Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Wong SK, Mohamad NV, Jayusman PA, Ibrahim N'
    Int J Mol Sci, 2023 Aug 04;24(15).
    PMID: 37569816 DOI: 10.3390/ijms241512441
    A positive association between insulin resistance and osteoporosis has been widely established. However, crosstalk between the signalling molecules in insulin and Wingless (Wnt)/beta-(β-)catenin transduction cascades orchestrating bone homeostasis remains not well understood. The current review aims to collate the existing evidence, reporting (a) the expression of insulin signalling molecules involved in bone-related disorders and (b) the expression of Wnt/β-catenin signalling molecules involved in governing insulin homeostasis. The downstream effector molecule, glycogen synthase kinase-3 beta (GSK3β), has been identified to be a point of convergence linking the two signal transduction networks. This review highlights that GSK3β may be a drug target in the development of novel anabolic agents and the potential use of GSK3β inhibitors to treat bone-related disorders.
    Matched MeSH terms: Wnt Signaling Pathway
  2. Chin KY, Mo H, Soelaiman IN
    Curr Drug Targets, 2013 Dec;14(13):1533-41.
    PMID: 23859472
    Osteoporosis is posing a tremendous healthcare problem globally. Much effort has been invested in finding novel antiosteoporotic agents to stop the progression of this disease. Tocotrienol, one of the isoforms of vitamin E, is poised as a potential antiosteoporotic agent. Previous studies showed that tocotrienol as a single isomer or as a mixture demonstrated both anabolic and antiresorptive effects in various rodent models of osteoporosis. In vitro experiments further demonstrated that tocotrienol could up-regulate genes related to osteoblastogenesis and modify receptor activator of nuclear factor kappa B signaling against osteoclastogenesis. Additionally, tocotrienol was also shown to be a strong 3- hydroxy-3-methyl-glutaryl-CoA reductase down-regulator with a mechanism different from that of statins. Inhibition of the mevalonate pathway affects both osteoblast and osteoclast formation in favor of the former. Tocopherol, a more commonly used isoform of vitamin E does not possess similar effects. Tocotrienol is also a potent antioxidant. It can scavenge free radicals and prevent oxidative damage on osteoblast thus promoting its survival. It may also up-regulate the antioxidant defense network in osteoclast and indirectly act against free radical signaling essential in osteoclastogenesis. The effects of tocotrienol on Wnt/β-catenin signaling essential in osteoblastogenesis have not been determined. More mechanistic studies need to be conducted to illustrate the antiosteoporotic effects of tocotrienol. Clinical trials are also required to confirm its effects in humans. In conclusion, tocotrienol demonstrates great potential as an antiosteoporotic agent and much research effort should be invested to develop it as an agent to curb osteoporosis.
    Matched MeSH terms: Wnt Signaling Pathway/drug effects
  3. Benson MD, Khor CC, Gage PJ, Lehmann OJ
    Mol Vis, 2017;23:952-962.
    PMID: 29296075
    Purpose: To evaluate the ability of a targeted genome-wide association study (GWAS) to identify genes associated with central corneal thickness (CCT).

    Methods: A targeted GWAS was used to investigate whether ten candidate genes with known roles in corneal development were associated with CCT in two Singaporean populations. The single nucleotide polymorphisms (SNPs) within a 500 kb interval encompassing each candidate were analyzed, and in light of the resulting data, members of the Wnt pathway were subsequently screened using similar methodology.

    Results: Variants within the 500 kb interval encompassing three candidate genes, DKK1 (rs1896368, p=1.32×10-3), DKK2 (rs17510449, p=7.34×10-4), and FOXO1 (rs7326616, p=1.56×10-4 and rs4943785, p=1.19×10-3), were statistically significantly associated with CCT in the Singapore Indian population. DKK2 was statistically significantly associated with CCT in a separate Singapore Malaysian population (rs10015200, p=2.26×10-3). Analysis of Wnt signaling pathway genes in each population demonstrated that TCF7L2 (rs3814573, p=1.18×10-3), RYK (rs6763231, p=1.12×10-3 and rs4854785, p=1.11×10-3), and FZD8 (rs640827, p=5.17×10-4) were statistically significantly associated with CCT.

    Conclusions: The targeted GWAS identified four genes (DKK1, DKK2, RYK, and FZD8) with novel associations with CCT and confirmed known associations with two genes, FOXO1 and TCF7L2. All six participate in the Wnt pathway, supporting a broader role for Wnt signaling in regulating the thickness of the cornea. In parallel, this study demonstrated that a hypothesis-driven candidate gene approach can identify associations in existing GWAS data sets.

    Matched MeSH terms: Wnt Signaling Pathway/genetics*
  4. Ishaque A, Salim A, Simjee SU, Khan I, Adli DSH
    Cell Biochem Funct, 2023 Mar;41(2):223-233.
    PMID: 36651266 DOI: 10.1002/cbf.3775
    Central nervous system anomalies give rise to neuropathological consequences with immense damage to the neuronal tissues. Cell based therapeutics have the potential to manage several neuropathologies whereby the differentiated cells are explored for neuronal regeneration. The current study analyzes the effect of a bioactive compound, alpha terpineol (AT) on the differentiation of rat bone marrow derived mesenchymal stem cells (BM-MSCs) toward neuronal lineage, and explores regulation of differentiation process through the study of Wnt pathway mediators. BM-MSCs were cultured and characterized based on their surface markers and tri-lineage differentiation. Safe dose of AT as optimized by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide assay, was used for the treatment of MSCs. Treated cells were analyzed for the neuronal, astroglial and germ layer transition markers at the gene and protein levels, by quantitative polymerase chain reaction and immunocytochemistry, respectively. Temporal expression of Wnt pathway genes was assessed during the course of neuronal differentiation. AT treated group showed significant upregulation of neuron specific (NSE, MAP2, Tau, Nestin, and NefL) and astroglial (GFAP) genes with positive expression of late neuronal markers. Germ layer transition analysis showed the overexpression of ectodermal markers (NCAM, Nestin, and Pax6), whereas endodermal (AFP, MixL1, and Sox17), and mesodermal (Mesp1 and T Brachyury) markers were also found to be upregulated. Wnt signaling pathway was activated during the initial phase (30 min) of differentiation, which later was downregulated at 1, 3, and 5 h. AT efficiently induces neuronal differentiation of BM-MSCs by regulating Wnt signaling. Overexpression of both early and late neuronal markers indicate their neuro-progenitor state and thus can be utilized as a promising approach in cellular therapeutics to treat various neurodegenerative ailments. In addition, exploration of the molecular pathways may be helpful to understand the mechanism of cell-based neuronal regeneration.
    Matched MeSH terms: Wnt Signaling Pathway*
  5. Aamir K, Sethi G, Afrin MR, Hossain CF, Jusuf PR, Sarker SD, et al.
    Life Sci, 2023 Aug 15;327:121856.
    PMID: 37307966 DOI: 10.1016/j.lfs.2023.121856
    BACKGROUND: Arjunolic acid (AA) is a potent phytochemical with multiple therapeutics effects. In this study, AA is evaluated on type 2 diabetic (T2DM) rats to understand the mechanism of β-cell linkage with Toll-like receptor 4 (TLR-4) and canonical Wnt signaling. However, its role in modulating TLR-4 and canonical Wnt/β-catenin crosstalk on insulin signaling remains unclear during T2DM. Aim The current study is aimed to examine the potential role of AA on insulin signaling and TLR-4-Wnt crosstalk in the pancreas of type 2 diabetic rats.

    METHOD: Multiple methods were used to determine molecular cognizance of AA in T2DM rats, when treated with different dosage levels. Histopathological and histomorphometry analysis was conducted using masson trichrome and H&E stains. While, protein and mRNA expressions of TLR-4/Wnt and insulin signaling were assessed using automated Western blotting (jess), immunohistochemistry, and RT-PCR.

    RESULTS: Histopathological findings revealed that AA had reversed back the T2DM-induced apoptosis and necrosis caused to rats pancreas. Molecular findings exhibited prominent effects of AA in downregulating the elevated level of TLR-4, MyD88, NF-κB, p-JNK, and Wnt/β-catenin by blocking TLR-4/MyD88 and canonical Wnt signaling in diabetic pancreas, while IRS-1, PI3K, and pAkt were all upregulated by altering the NF-κB and β-catenin crosstalk during T2DM.

    CONCLUSION: Overall results, indicate that AA has potential to develop as an effective therapeutic in the treatment of T2DM associated meta-inflammation. However, future preclinical research at multiple dose level in a long-term chronic T2DM disease model is warranted to understand its clinical relevance in cardiometabolic disease.

    Matched MeSH terms: Wnt Signaling Pathway
  6. Malyla V, De Rubis G, Paudel KR, Chellappan DK, Hansbro NG, Hansbro PM, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2023 Dec;396(12):3595-3603.
    PMID: 37266589 DOI: 10.1007/s00210-023-02553-y
    Lung cancer (LC) is the leading cause of cancer-related deaths globally. It accounts for more than 1.9 million cases each year due to its complex and poorly understood molecular mechanisms that result in unregulated cell proliferation and metastasis. β-Catenin is a developmentally active protein that controls cell proliferation, metastasis, polarity and cell fate during homeostasis and aids in cancer progression via epithelial-mesenchymal transition. Therefore, inhibition of the β-catenin pathway could attenuate the progression of LC. Berberine, an isoquinoline alkaloid which is known for its anti-cancer and anti-inflammatory properties, demonstrates poor solubility and bioavailability. In our study, we have encapsulated berberine into liquid crystalline nanoparticles to improve its physiochemical functions and studied if these nanoparticles target the β-catenin pathway to inhibit the human lung adenocarcinoma cell line (A549) at both gene and protein levels. We observed for the first time that berberine liquid crystalline nanoparticles at 5 µM significantly attenuate the expression of the β-catenin gene and protein. The interaction between berberine and β-catenin was further validated by molecular simulation studies. Targeting β-catenin with berberine nanoparticles represents a promising strategy for the management of lung cancer progression.
    Matched MeSH terms: Wnt Signaling Pathway
  7. Thent ZC, Froemming GRA, Muid S
    Life Sci, 2018 Apr 01;198:1-7.
    PMID: 29432759 DOI: 10.1016/j.lfs.2018.02.013
    Bisphenol A (BPA) (2,2,-bis (hydroxyphenyl) propane), a well-known endocrine disruptor (ED), is the exogenous chemical that mimic the natural endogenous hormone like oestrogen. Due to its extensive exposure to humans, BPA is considered to be a major toxicological agent for general population. Environmental exposure of BPA results in adverse health outcomes including bone loss. BPA disturbs the bone health by decreasing the plasma calcium level and inhibiting the calcitonin secretion. BPA also stimulated differentiation and induced apoptosis in human osteoblasts and osteoclasts. However, little is known about the underlying mechanisms of the untoward effect of BPA against bone metabolism. The present review gives an overview on the possible mechanisms of BPA towards bone loss. The previous literature shows that BPA exerts its toxic effect on bone cells by binding to the oestrogen related receptor-gamma (ERγ), reducing the bone morphogenic protein-2 (BMP-2) and alkaline phosphatase (ALP) activities. BPA interrupts the bone metabolism via RANKL, apoptosis and Wnt/β-catenin signaling pathways. It is, however, still debated on the exact underlying mechanism of BPA against bone health. We summarised the molecular evidences with possible mechanisms of BPA, an old environmental culprit, in bone loss and enlightened the underlying understanding of adverse action of BPA in the society.
    Matched MeSH terms: Wnt Signaling Pathway/drug effects
  8. Tan BL, Esa NM, Rahman HS, Hamzah H, Karim R
    PMID: 25129221 DOI: 10.1186/1472-6882-14-304
    Brewers' rice is locally known as temukut, is a byproduct of the rice milling process, and consists of broken rice, rice bran, and rice germ. Unlike rice bran, the health benefit of brewers' rice has yet to be fully studied. Our present study aimed to identify the chemopreventive potential of brewers' rice with colonic tumor formation and to examine further the mechanistic action of brewers' rice during colon carcinogenesis.
    Matched MeSH terms: Wnt Signaling Pathway/drug effects*
  9. Tan BL, Norhaizan ME, Huynh K, Yeap SK, Hazilawati H, Roselina K
    World J Gastroenterol, 2015 Aug 7;21(29):8826-35.
    PMID: 26269672 DOI: 10.3748/wjg.v21.i29.8826
    To investigate the mechanistic action of brewers' rice in regulating the Wnt/nuclear factor-kappa B (NF-κB)/Nrf2-signaling pathways during colon carcinogenesis in male Sprague-Dawley rats.
    Matched MeSH terms: Wnt Signaling Pathway
  10. Tripathi M, Singh BK, Liehn EA, Lim SY, Tikno K, Castano-Mayan D, et al.
    Autophagy, 2022 Sep;18(9):2150-2160.
    PMID: 35012409 DOI: 10.1080/15548627.2021.2021494
    Caffeine is among the most highly consumed substances worldwide, and it has been associated with decreased cardiovascular risk. Although caffeine has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), the mechanism underlying this effect is unknown. Here, we demonstrated that caffeine decreased VSMC proliferation and induced macroautophagy/autophagy in an in vivo vascular injury model of restenosis. Furthermore, we studied the effects of caffeine in primary human and mouse aortic VSMCs and immortalized mouse aortic VSMCs. Caffeine decreased cell proliferation, and induced autophagy flux via inhibition of MTOR signaling in these cells. Genetic deletion of the key autophagy gene Atg5, and the Sqstm1/p62 gene encoding a receptor protein, showed that the anti-proliferative effect by caffeine was dependent upon autophagy. Interestingly, caffeine also decreased WNT-signaling and the expression of two WNT target genes, Axin2 and Ccnd1 (cyclin D1). This effect was mediated by autophagic degradation of a key member of the WNT signaling cascade, DVL2, by caffeine to decrease WNT signaling and cell proliferation. SQSTM1/p62, MAP1LC3B-II and DVL2 were also shown to interact with each other, and the overexpression of DVL2 counteracted the inhibition of cell proliferation by caffeine. Taken together, our in vivo and in vitro findings demonstrated that caffeine reduced VSMC proliferation by inhibiting WNT signaling via stimulation of autophagy, thus reducing the vascular restenosis. Our findings suggest that caffeine and other autophagy-inducing drugs may represent novel cardiovascular therapeutic tools to protect against restenosis after angioplasty and/or stent placement.
    Matched MeSH terms: Wnt Signaling Pathway
  11. Zhang XC, Wang J, Shao GG, Wang Q, Qu X, Wang B, et al.
    Nat Commun, 2019 04 16;10(1):1772.
    PMID: 30992440 DOI: 10.1038/s41467-019-09762-1
    Deep understanding of the genomic and immunological differences between Chinese and Western lung cancer patients is of great importance for target therapy selection and development for Chinese patients. Here we report an extensive molecular and immune profiling study of 245 Chinese patients with non-small cell lung cancer. Tumor-infiltrating lymphocyte estimated using immune cell signatures is found to be significantly higher in adenocarcinoma (ADC, 72.5%) compared with squamous cell carcinoma (SQCC, 54.4%). The correlation of genomic alterations with immune signatures reveals that low immune infiltration was associated with EGFR mutations in ADC samples, PI3K and/or WNT pathway activation in SQCC. While KRAS mutations are found to be significantly associated with T cell infiltration in ADC samples. The SQCC patients with high antigen presentation machinery and cytotoxic T cell signature scores are found to have a prolonged overall survival time.
    Matched MeSH terms: Wnt Signaling Pathway/genetics; Wnt Signaling Pathway/immunology
  12. Siar CH, Nagatsuka H, Han PP, Buery RR, Tsujigiwa H, Nakano K, et al.
    J Oral Pathol Med, 2012 Apr;41(4):332-9.
    PMID: 22077561 DOI: 10.1111/j.1600-0714.2011.01104.x
    Canonical and non-canonical Wnt signaling pathways modulate diverse cellular processes during embryogenesis and post-natally. Their deregulations have been implicated in cancer development and progression. Wnt signaling is essential for odontogenesis. The ameloblastoma is an odontogenic epithelial neoplasm of enamel organ origin. Altered expressions of Wnts-1, -2, -5a, and -10a are detected in this tumor. The activity of other Wnt members remains unclarified.
    Matched MeSH terms: Wnt Signaling Pathway/genetics
  13. Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC
    Crit Rev Oncol Hematol, 2018 Jan;121:11-22.
    PMID: 29279096 DOI: 10.1016/j.critrevonc.2017.11.010
    E-cadherin is a transmembrane glycoprotein which connects epithelial cells together at adherens junctions. In normal cells, E-cadherin exerts its tumour suppressing role mainly by sequestering β-catenin from its binding to LEF (Lymphoid enhancer factor)/TCF (T cell factor) which serves the function of transcribing genes of the proliferative Wnt signaling pathway. Despite the ongoing debate on whether the loss of E-cadherin is the cause or effect of epithelial-mesenchymal transition (EMT), E-cadherin functional loss has frequently been associated with poor prognosis and survival in patients of various cancers. The dysregulation of E-cadherin expression that leads to carcinogenesis happens mostly at the epigenetic level but there are cases of genetic alterations as well. E-cadherin expression has been linked to the cellular functions of invasiveness reduction, growth inhibition, apoptosis, cell cycle arrest and differentiation. Studies on various cancers have shown that these different cellular functions are also interdependent. Recent studies have reported a rapid expansion of E-cadherin clinical relevance in various cancers. This review article summarises the multifaceted effect E-cadherin expression has on cellular functions in the context of carcinogenesis as well as its clinical implications in diagnosis, prognosis and therapeutics.
    Matched MeSH terms: Wnt Signaling Pathway
  14. Angelopoulou E, Paudel YN, Piperi C
    Transl Oncol, 2019 Jul 25;12(10):1357-1363.
    PMID: 31352198 DOI: 10.1016/j.tranon.2019.07.001
    Gliomas present the most common type of brain tumors in adults, characterized by high morbidity and mortality. In search of potential molecular targets, members of paired box (PAX) family have been found expressed in neural crest cells, regulating their proliferation, apoptosis, migration and differentiation. Recently, PAX3 overexpression has been implicated in glioma tumorigenesis by enhancing proliferation, increasing invasiveness and inducing resistance to apoptosis of glioma cells, while maintaining brain glioma stem cells (BGSCs) stemness. Although the oncogenic potential of PAX3 in gliomas is still under investigation, experimental evidence suggests that PAX3 function is mainly mediated through the canonical and non-canonical Wnt signaling pathway as well as through its interaction with GFAP and p53 proteins. In addition, PAX3 may contribute to the chemoresistance of glioma cells and modulates the effectiveness of novel experimental therapies. Further evidence indicates that PAX3 may represent a novel diagnostic and prognostic biomarker for gliomas, facilitating personalized treatment. This review addresses the emerging role of PAX3 in glioma diagnosis, prognosis and treatment, aiming to shed more light on the underlying molecular mechanisms that could lead to more effective treatment approaches.
    Matched MeSH terms: Wnt Signaling Pathway
  15. Veerasamy T, Eugin Simon S, Tan KO
    Int J Biochem Cell Biol, 2021 08;137:106016.
    PMID: 34082133 DOI: 10.1016/j.biocel.2021.106016
    Conventional chemotherapy relies on the cytotoxicity of chemo-drugs to inflict destructive effects on tumor cells. However, as most tumor cells develop resistance to chemo-drugs, small doses of chemo-drugs are unlikely to provide significant clinical benefits in cancer treatment while high doses of chemo-drugs have been shown to impact normal human cells negatively due to the non-specific nature and cytotoxicity associated with chemo-drugs. To overcome this challenge, sensitizations of tumor cells with bioactive molecules that specifically target the pro-survival and pro-apoptosis signaling pathways of the tumor cells are likely to increase the therapeutic impacts and improve the clinical outcomes by reducing the dependency and adverse effects associated with using high doses of chemo-drugs in cancer treatment. This review focuses on emerging strategies to enhance the sensitization of tumor cells toward cancer therapies based on our understanding of tumor cell biology and underlying signaling pathways.
    Matched MeSH terms: Wnt Signaling Pathway/drug effects*
  16. Kared H, Tan SW, Lau MC, Chevrier M, Tan C, How W, et al.
    Nat Commun, 2020 02 10;11(1):821.
    PMID: 32041953 DOI: 10.1038/s41467-020-14442-6
    The diversity of the naïve T cell repertoire drives the replenishment potential and capacity of memory T cells to respond to immune challenges. Attrition of the immune system is associated with an increased prevalence of pathologies in aged individuals, but whether stem cell memory T lymphocytes (TSCM) contribute to such attrition is still unclear. Using single cells RNA sequencing and high-dimensional flow cytometry, we demonstrate that TSCM heterogeneity results from differential engagement of Wnt signaling. In humans, aging is associated with the coupled loss of Wnt/β-catenin signature in CD4 TSCM and systemic increase in the levels of Dickkopf-related protein 1, a natural inhibitor of the Wnt/β-catenin pathway. Functional assays support recent thymic emigrants as the precursors of CD4 TSCM. Our data thus hint that reversing TSCM defects by metabolic targeting of the Wnt/β-catenin pathway may be a viable approach to restore and preserve immune homeostasis in the context of immunological history.
    Matched MeSH terms: Wnt Signaling Pathway/genetics; Wnt Signaling Pathway/immunology*
  17. Colozza G, Lee H, Merenda A, Wu SS, Català-Bordes A, Radaszkiewicz TW, et al.
    Sci Adv, 2023 Nov 24;9(47):eadh9673.
    PMID: 38000028 DOI: 10.1126/sciadv.adh9673
    The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells.
    Matched MeSH terms: Wnt Signaling Pathway*
  18. Guan L, Zhu S, Han Y, Yang C, Liu Y, Qiao L, et al.
    Biotechnol Lett, 2018 Mar;40(3):501-508.
    PMID: 29249062 DOI: 10.1007/s10529-017-2491-2
    OBJECTIVE: To study the effects of CTNNB1 gene knockout by CRISPR-Cas9 technology on cell adhesion, proliferation, apoptosis, and Wnt/β-catenin signaling pathway.

    RESULTS: CTNNB1 gene of HEK 293T cells was knocked out by CRISPR-Cas9. This was confirmed by sequencing and western blotting. Methylthiazolyl-tetrazolium bromide assays indicated that deletion of β-catenin significantly weakened adhesion ability and inhibited proliferation rate (P Wnt/β-catenin signaling pathway and significantly inhibited adhesion and proliferation of HEK 293T cells.

    Matched MeSH terms: Wnt Signaling Pathway/genetics*
  19. Shaikh LH, Zhou J, Teo AE, Garg S, Neogi SG, Figg N, et al.
    J Clin Endocrinol Metab, 2015 Jun;100(6):E836-44.
    PMID: 25915569 DOI: 10.1210/jc.2015-1734
    CONTEXT: Aldosterone synthesis and cellularity in the human adrenal zona glomerulosa (ZG) is sparse and patchy, presumably due to salt excess. The frequency of somatic mutations causing aldosterone-producing adenomas (APAs) may be a consequence of protection from cell loss by constitutive aldosterone production.

    OBJECTIVE: The objective of the study was to delineate a process in human ZG, which may regulate both aldosterone production and cell turnover.

    DESIGN: This study included a comparison of 20 pairs of ZG and zona fasciculata transcriptomes from adrenals adjacent to an APA (n = 13) or a pheochromocytoma (n = 7).

    INTERVENTIONS: Interventions included an overexpression of the top ZG gene (LGR5) or stimulation by its ligand (R-spondin-3).

    MAIN OUTCOME MEASURES: A transcriptome profile of ZG and zona fasciculata and aldosterone production, cell kinetic measurements, and Wnt signaling activity of LGR5 transfected or R-spondin-3-stimulated cells were measured.

    RESULTS: LGR5 was the top gene up-regulated in ZG (25-fold). The gene for its cognate ligand R-spondin-3, RSPO3, was 5-fold up-regulated. In total, 18 genes associated with the Wnt pathway were greater than 2-fold up-regulated. ZG selectivity of LGR5, and its absence in most APAs, were confirmed by quantitative PCR and immunohistochemistry. Both R-spondin-3 stimulation and LGR5 transfection of human adrenal cells suppressed aldosterone production. There was reduced proliferation and increased apoptosis of transfected cells, and the noncanonical activator protein-1/Jun pathway was stimulated more than the canonical Wnt pathway (3-fold vs 1.3-fold). ZG of adrenal sections stained positive for apoptosis markers.

    CONCLUSION: LGR5 is the most selectively expressed gene in human ZG and reduces aldosterone production and cell number. Such conditions may favor cells whose somatic mutation reverses aldosterone inhibition and cell loss.

    Matched MeSH terms: Wnt Signaling Pathway/genetics*
  20. Suryaningtyas W, Parenrengi MA, Bajamal AH, Rantam FA
    Malays J Med Sci, 2020 May;27(3):34-42.
    PMID: 32684804 DOI: 10.21315/mjms2020.27.3.4
    Background: Hydrocephalus induces mechanical and biochemical changes in neural cells of the brain. Astrogliosis, as the hallmark of cellular changes in white matter, is involved in demyelination process, re-myelination inhibitory effect, and inhibition of axonal elongation and regeneration. The pathophysiology of this process is not well understood. The purpose of the present study is to elucidate the effect of lipid peroxidation product on astrogliosis through WNT/ β-catenin in kaolin-induced hydrocephalic rats.

    Methods: The study used kaolin-induced hydrocephalic rats. Obstructive hydrocephalus was expected to develop within seven days after induction. The hydrocephalus animals were killed at day 7, 14 and 21 after induction. One group of the saline-injected animals was used for sham-treatment.

    Results: We demonstrated that the hydrocephalic rats exhibited a high expression of 4-hydroxynonenal (4-HNE) in the periventricular area. The expression of β-catenin also increased, following the pattern of 4-HNE. Reactive astrocyte, expressed by positive glial fibrillary acidic protein (GFAP), was upregulated in an incremental fashion as well as the microglia.

    Conclusion: This work suggests that lipid peroxidation product, 4-HNE, activated the WNT/β-catenin pathway, leading to the development of reactive astrocyte and microglia activation in hydrocephalus.

    Matched MeSH terms: Wnt Signaling Pathway
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links