can serve as an alternative cheap substrate for fermentable sugars production. This residue is the fibrous waste left behind after the starch extraction process and contains significant amounts of starch (58%), cellulose (23%), hemicellulose (9.2%) and lignin (3.9%). The conversion of sago pith residue into fermentable sugars is commonly performed using cellulolytic enzymes or known as cellulases. In this study, crude cellulases were produced by two local isolates, Trichoderma asperellum UPM1 and Aspergillus fumigatus, UPM2 using sago pith residue as substrate. A. fumigatus UPM2 gave the highest FPase, CMCase and β-glucosidase activities of 0.39, 23.99 and 0.78 U/ml, respectively, on day 5. The highest activity of FPase, CMCase and β-glucosidase by T. asperellum UPM1 was 0.27, 12.03 and 0.42 U/ml, respectively, on day 7. The crude enzyme obtained from A. fumigatus UPM2 using β-glucosidase as the rate-limiting enzyme (3.9, 11.7 and 23.4 IU) was used for the saccharification process to convert 5% (w/v) sago pith residue into reducing sugars. Hydrolysis of sago pith residue using crude enzyme containing β-glucosidase with 23.4 IU, produced by A. fumigatus UPM2 gave higher reducing sugars production of 20.77 g/l with overall hydrolysis percentage of 73%.
    Matched MeSH terms: Trichoderma/enzymology*
  15. Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK
    BMC Biotechnol, 2014;14:103.
    PMID: 25496491 DOI: 10.1186/s12896-014-0103-y
    BACKGROUND: Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels.

    RESULTS: Rice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the hydrolytic reaction. According to the results of our study, FPase is a major component of cellulose hydrolytic enzyme complex system and the reducing sugar rate-limiting enzyme.

    CONCLUSION: Our study revealed that rice straw hydrolysate served as a potential substrate for biobutanol production and FPase is a rate-limiting enzyme in saccharification.

    Matched MeSH terms: Trichoderma/enzymology*; Trichoderma/genetics; Trichoderma/isolation & purification; Trichoderma/chemistry
  16. Ezeilo UR, Lee CT, Huyop F, Zakaria II, Wahab RA
    J Environ Manage, 2019 Aug 01;243:206-217.
    PMID: 31096173 DOI: 10.1016/j.jenvman.2019.04.113
    Production of cellulases and xylanase by a novel Trichoderma asperellum UC1 (GenBank accession no. MF774876) under solid state fermentation (SSF) of raw oil palm frond leaves (OPFL) was optimized. Under optimum fermentation parameters (30 °C, 60-80% moisture content, 2.5 × 106 spores/g inoculum size) maximum CMCase, FPase, β-glucosidase and xylanase activity were recorded at 136.16 IU/g, 26.03 U/g, 130.09 IU/g and 255.01 U/g, respectively. Cellulases and xylanase were produced between a broad pH range of pH 6.0-12.0. The enzyme complex that comprised of four endo-β-1,4-xylanases and endoglucanases, alongside exoglucanase and β-glucosidase showed thermophilic and acidophilic characteristics at 50-60 °C and pH 3.0-4.0, respectively. Glucose (16.87 mg/g) and fructose (18.09 mg/g) were among the dominant sugar products from the in situ hydrolysis of OPFL, aside from cellobiose (105.92 mg/g) and xylose (1.08 mg/g). Thermal and pH stability tests revealed that enzymes CMCase, FPase, β-glucosidase and xylanase retained 50% residual activities for up to 15.18, 4.06, 17.47 and 15.16 h of incubation at 60 °C, as well as 64.59, 25.14, 68.59 and 19.20 h at pH 4.0, respectively. Based on the findings, it appeared that the unique polymeric structure of raw OPFL favored cellulases and xylanase productions.
    Matched MeSH terms: Trichoderma*
  17. Adnan LA, Sathishkumar P, Yusoff AR, Hadibarata T, Ameen F
    Bioprocess Biosyst Eng, 2017 Jan;40(1):85-97.
    PMID: 27663440 DOI: 10.1007/s00449-016-1677-7
    In this study, a newly isolated ascomycete fungus Trichoderma lixii F21 was explored to bioremediate the polar [Alizarin Red S (ARS)] and non-polar [Quinizarine Green SS (QGSS)] anthraquinone dyes. The bioremediation of ARS and QGSS by T. lixii F21 was found to be 77.78 and 98.31 %, respectively, via biosorption and enzymatic processes within 7 days of incubation. The maximum biosorption (ARS = 33.7 % and QGSS = 74.7 %) and enzymatic biodegradation (ARS = 44.1 % and QGSS = 23.6 %) were observed at pH 4 and 27 °C in the presence of glucose and yeast extract. The laccase and catechol 1,2-dioxygenase produced by T. lixii F21 were involved in the molecular conversions of ARS and QGSS to phenolic and carboxylic acid compounds, without the formation of toxic aromatic amines. This study suggests that T. lixii F21 may be a good candidate for the bioremediation of industrial effluents contaminated with anthraquinone dyes.
    Matched MeSH terms: Trichoderma/metabolism*
  18. Sariah M, Choo CW, Zakaria H, Norihan MS
    Mycopathologia, 2005 Jan;159(1):113-7.
    PMID: 15750742
    Basal stem rot of oil palm caused by Ganoderma boninense is of major economic importance. Observations of the low incidence of disease due to Ganoderma species in natural stands, suggest that the disease is kept under control by some biological means. Trichoderma spp. are saprophytic fungi with high antagonistic activities against soil-borne pathogens. However, their abundance and distribution are soil and crop specific. Trichoderma species have been found to be concentrated in the A1 (0-30 cm) and Be soil horizons (30-60 cm), although the abundance of Trichoderma was not significantly different between the oil palm and non-oil palm ecosystems. Characterisation of Trichoderma isolates based on cultural, morphological and DNA polymorphism showed that T. harzianum, T. virens, T. koningii and T. longibrachiatum made up 72, 14, 10 and 4% of the total Trichoderma isolates isolated. As Trichoderma species are present in the oil palm ecosystem, but at lower numbers and in locations different from those desired, soil augmentation with antagonistic Trichoderma spp. can be developed as a strategy towards integrated management of basal stem rot of oil palm.
    Matched MeSH terms: Trichoderma/classification*; Trichoderma/growth & development
  19. Yusof Nurhayati, Abdul Manaf Ali
    MyJurnal
    Many researchers have focused chitosan as a source of potential bioactive material during the past few decades. However, chitosan has several drawbacks to be utilised in biological applications, including poor solubility under physiological conditions. Therefore, a new interest has recently emerged on partially hydrolysed chitosan, chitosan oligosaccharides (COS). In this study, degradation of chitosan was performed by Cellulase from Trichoderma reesei® 1.5L and Response Surface Methodology (RSM) were employed to optimize the hydrolysis temperature, pH, enzyme concentration and substrate concentration. Optimization of cellulase T. reesei® using central composite design (CCD) was to obtain optimum parameters and all the factors showed significant effects (p˂0.05). The maximum response, Celluclast® activity (1.268 U) was obtained by assaying the process at 49.79oC, pH 4.5, 3% (v/w) of enzyme concentration and 25% (w/v) concentration of chitosan for 24 hours.
    Matched MeSH terms: Trichoderma
  20. Mitrović I, Vučurović D, Al-Ani LKT, Mitrović B, Bajić B, Dodić S, et al.
    J Appl Microbiol, 2023 Jun 01;134(6).
    PMID: 37279914 DOI: 10.1093/jambio/lxad115
    AIMS: In order to be competitive on the market, the production of biopreparations needs to be optimized, modelled, and assessed in the early stages of its development. The aim of this paper was to optimize medium for the production of Trichoderma harzianum K179 biocontrol agent, to analyze its kinetics at enlarged laboratory scale and finally economic analysis of the production of this high-value product through simulation modelling.

    METHODS AND RESULTS: The results showed that the bioprocess of T. harzianum K179 bioagent production in a laboratory bioreactor on the medium with optimal composition (dextrose 10 g l-1, soy flour 6.87 g l-1, K2HPO4 1.51 g l-1, KCl 0.5 g l-1, and MgSO4 × 7H2O 0.5 g l-1), at stirring speed of 1.75 × g and aeration intensity of 1.5 vvm, can be shortened from 96 to 36 h. The results of bioprocess economic analysis showed that with a 25-year project lifetime and an investment payback time of 7.58 years, this project represents an economically viable system.

    CONCLUSIONS: Complete analysis of the bioprocess of T. harzianum K179 biocontrol agent production showed that the biologically produced preparation can be competitive on the market with synthetic preparations.

    Matched MeSH terms: Trichoderma*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links