Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Goh MS, Lam SD, Yang Y, Naqiuddin M, Addis SNK, Yong WTL, et al.
    J Hazard Mater, 2021 10 15;420:126624.
    PMID: 34329083 DOI: 10.1016/j.jhazmat.2021.126624
    In agriculture, the convenience and efficacy of chemical pesticides have become inevitable to manage cultivated crop production. Here, we review the worldwide use of pesticides based on their categories, mode of actions and toxicity. Excessive use of pesticides may lead to hazardous pesticide residues in crops, causing adverse effects on human health and the environment. A wide range of high-tech-analytical methods are available to analyse pesticide residues. However, they are mostly time-consuming and inconvenient for on-site detection, calling for the development of biosensors that detect cellular changes in crops. Such new detection methods that combine biological and physicochemical knowledge may overcome the shortage in current farming to develop sustainable systems that support environmental and human health. This review also comprehensively compiles domestic pesticide residues removal tips from vegetables and fruits. Synthetic pesticide alternatives such as biopesticide and nanopesticide are greener to the environment. However, its safety assessment for large-scale application needs careful evaluation. Lastly, we strongly call for reversions of pesticide application trends based on the changing climate, which is lacking in the current scenario.
    Matched MeSH terms: Vegetables/chemistry
  2. Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, et al.
    Molecules, 2021 Aug 27;26(17).
    PMID: 34500650 DOI: 10.3390/molecules26175216
    Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.
    Matched MeSH terms: Vegetables/chemistry
  3. Gupta N, Yadav KK, Kumar V, Krishnan S, Kumar S, Nejad ZD, et al.
    Environ Toxicol Pharmacol, 2021 Feb;82:103563.
    PMID: 33310081 DOI: 10.1016/j.etap.2020.103563
    This study determined the heavy metals (HMs) accumulation in different vegetables in different seasons and attributed a serious health hazard to human adults due to the consumption of such vegetables in Jhansi. The total amounts of zinc (Zn), lead (Pb), nickel (Ni), manganese (Mn), copper (Cu), cobalt (Co), and cadmium (Cd) were analysed in 28 composite samples of soil and vegetables (Fenugreek, spinach, eggplant, and chilli) collected from seven agricultural fields. The transfer factor (TF) of HMs from soil to analysed vegetables was calculated, and significant non-carcinogenic health risks due to exposure to analysed heavy metals via consumption of these vegetables were computed. The statistical analysis involving Principal Component Analysis (PCA) and Pearson's correlation matrix suggested that anthropogenic activities were a major source of HMs in the study areas. The target hazard quotient of Cd, Mn, and Pb for fenugreek (2.156, 2.143, and 2.228, respectively) and spinach (3.697, 3.509, 5.539, respectively) exceeded the unity, indicating the high possibilities of non-carcinogenic health risks if regularly consumed by human beings. This study strongly suggests the continuous monitoring of soil, irrigation water, and vegetables to prohibit excessive accumulation in the food chain.
    Matched MeSH terms: Vegetables/chemistry*
  4. Wei J, Ren W, Wang L, Liu M, Tian X, Ding G, et al.
    J Sci Food Agric, 2020 Dec;100(15):5627-5636.
    PMID: 32712996 DOI: 10.1002/jsfa.10690
    BACKGROUND: Serofluid dish, a traditional Chinese fermented food, possesses unique flavors and health beneficial effects. These properties are likely due to the sophisticated metabolic networks during fermentation, which are mainly driven by microbiota. However, the exact roles of metabolic pathways and the microbial community during this process remain equivocal.

    RESULTS: Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus.

    CONCLUSION: This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Vegetables/chemistry
  5. Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, et al.
    Environ Res, 2019 12;179(Pt A):108792.
    PMID: 31610391 DOI: 10.1016/j.envres.2019.108792
    This review emphasizes the role of toxic metal remediation approaches due to their broad sustainability and applicability. The rapid developmental processes can incorporate a large quantity of hazardous and unseen heavy metals in all the segments of the environment, including soil, water, air and plants. The released hazardous heavy metals (HHMs) entered into the food chain and biomagnified into living beings via food and vegetable consumption and originate potentially health-threatening effects. The physical and chemical remediation approaches are restricted and localized and, mainly applied to wastewater and soils and not the plant. The nanotechnological, biotechnological and genetical approaches required to more rectification and sustainability. A cellular, molecular and nano-level understanding of the pathways and reactions are responsible for potentially toxic metals (TMs) accumulation. These approaches can enable the development of crop varieties with highly reduced concentrations of TMs in their consumable foods and vegetables. As a critical analysis by authors observed that nanoparticles could provide very high adaptability for both in-situ and ex-situ remediation of hazardous heavy metals (HHMs) in the environment. These methods could be used for the improvement of the inbuilt genetic potential and phytoremediation ability of plants by developing transgenic. These biological processes involve the transfer of gene of interest, which plays a role in hazardous metal uptake, transport, stabilization, inactivation and accumulation to increased host tolerance. This review identified that use of nanoremediation and combined biotechnological and, transgenic could help to enhance phytoremediation efficiency in a sustainable way.
    Matched MeSH terms: Vegetables/chemistry*
  6. Markus A, Gbadamosi AO, Yusuff AS, Agi A, Oseh J
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35130-35142.
    PMID: 30328041 DOI: 10.1007/s11356-018-3402-3
    In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
    Matched MeSH terms: Vegetables/chemistry*
  7. Adeel M, Zain M, Fahad S, Rizwan M, Ameen A, Yi H, et al.
    Environ Sci Pollut Res Int, 2018 Dec;25(36):36712-36723.
    PMID: 30377972 DOI: 10.1007/s11356-018-3588-4
    Since the inception of global industrialization, the growth of steroid estrogens becomes a matter of emerging serious concern for the rapid population. Steroidal estrogens are potent endocrine-upsetting chemicals that are excreted naturally by vertebrates (e.g., humans and fish) and can enter natural waters through the discharge of treated and raw sewage. Steroidal estrogens in plants may enter the food web and become a serious threat to human health. We evaluated the uptake and accumulation of ethinylestradiol (EE2) and 17β-estradiol (17β-E2) in lettuce plants (Lactuca sativa) grown under controlled environmental condition over 21 days growth period. An effective analytical method based on ultrasonic liquid extraction (ULE) for solid samples and solid phase extraction (SPE) for liquid samples with gas chromatography-mass spectrometry (GC/MS) has been developed to determine the steroid estrogens in lettuce plants. The extent of uptake and accumulation was observed in a dose-dependent manner and roots were major organs for estrogen deposition. Unlike the 17β-E2, EE2 was less accumulated and translocated from root to leaves. For 17β-E2, the distribution in lettuce was primarily to roots after the second week (13%), whereas in leaves it was (10%) over the entire study period. The distribution of EE2 at 2000 μg L-1 in roots and leaves was very low (3.07% and 0.54%) during the first week and then was highest (12% in roots and 8% in leaves) in last week. Bioaccumulation factor values of 17β-E2 and EE2 in roots were 0.33 and 0.29 at 50 μg L-1 concentration as maximum values were found at 50 μg L-1 rather than 500 and 2000 in all observed plant tissues. Similar trend was noticed in roots than leaves for bioconcentration factor as the highest bioconcentration values were observed at 50 μg L-1 concentration instead of 500 and 2000 μg L-1 spiked concentration. These findings mainly indicate the potential for uptake and bioaccumulation of estrogens in lettuce plants. Overall, the estrogen contents in lettuce were compared to the FAO/WHO recommended toxic level and were found to be higher than the toxic level which is of serious concern to the public health. This analytical procedure may aid in future studies on risks associated with uptake of endocrine-disrupting chemicals in lettuce plants.
    Matched MeSH terms: Vegetables/chemistry*
  8. Lawal A, Wong RCS, Tan GH, Abdulra'uf LB, Alsharif AMA
    J Chromatogr Sci, 2018 Aug 01;56(7):656-669.
    PMID: 29688338 DOI: 10.1093/chromsci/bmy032
    Fruits and vegetables constitute a major type of food consumed daily apart from whole grains. Unfortunately, the residual deposits of pesticides in these products are becoming a major health concern for human consumption. Consequently, the outcome of the long-term accumulation of pesticide residues has posed many health issues to both humans and animals in the environment. However, the residues have previously been determined using conventionally known techniques, which include liquid-liquid extraction, solid-phase extraction (SPE) and the recently used liquid-phase microextraction techniques. Despite the positive technological effects of these methods, their limitations include; time-consuming, operational difficulty, use of toxic organic solvents, low selective property and expensive extraction setups, with shorter lifespan of instrumental performances. Thus, the potential and maximum use of these methods for pesticides residue determination has resulted in the urgent need for better techniques that will overcome the highlighted drawbacks. Alternatively, attention has been drawn recently towards the use of quick, easy, cheap, effective, rugged and safe technique (QuEChERS) coupled with dispersive solid-phase extraction (dSPE) to overcome the setback challenges experienced by the previous technologies. Conclusively, the reviewed QuEChERS-dSPE techniques and the recent cleanup modifications justifiably prove to be reliable for routine determination and monitoring the concentration levels of pesticide residues using advanced instruments such as high-performance liquid chromatography, liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry.
    Matched MeSH terms: Vegetables/chemistry*
  9. Farina Y, Munawar N, Abdullah MP, Yaqoob M, Nabi A
    Environ Monit Assess, 2018 Jun 09;190(7):386.
    PMID: 29884954 DOI: 10.1007/s10661-018-6762-8
    Occurrence and distribution of organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), and pyrethroid pesticides (PYRs) residues in the leafy vegetables were analyzed together with the soil samples using gas chromatography-electron capture detector. Edible tissues of vegetables showed detectable residues of these compounds indicating the influence of the conventional farms and nearby organic farms. In the vegetables, the OCPs concentrations were recorded as nd-133.3 ng/g, OPPs as nd-200 ng/g, and PYRs as nd-33.3 ng/g. In the soil, the OCPs concentrations were recorded as nd-30.6 ng/g, OPPs as nd-26.6 ng/g, and for PYRs as nd-6.7 ng/g. Bioconcentration factor (BCF) was higher for the OPPs (0.3) than the OCPs and PYRs (1.1). The OCPs concentration in the vegetables decreased in the following order: spinach > celery > broccoli > cauliflower > cabbage > lettuce > mustard. For OPPs, the concentration decreased in the following order: cauliflower > spinach > celery > cabbage > broccoli > lettuce > mustard and for PYRs as spinach > celery > lettuce > cabbage > broccoli. Principal component analysis indicates that the sources of these pesticides are not the same, and the pesticide application on the vegetables depends on the type of crop. There is a significant positive correlation between OPPs and the soil (r = 0.65) as compared to OCPs and PYRs (r = 0.1) as the vegetables accumulated OPPs more efficiently than OCPs and PYRs.
    Matched MeSH terms: Vegetables/chemistry
  10. Jaafaru MS, Abd Karim NA, Enas ME, Rollin P, Mazzon E, Abdull Razis AF
    Nutrients, 2018 May 08;10(5).
    PMID: 29738500 DOI: 10.3390/nu10050580
    Crucifer vegetables, Brassicaceae and other species of the order Brassicales, e.g., Moringaceae that are commonly consumed as spice and food, have been reported to have potential benefits for the treatment and prevention of several health disorders. Though epidemiologically inconclusive, investigations have shown that consumption of those vegetables may result in reducing and preventing the risks associated with neurodegenerative disease development and may also exert other biological protections in humans. The neuroprotective effects of these vegetables have been ascribed to their secondary metabolites, glucosinolates (GLs), and their related hydrolytic products, isothiocyanates (ITCs) that are largely investigated for their various medicinal effects. Extensive pre-clinical studies have revealed more than a few molecular mechanisms of action elucidating multiple biological effects of GLs hydrolytic products. This review summarizes the most significant and up-to-date in vitro and in vivo neuroprotective actions of sulforaphane (SFN), moringin (MG), phenethyl isothiocyanate (PEITC), 6-(methylsulfinyl) hexyl isothiocyanate (6-MSITC) and erucin (ER) in neurodegenerative diseases.
    Matched MeSH terms: Vegetables/chemistry
  11. Iqbal SZ, Ullah Z, Asi MR, Jinap S, Ahmad MN, Sultan MT, et al.
    J Food Prot, 2018 May;81(5):806-809.
    PMID: 29637809 DOI: 10.4315/0362-028X.JFP-17-256
    Two hundred ten samples of selected vegetables (okra, pumpkin, tomato, potato, eggplant, spinach, and cabbage) from Faisalabad, Pakistan, were analyzed for the analysis of heavy metals: cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg). Inductively coupled plasma optical emission spectrometry was used for the analysis of heavy metals. The mean levels of Cd, Pb, As, and Hg were 0.24, 2.23, 0.58, and 7.98 mg/kg, respectively. The samples with Cd (27%), Pb (50%), and Hg (63%) exceeded the maximum residual levels set by the European Commission. The mean levels of heavy metals found in the current study are high and may pose significant health concerns for consumers. Furthermore, considerable attention should be paid to implement comprehensive monitoring and regulations.
    Matched MeSH terms: Vegetables/chemistry*
  12. Zulkawi N, Ng KH, Zamberi R, Yeap SK, Satharasinghe D, Jaganath IB, et al.
    BMC Complement Altern Med, 2017 Jun 30;17(1):344.
    PMID: 28666436 DOI: 10.1186/s12906-017-1845-6
    BACKGROUND: Xeniji, produced by fermenting various types of foods with lactic acid bacteria and yeast, has been commonly consumed as functional food. However, nutrition value, bioactivities and safety of different fermented products maybe varies.

    METHODS: Organic acid and antioxidant profiles of Xeniji fermented foods were evaluated. Moreover, oral acute (5 g/kg body weight) and subchronic toxicity (0.1, 1 and 2 g/kg body weight) of Xeniji were tested on mice for 14 days and 30 days, respectively. Mortality, changes of body weight, organ weight and serum liver enzyme level were measured. Liver and spleen of mice from subchronic toxicity study were subjected to antioxidant and immunomodulation quantification.

    RESULTS: Xeniji was rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids. No mortality and significant changes of body weight and serum liver enzyme level were recorded for both oral acute and subchronic toxicity studies. Antioxidant level in the liver and immunity of Xeniji treated mice were significantly upregulated in dosage dependent manner.

    CONCLUSION: Xeniji is a fermented functional food that rich in nutrients that enhanced antioxidant and immunity of mice. Xeniji that rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids promote antioxidant and immunity in mice without causing toxic effect.

    Matched MeSH terms: Vegetables/chemistry*
  13. Farina Y, Abdullah MP, Bibi N, Khalik WM
    Food Chem, 2017 Jun 01;224:55-61.
    PMID: 28159293 DOI: 10.1016/j.foodchem.2016.11.113
    A simple and sensitive analytical method has been developed employing gas chromatography coupled with electron capture detector (GC-ECD), and validated for screening and quantification of 15 pesticide residues at trace levels in cabbage, broccoli, cauliflower, lettuce, celery, spinach, and mustard. The method consists of two steps, first, to determine the significance of each factor by Pareto chart followed by optimization of these significant factors using central composite design (CCD). Minitab statistical software was used for these multivariate experiments for the generation of 2(4-1) design and CCD matrices. The method evaluation was done by external standard calibration with linearity range between 0.5 and 3mg/kg, with correlation coefficient 0.99, limit of detection (LOD) ranges between 0.02 and 4.5ng/g, and limit of quantification (LOQ) ranges between 0.2 and 45ng/g. The average recovery was between 60% and 128%, with RSD 0.2-19.8%. The method was applied on real vegetable samples from Cameron Highlands.
    Matched MeSH terms: Vegetables/chemistry*
  14. Phan CW, David P, Sabaratnam V
    J Med Food, 2017 Jan;20(1):1-10.
    PMID: 28098514 DOI: 10.1089/jmf.2016.3740
    There is an exponential increase in dementia in old age at a global level because of increasing life expectancy. The prevalence of neurodegenerative diseases such as dementia and Alzheimer's disease (AD) will continue to rise steadily, and is expected to reach 42 million cases worldwide in 2020. Despite the advancement of medication, the management of these diseases remains largely ineffective. Therefore, it is vital to explore novel nature-based nutraceuticals to mitigate AD and other age-related neurodegenerative disorders. Mushrooms and their extracts appear to hold many health benefits, including immune-modulating effects. A number of edible mushrooms have been shown to contain rare and exotic compounds that exhibit positive effects on brain cells both in vitro and in vivo. In this review, we summarize the scientific information on edible and culinary mushrooms with regard to their antidementia/AD active compounds and/or pharmacological test results. The bioactive components in these mushrooms and the underlying mechanism of their activities are discussed. In short, these mushrooms may be regarded as functional foods for the mitigation of neurodegenerative diseases.
    Matched MeSH terms: Vegetables/chemistry
  15. Abdulrauf LB, Tan GH
    J AOAC Int, 2016 Nov 01;99(6):1415-1425.
    PMID: 28206878 DOI: 10.5740/jaoacint.16-0275
    This review presents the application of carbon nanotubes as sorbent materials in the analysis of pesticide residues in fruits and vegetables. The advantages, limitations, and challenges of carbon nanotubes, with respect to their use in analytical chemistry, are presented. The efficiency of their application as extraction sorbent materials (in terms of LOD, LOQ, linearity, relative recovery, and RSD) in SPE, solid-phase microextraction, multi-plug filtration clean-up, matrix solid-phase dispersion, and the quick, easy, cheap, effective, rugged and safe method is reported. The synthesis, functionalization, purification, and characterization methods of carbon nanotubes are also discussed.
    Matched MeSH terms: Vegetables/chemistry*
  16. Yahya HM, Day A, Lawton C, Myrissa K, Croden F, Dye L, et al.
    Eur J Nutr, 2016 Aug;55(5):1839-47.
    PMID: 26210882 DOI: 10.1007/s00394-015-1001-3
    BACKGROUND: Establishing and linking the proposed health benefits of dietary polyphenols to their consumption requires measurement of polyphenol intake in appropriate samples and an understanding of factors that influence their intake in the general population.

    METHODS: This study examined polyphenol intake estimated from 3- and 7-day food diaries in a sample of 246 UK women aged 18-50 years. Estimation of the intake of 20 polyphenol subclasses commonly present in foods consumed by the sample studied was done using Phenol-Explorer(®) and USDA polyphenol databases. Women were participants in the Leeds Women's Wellbeing Study (LWW) (n = 143), a dietary intervention study aimed at overweight women (mean age 37.2 ± 9.4 years; mean BMI 30.8 ± 3.1 kg/m(2)), and the Diet and Health Study (DH) (n = 103) which aimed to examine the relationship between polyphenol intake and cognitive function (mean age 25.0 ± 9.0 years; mean BMI 24.5 ± 4.6 kg/m(2)).

    RESULTS: The estimated intake of polyphenol subclasses was significantly different between the two samples (p 

    Matched MeSH terms: Vegetables/chemistry
  17. Khandaker MU, Mohd Nasir NL, Asaduzzaman K, Olatunji MA, Amin YM, Kassim HA, et al.
    Chemosphere, 2016 Jul;154:528-536.
    PMID: 27085312 DOI: 10.1016/j.chemosphere.2016.03.121
    Malaysia, a rapidly growing industrial country, is susceptible to pollution via large-scale industrial engagements and associated human activities. One particular concern is the potential impact upon the quality of locally resourced vegetables, foodstuffs that contain important nutrients necessary for good health, forming an essential part of the Malaysian diet. As a part of this, it is of importance for there to be accurate knowledge of radioactive material uptake in these vegetables, not least in respect of any public health detriment. Herein, using HPGe γ-ray spectrometry, quantification has been performed of naturally occurring radionuclides in common edible vegetables and their associated soils. From samples analyses, the soil activity concentration ranges (in units of Bq/kg) for (226)Ra, (232)Th and (40)K were respectively 1.33-30.90, 0.48-26.80, 7.99-136.5 while in vegetable samples the ranges were 0.64-3.80, 0.21-6.91, 85.53-463.8. Using the corresponding activities, the transfer factors (TFs) from soil-to-vegetables were estimated, the transfers being greatest for (40)K, an expected outcome given the essentiality of this element in support of vigorous growth. The TFs of (226)Ra and (232)Th were found to be in accord with available literature data, the values indicating the mobility of these radionuclides to be low in the studied soils. Committed effective dose and the associated life-time cancer risk was estimated, being found to be below the permissible limit proposed by UNSCEAR. Results for the studied media show that the prevalent activities and mobilities pose no significant threat to human health, the edible vegetables being safe for consumption.
    Matched MeSH terms: Vegetables/chemistry*
  18. Abdul Wahab N, Ahdan R, Ahmad Aufa Z, Kong KW, Johar MH, Shariff Mohd Z, et al.
    J Sci Food Agric, 2015 Oct;95(13):2704-11.
    PMID: 25410129 DOI: 10.1002/jsfa.7006
    Diverse plants species in the forest remain under-utilised and they are mainly consumed only by local people. However, increasing issues in food security prompted the present study, which explores the nutritional and antioxidant aspects of Malaysian under-utilised vegetables. The studied vegetables were Paku Nyai (Stenochlaena palustris), Cemperai (Champereia manillana), Maman Pasir (Cleome viscose), Dudung (Erechtites valerianifolia) and Semambuk (Ardisia pendula).
    Matched MeSH terms: Vegetables/chemistry*
  19. Abdulra'uf LB, Tan GH
    Food Chem, 2015 Jun 15;177:267-73.
    PMID: 25660885 DOI: 10.1016/j.foodchem.2015.01.031
    An HS-SPME method was developed using multivariate experimental designs, which was conducted in two stages. The significance of each factor was estimated using the Plackett-Burman (P-B) design, for the identification of significant factors, followed by the optimization of the significant factors using central composite design (CCD). The multivariate experiment involved the use of Minitab® statistical software for the generation of a 2(7-4) P-B design and CCD matrices. The method performance evaluated with internal standard calibration method produced good analytical figures of merit with linearity ranging from 1 to 500 μg/kg with correlation coefficient greater than 0.99, LOD and LOQ were found between 0.35 and 8.33 μg/kg and 1.15 and 27.76 μg/kg respectively. The average recovery was between 73% and 118% with relative standard deviation (RSD=1.5-14%) for all the investigated pesticides. The multivariate method helps to reduce optimization time and improve analytical throughput.
    Matched MeSH terms: Vegetables/chemistry*
  20. Phan CW, Lee GS, Hong SL, Wong YT, Brkljača R, Urban S, et al.
    Food Funct, 2014 Dec;5(12):3160-9.
    PMID: 25288148 DOI: 10.1039/c4fo00452c
    Hericium erinaceus (Bull.: Fr.) Pers. is an edible and medicinal mushroom used traditionally to improve memory. In this study, we investigated the neuritogenic effects of hericenones isolated from H. erinaceus and the mechanisms of action involved. H. erinaceus was cultivated and the secondary metabolites were elucidated by high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). The secondary metabolites were tested for neurite outgrowth activity (if any). Rat pheochromocytoma (PC12) cells were employed and the nerve growth factor (NGF) level was also determined. The signaling pathways involved in the mushroom-induced neuritogenesis were investigated using several pharmacological inhibitors. Hericenones B-E (1-4), erinacerin A (5) and isohericerin (6) were isolated from the basidiocarps of H. erinaceus. The hericenones did not promote neurite outgrowth but when induced with a low concentration of NGF (5 ng mL(-1)), the neuritogenic activity was comparable to that of the positive control (50 ng mL(-1) of NGF). Hericenone E was able to stimulate NGF secretion which was two-fold higher than that of the positive control. The neuritogenesis process was partially blocked by the tyrosine kinase receptor (Trk) inhibitor, K252a, suggesting that the neuritogenic effect was not solely due to NGF. Hericenone E also increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Taken together, this study suggests that hericenone E potentiated NGF-induced neuritogenesis in PC12 cells via the MEK/ERK and PI3K/Akt pathways.
    Matched MeSH terms: Vegetables/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links