Displaying publications 1 - 20 of 276 in total

Abstract:
Sort:
  1. A. N. Azahari, N. D.M Yusob, H.A. Saidun, N.K.Y Ali, R. Abdullah, R. Hashim, et al.
    MyJurnal
    Introduction: Various phantom with varied materials has been proposed to replace the human body. Besides, there is always a demand to use the local material as a phantom material, which is readily available and inexpensive. Wood is usually preferred because it is multifunction, environmentally friendly, low in toxic, inexpensive, as well as easy to use and prepare. Previous studies have found that Rhizophora spp. is a suitable natural source material and has been suggested due to its comparable dosimetric properties to commercial phantom. Methods: In this study, fabricated Rhizophora spp. particleboards phantom was opted as a solid-equivalent phantom medium at low energy photon beams using Gafchromic film x-ray quality assurance 2 (XRQA2). Additionally, the characteristics of XRQA2 film in the diagnostic energy range were generated. Results: Interestingly, the density of the fabricated Rhizophora spp particleboards was observed to have the same density with the water equivalent material (ρ= 1.00 g.cm-3) and has shown to have loosened agreement with PDD of water phantom at approximately 25% of the dose error. Also, further analysis using XRQA 2 film showed that energy was independent at different ranges. Conclusion: The analysis of fabricated Rhizophora spp particleboards undertaken here has extended our knowledge of the possibility of man- ufacturing cost-effective water equivalent phantom by using binder-less particleboard from Rhizophora spp. There- fore, a definite need for smaller interspacing particles should be considered to elevate the potential of Rhizophora spp particle boards as water equivalent materials.
    Matched MeSH terms: X-Rays
  2. Abdul Khalil HPS, Md. Sohrab Hossain, Nur Amiranajwa AS, Nurul Fazita MR, Mohamad Haafiz MK, Suraya N, et al.
    Sains Malaysiana, 2016;45:833-839.
    This present study was conducted to produce defatted oil palm shell (OPS) nanoparticles. Wherein, the OPS nanoparticles
    were defatted by solvent extraction method. Several analytical methods including transmission electron microscope (TEM),
    X-ray diffraction (XRD), particle size analyzer, scanning electron microscope (SEM), SEM energy dispersive X-ray (SEM-EDX)
    and thermal gravimetric analyzer (TGA) were used to characterize the untreated and defatted OPS nanoparticles. It was
    found that 75.3% OPS particles were converted into nanoparticles during ball milling. The obtained OPS nanoparticles had
    smaller surface area with angular, irregular and crushed shapes under SEM view. The defatted OPS nanoparticles did not
    show any agglomeration during TEM observation. However, the untreated OPS nanoparticles had higher decomposition
    temperature as compared to the defatted OPS nanoparticles. Based on the characterization results of the OPS nanoparticles,
    it is evident that the defatted OPS nanoparticles has the potentiality to be used as filler in biocomposites
    Matched MeSH terms: X-Rays
  3. Abdul Razak Daud, Azleen Mohd. Zain, Azali Muhamad
    A single wall single image x-ray radiographic technique was adopted to investigate thickness variation of steel specimens caused by uniform corrosion. The ability of the 100 kV-160 kV x-rays to produce a meaningful film density for steel was also investigated. The thickness contour maps of corroded steel plates were found matching with the x-ray film density contour maps of the plates. The results confirm that x-ray radiography can be used to detect the thickness reduction of steel caused by uniform corrosion.
    Bagi mengesan perubahan ketebalan keluli akibat kakisan seragam maka radiografi sinar-x teknik imej tunggal dinding tunggal telah digunakan. Kemampuan sinar-x 100 kV-160 kV menghasilkan ketumpatan filem yang sesuai untuk keluli telah juga dikaji. Peta kontur ketebalan bagi spesimen kepingan keluli yang telah mengalami kakisan seragam didapati sepadan dengan peta kontur ketumpatan filem radiografi sinar-x bagi spesimen tersebut. Kajian ini menunjukkan radiografi sinar-x boleh digunakan bagi mengesan penipisan keluli akibat kakisan seragam.
    Matched MeSH terms: X-Rays
  4. Abdul Sani SF, Othman MHU, Alqahtani A, Almugren KS, Alkallas FH, Bradley DA
    PLoS One, 2020;15(12):e0241550.
    PMID: 33378398 DOI: 10.1371/journal.pone.0241550
    For x- and gamma- irradiations delivering entrance doses from 2- up to 1000 Gy to commercial 1.0 mm thick borosilicate glass microscope slides, study has been made of their thermoluminescence yield. With an effective atomic number of 10.6 (approximating bone equivalence), photon energy dependency is apparent in the low x-ray energy range, with interplay between the photoelectric effect and attenuation. As an example, over the examined dose range, at 120 kVp the photon sensitivity has been found to be some 5× that of 60Co gamma irradiations, also with repeatability to within ~1%. The glow-curves, taking the form of a single prominent broad peak, have been deconvolved yielding at best fit a total of five peaks, the associated activation energies and frequency factors also being obtained. The results indicate borosilicate glass slides to offer promising performance as a low-cost passive radiation dosimeter, with utility for both radiotherapy and industrial applications.
    Matched MeSH terms: X-Rays
  5. Abdulrahman AF, Ahmed SM, Barzinjy AA, Hamad SM, Ahmed NM, Almessiere MA
    Nanomaterials (Basel), 2021 Mar 09;11(3).
    PMID: 33803274 DOI: 10.3390/nano11030677
    Ultraviolet (UV) photodetectors (PDs) based on high-quality well-aligned ZnO nanorods (NRs) were fabricated using both modified and conventional chemical bath deposition (CBD) methods. The modified chemical bath deposition (M-CBD) method was made by adding air bubbles to the growth solution during the CBD process. The viability and effectiveness of M-CBD were examined by developing UV PDs based on ZnO NRs. The ZnO nano-seed layer was coated on a glass substrate utilizing radiofrequency (RF) sputtering. The impact of the different growth-times on morphology, growth rate, crystal structure, and optical and chemical properties were investigated systematically using different characterization techniques, such as field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) analysis, UV-VIS double beam spectrometer, and energy dispersive X-ray analysis (EDX), respectively. The Al/ZnO UV PDs based on ZnO nanorods were fabricated with optimum growth conditions through the two methods of preparation. This study showed that the synthesized ZnO NRs using the M-CBD method for different growth times possess better properties than the conventional method under similar deposition conditions. Despite having the highest aspect ratio and growth rate of ZnO NRs, which were found at 4 h growth duration for both methods, the aspect ratio of ZnO NRs using the M-CBD technique was comparatively higher than the conventional CBD method. Besides, the UV PDs fabricated by the M-CBD method at 5 V bias voltage showed high sensitivity, short response time, quick recovery time, high gain, low dark current, and high photocurrent compared with the UV PD device fabricated by the conventional CBD method.
    Matched MeSH terms: X-Rays
  6. Abosadiya HM, Anouar el H, Hasbullah SA, Yamin BM
    PMID: 25748989 DOI: 10.1016/j.saa.2015.01.092
    A new isomers of thiourea derivatives, namely N-(4-chlorobutanoyl)-N'-(2-methylphenyl)-thiourea (1a), N-(4-chlorobutanoyl)-N'-(3-methylphenyl)thiourea (1b) and N-(4-chlorobutanoyl)-N'-(4-methylphenyl)thiourea (1c) have been synthesized by refluxing mixture of equimolar amounts of 4-chlorobutanoylisothiocyanate with 2, 3 or 4-toluidine, respectively. The three isomers were characterized by spectroscopic (UV/vis, FT-IR and NMR) and X-ray crystallography techniques. To investigate the isomerization effect on spectroscopic data, DFT and TD-DFT calculations have been carried out using five hybrid functionals (B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0) to predict UV/vis absorption bands (n→π∗ and π→π∗), (1)H and (13)C NMR chemical shifts, FT-IR vibration modes and X-ray parameters (bonds, bond angles and torsion angles) for 1a, 1b and 1c isomers. The results showed that the isomerization effect is significant on λ(MAX) absorption bands, while for IR and NMR the effect is negligible. In accordance with previous studies, B3LYP, B3P86 and PBE0 gave the most reliable to predict the excitation energies of thiourea derivatives.
    Matched MeSH terms: X-Rays
  7. Affendi, A.F., Hasmaliza, M., Srimala, S.
    MyJurnal
    In these studies, cordierite was mechanically synthesized after a sol-gel process. The effect of milling time of cordierite was investigated. Aluminium nitrate nonahydrate, magnesium nitrate hexahydrate and tetraethylorthosilicate (TEOS) were used as starting materials. Gels obtained were mechanically activated in planetary ball mill by at 300rpm grinding speed and grinding time (15min, 30min, 45min and 60min). Powders produced were characterized by X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). XRD analysis proved that α-cordierite was formed at lower temperature (1200°C) as compliment to without grinding, whereby it is formed at1300°C. FESEM analysis shows the size of the cordierite were in submicron scale. EDX analysis proved that magnesium, aluminium, silicon and oxygen are elements existed in cordierite.
    Matched MeSH terms: X-Rays
  8. Ahmad R, Salina M, Mamat MH, Teh AA, Kara M, Rusop M, et al.
    J Nanosci Nanotechnol, 2012 Oct;12(10):8153-7.
    PMID: 23421193
    This paper addresses the growth of nano-structured MgZnO thin films by sol-gel spin coating method which will be used as a template layer to grow carbon nanotubes. The nano-structured MgZnO films were deposited on platinized (100) silicon substrates. In this work, we focused on the effect of aging and Mg content on the film structure and resistivity. Sols with Mg content of 10, 30 and 50 at.% were subjected to aging times of between 3 to 240 hours. Results from scanning (SEM) and field emission scanning electron (FESEM) microscopes and surface profiler (SP) showed that the sol aging increased the thickness, grain size and surface roughness for aging up to 240 hours. The energy dispersive analysis by X-ray (EDAX) confirmed the element of Mg in the ZnO films. The electrical resistivity also increased with aging time as confirmed by four point probe method. The results suggest that appropriate aging of the sol is important for improving physical quality and electrical performance of MgZnO thin films derived from sol-gel technique.
    Matched MeSH terms: X-Rays
  9. Ahmad SR, Yaacob NA, Jaeb MZ, Hussin Z, Wan Mohammad WMZ
    Iran J Public Health, 2020 Aug;49(8):1485-1493.
    PMID: 33083325 DOI: 10.18502/ijph.v49i8.3892
    Background: There is growing evidence that DM may play an important role in the occurrence of unsuccessful TB treatment outcomes. This study was undertaken to examine the prevalence of DM among TB population, compare the profile of TB patients with and without DM and determine the effect of DM on unsuccessful treatment outcomes among TB patients in Kelantan state, Malaysia from 2012 to 2016.

    Methods: A cross sectional study was conducted in Sep 2017 using data from registered TB cases in Kelantan state, Malaysia from 2012 to 2016. The profile of TB patients with and without DM were compared in univariable analysis. Multiple logistic regression was used to determine association between DM and unsuccessful treatment outcomes.

    Results: A total of 1854 TB patients were diagnosed with DM. The annual proportion was ranging from 26 to 29%. TB patients with DM had an older age, live single, low educational status, poor chest x ray finding and diagnosed with smear positive sputum compared to TB patients without DM. TB patients with DM had three times higher risk to develop unsuccessful TB treatment outcomes compared to TB patients without DM (95% CI 2.47-3.58; P = 0.012) in multivariable analysis.

    Conclusion: Those with DM had the worst prognosis of TB outcomes among the significant risk factors. TB control program in Malaysia will need to expand efforts to focus on treatment of TB-DM patients to improve their cure rates in order to achieve the goals of tuberculosis elimination.

    Matched MeSH terms: X-Rays
  10. Ahmad Saat, Zaini Hamzah, Zaharidah Abu Bakar
    MyJurnal
    Being an imperative material for man either used as building materials, pottery or as components in material industry and technology, knowledge of clays elemental contents is important. In the present study ten clay samples obtained from various locations in North-West Peninsular Malaysia were used. Majority of the clays were economically manufactured to be used as building materials or pottery. The objective of study was to determine the main elemental contents of the samples, and relate the results to the types of minerals, as well as to compare them with clays from other studies. In the study X-ray Fluorescence (XRF) coupled to samples dilution method and standard calibration samples was used. The elements detected in the study were Si, Al, Fe, Ti, K and Ca. Depending on locations, the percentage concentration ranged between 24.8 – 32.4 for Si, 10.8 – 19.0 for Al, 0.09 – 2.12 for Fe, 0.08 – 1.13 for Ti, 0.45 – 3.39 for K and trace amount of Ca and P. However, Mg that normally found in typical clay was not found in the studied samples. Comparing the oxide of the major elements with other studies, it was found that the clay samples contained mixtures of kaolinite (two-layered structure) and illite (three-layered structure).
    Matched MeSH terms: X-Rays
  11. Ahmad Saat, Nurulhuda Kassim, Zaini Hamzah, Ahmad Farisz
    MyJurnal
    Taman Negara is a famous tourism destination for nature lover in Malaysia. The area is well kept from human activities and disturbances. Since there is no data for human exposure to natural radiation, there is a need to do this study. It will give a baseline data for surface dose and radionuclide concentrations and one can estimate the external hazards index for the visitor to this unexplored area, i.e. UiTM-Perhilitan research station, Kuala Keniam, Taman Negara, Malaysia. The surface dose rate measurements were done in-situ using portable radiation survey meter at the surface and 1 m above the surface. The top soil samples were taken using hand auger up to 15 cm depth at nine locations around research station. Samples were brought back to the UiTM laboratory in Shah Alam, dried, ground to powder form, and sieved using 250 μm sieve. Then the uranium and thorium concentrations were analyzed using Energy Dispersive X-Ray Fluorescence (EDXRF).The mean value for surface dose rates on surface were 0.164 μSv/hr while the mean value for surface dose rates on 1m above the surface were 0.161 μSv/hr. The mean concentration of thorium was 2.62μg/g while the mean concentration of uranium was 0.61μg/g.
    Matched MeSH terms: X-Rays
  12. Ahmed O, Yushou Song
    Sains Malaysiana, 2018;47:1883-1890.
    X-ray computed tomography (XCT) became an important instrument for quality assurance in industry products as a
    non-destructive testing tool for inspection, evaluation, analysis and dimensional metrology. Thus, a high-quality image
    is required. Due to the polychromatic nature of X-ray energy in XCT, this leads to errors in attenuation coefficient
    which is generally known as beam hardening artifact. This leads to a distortion or blurring-like cupping and streak in
    the reconstruction images, where a significant decrease in imaging quality is observed. In this paper, recent research
    publications regarding common practical correction methods that were adopted to improve an imaging quality have been
    discussed. It was observed from the discussion and evaluation, that a problem behind beam hardening reduction for the
    multi-materials object, especially in the absence of prior information about X-ray spectrum and material characterizations
    would be a significant research contribution, if the correction could be achieved without the need to perform forward
    projections and multiple reconstructions.
    Matched MeSH terms: X-Rays
  13. Aina A, Gupta M, Boukari Y, Morris A, Billa N, Doughty S
    Saudi Pharm J, 2016 Mar;24(2):227-31.
    PMID: 27013917 DOI: 10.1016/j.jsps.2015.03.015
    The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture.
    Matched MeSH terms: X-Rays
  14. Akinpelu AA, Chowdhury ZZ, Shibly SM, Faisal ANM, Badruddin IA, Rahman MM, et al.
    Int J Mol Sci, 2021 Feb 19;22(4).
    PMID: 33669883 DOI: 10.3390/ijms22042090
    This study deals with the preparation of activated carbon (CDSP) from date seed powder (DSP) by chemical activation to eliminate polyaromatic hydrocarbon-PAHs (naphthalene-C10H8) from synthetic wastewater. The chemical activation process was carried out using a weak Lewis acid of zinc acetate dihydrate salt (Zn(CH3CO2)2·2H2O). The equilibrium isotherm and kinetics analysis was carried out using DSP and CDSP samples, and their performances were compared for the removal of a volatile organic compound-naphthalene (C10H8)-from synthetic aqueous effluents or wastewater. The equilibrium isotherm data was analyzed using the linear regression model of the Langmuir, Freundlich and Temkin equations. The R2 values for the Langmuir isotherm were 0.93 and 0.99 for naphthalene (C10H8) adsorption using DSP and CDSP, respectively. CDSP showed a higher equilibrium sorption capacity (qe) of 379.64 µg/g. DSP had an equilibrium sorption capacity of 369.06 µg/g for C10H8. The rate of reaction was estimated for C10H8 adsorption using a pseudo-first order, pseudo-second order and Elovich kinetic equation. The reaction mechanism for both the sorbents (CDSP and DSP) was studied using the intraparticle diffusion model. The equilibrium data was well-fitted with the pseudo-second order kinetics model showing the chemisorption nature of the equilibrium system. CDSP showed a higher sorption performance than DSP due to its higher BET surface area and carbon content. Physiochemical characterizations of the DSP and CDSP samples were carried out using the BET surface area analysis, Fourier-scanning microscopic analysis (FSEM), energy-dispersive X-ray (EDX) analysis and Fourier-transform spectroscopic analysis (FTIR). A thermogravimetric and ultimate analysis was also carried out to determine the carbon content in both the sorbents (DSP and CDSP) here. This study confirms the potential of DSP and CDSP to remove C10H8 from lab-scale synthetic wastewater.
    Matched MeSH terms: X-Rays
  15. Akinyemi SA, Gitari WM, Petrik LF, Nyakuma BB, Hower JC, Ward CR, et al.
    Sci Total Environ, 2019 May 01;663:177-188.
    PMID: 30711584 DOI: 10.1016/j.scitotenv.2019.01.308
    Coal combustion and the disposal of combustion wastes emit enormous quantities of nano-sized particles that pose significant health concerns on exposure, particularly in unindustrialized countries. Samples of fresh and weathered class F fly ash were analysed through various techniques including X-ray fluorescence (XRF), X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), field-emission gun scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM) coupled with energy dispersive x-ray spectroscopy (EDS), and Raman Spectroscopy. The imaging techniques showed that the fresh and weathered coal fly ash nanoparticles (CFA-NPs) are mostly spherical shaped. The crystalline phases detected were quartz, mullite, ettringite, calcite, maghemite, hematite, gypsum, magnetite, clay residues, and sulphides. The most abundant crystalline phases were quartz mixed with Al-Fe-Si-K-Ti-O-amorphous phases whereas mullite was detected in several amorphous phases of Al, Fe, Ca, Si, O, K, Mg, Mn, and P. The analyses revealed that CFA-NPs are 5-500 nm in diameter and encapsulate several potentially hazardous elements (PHEs). The carbon species were detected as 5-50 nm carbon nanoballs of graphitic layers and massive fullerenes. Lastly, the aspects of health risks related to exposure to some detected ambient nanoparticles are also discussed.
    Matched MeSH terms: X-Rays
  16. Al-Hada NM, Kamari HM, Baqer AA, Shaari AH, Saion E
    Nanomaterials (Basel), 2018 Apr 17;8(4).
    PMID: 29673195 DOI: 10.3390/nano8040250
    SnO₂ nanoparticle production using thermal treatment with tin(II) chloride dihydrate and polyvinylpyrrolidone capping agent precursor materials for calcination was investigated. Samples were analyzed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), diffuse UV-vis reflectance spectra, photoluminescence (PL) spectra and the electron spin resonance (ESR). XRD analysis found tetragonal crystalline structures in the SnO₂ nanoparticles generated through calcination. EDX and FT-IR spectroscopy phase analysis verified the derivation of the Sn and O in the SnO₂ nanoparticle samples from the precursor materials. An average nanoparticle size of 4–15.5 nm was achieved by increasing calcination temperature from 500 °C to 800 °C, as confirmed through TEM. The valence state and surface composition of the resulting nanoparticle were analyzed using XPS. Diffuse UV-vis reflectance spectra were used to evaluate the optical energy gap using the Kubelka-Munk equation. Greater calcination temperature resulted in the energy band gap falling from 3.90 eV to 3.64 eV. PL spectra indicated a positive relationship between particle size and photoluminescence. Magnetic features were investigated through ESR, which revealed the presence of unpaired electrons. The magnetic field resonance decreases along with an increase of the g-factor value as the calcination temperature increased from 500 °C to 800 °C. Finally, Escherichia coli ATCC 25922 Gram (–ve) and Bacillus subtilis UPMC 1175 Gram (+ve) were used for in vitro evaluation of the tin oxide nanoparticle’s antibacterial activity. This work indicated that the zone of inhibition of 22 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
    Matched MeSH terms: X-Rays
  17. Alamgir Chowdhury, M., Farid Hossain Chowdhury, Khaled Bin Shahabuddin, Tofazzal Hossain, A.B.M., Shaila Kabir
    MyJurnal
    Complete or partial restriction of the vocal cords usually occurs due to cancer, neurologic causes or mechanical causes like huge neck mass, trauma to the neck, viral infection, and sometimes iatrogenic during surgery. Bilateral vocal cord palsy is a severe condition that can lead to significant problems in breathing, speaking, and swallowing. If any patient presents with stridor, it requires urgent surgical airway management followed by specific treatment. A case of viral bilateral abductor vocal cord palsy in a 41-year-old female is reported here. The patient presented with stridor, and immediate tracheostomy was done. The stridor developed first 3 months earlier followed by cold and fever for a week. The stridor worsened gradually and leads to a state of commencing immediate tracheostomy. There was no history of trauma to the neck or any neck surgery. All basic laboratory blood test was within the normal limit. The laryngoscopic examination showed both vocal cords were immobile and almost median position with a small gap at the posterior commissure. Chest and neck plain X-ray along with computed tomography scan of neck was normal which ruled out the other causes of bilateral vocal cord palsy. The patient subsequently underwent successful left posterior cordectomy by laser, and decannulation of tracheostomy was done, known as Kashima operation.
    Matched MeSH terms: X-Rays
  18. Alawiah A, Bauk S, Marashdeh MW, Nazura MZ, Abdul-Rashid HA, Yusoff Z, et al.
    Appl Radiat Isot, 2015 Oct;104:197-202.
    PMID: 26188687 DOI: 10.1016/j.apradiso.2015.07.011
    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF.
    Matched MeSH terms: X-Rays
  19. Almugren KS, Sani SFA, Wandira R, Wahib N, Rozaila ZS, Khandaker MU, et al.
    Appl Radiat Isot, 2019 Sep;151:102-110.
    PMID: 31163392 DOI: 10.1016/j.apradiso.2019.04.027
    Present research concerns the TL signal stored in chalk of the variety commercially available for writing on blackboards. Samples of this have been subjected to x-ray irradiation, the key dosimetric parameters investigated including dose and energy response, sensitivity, fading and glow curve analysis. Three types of chalk have been investigated, each in five different colours. The samples were annealed at 323 K prior to irradiation. For all three chalk types and all five colours, the dose response has been found linear over the investigated dose range, 0-9 Gy. Regardless of type or colour, photoelectric energy dependency is apparent at the low energy end down to the lowest investigated accelerating potential of 30 kV. Crayola (Yellow) has shown the greatest TL sensitivity, thus selection has been made to limit further analysis to this medium alone, specifically in respect of glow curve and fading study. In addition, elemental compositional and structural change characterizations were made for the same medium, utilizing Energy Dispersive X-Ray (EDX) and Raman spectroscopy, respectively.
    Matched MeSH terms: X-Rays*
  20. Alosfur FK, Jumali MH, Radiman S, Ridha NJ, Yarmo MA, Umar AA
    Nanoscale Res Lett, 2013;8(1):346.
    PMID: 23919496 DOI: 10.1186/1556-276X-8-346
    Recently, TiO2/multi-walled carbon nanotube (MWCNT) hybrid nanocatalysts have been a subject of high interest due to their excellent structures, large surface areas and peculiar optical properties, which enhance their photocatalytic performance. In this work, a modified microwave technique was used to rapidly synthesise a TiO2/MWCNT nanocatalyst with a large surface area. X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller measurements were used to characterise the structure, morphology and the surface area of the sample. The photocatalytic activity of the hybrid nanocatalysts was evaluated through a comparison of the degradation of methylene blue dye under irradiation with ultraviolet and visible light. The results showed that the TiO2/MWCNT hybrid nanocatalysts degraded 34.9% of the methylene blue (MB) under irradiation with ultraviolet light, whereas 96.3% of the MB was degraded under irradiation with visible light.
    Matched MeSH terms: X-Rays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links