Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Teng YS, Tan SG
    Hum. Hered., 1979;29(1):2-4.
    PMID: 367946
    Acid alpha-glucosidase from the placenta was electrophoretically surveyed in a total of 633 Malaysians, 236 of Malay, 261 of Chinese and 136 of Indian ancestries. A new variant, alpha-glucosidase 3-1 was observed in 1 Malay and 3 Indians. A polymorphism for this enzyme was observed among Indians, but in Chinese and Malays variants are rare. Phenotype 2-1 was observed once in a Chinese and once in a Malay.
    Matched MeSH terms: alpha-Glucosidases/genetics*
  2. Nawawi HM, Yazid TN, Ismail F, Khalid BA
    Asia Pac J Clin Nutr, 2000 Mar;9(1):41-5.
    PMID: 24394314
    Acarbose inhibits intestinal alpha-glucosidases resulting in diminished and delayed postprandial hyperglycaemia (PPH). Studies on effects of acarbose on postprandial lipaemia (PPL) have been inconclusive. Little is known about the effects of acarbose on PPH and PPL following intake of a polysaccharide diet. We studied 30 type 2 diabetic patients on dietary and/or oral hypoglycaemic agent(s). Thirty patients were recruited for food A (nasi lemak), 28 for food B (mee goreng) and 28 for food C (roti telur), which represent the typical diets of the three main races in Malaysia. Serial blood samples were taken at 15 min before and up to 240 min after each food intake, without acarbose. Subsequently, three doses of 50 mg acarbose were given orally and the same procedure was repeated the following day. There were significantly lower mean increments in plasma glucose levels after compared to before acarbose treatment 30, 45 and 60 min for food A and at 30, 45, 60, 120, 180 and 240 min for food C, but no significant difference was noted for food B. There was a significantly lower mean fasting glucose level after compared with before acarbose treatment following intake of food A and C but not food B. Short-term treatment with acarbose caused significant diminished and delayed PPH response with food A and C but not with food B. Acarbose was more effective in reducing PPH response in polysaccharide foods with a higher and earlier postprandial glucose peak than in those with a lower and lagged peak. There were no significant differences in the mean fasting or postprandial triglyceride levels before and after acarbose treatment, following intake of all three foods for up to 4 hours. Depending on the food absorption pattern, overnight low dose treatment with acarbose leads to diminished fasting and peak plasma glucose levels, and delayed PPH but insignificant reduction in postprandial lipaemia in poorly controlled type 2 diabetics following intake of racially different Malaysian food.
    Matched MeSH terms: alpha-Glucosidases
  3. Chan MY, Tay ST
    Mycoses, 2010 Jan;53(1):26-31.
    PMID: 19389064 DOI: 10.1111/j.1439-0507.2008.01654.x
    This study compared the enzymatic activity of clinical isolates of Cryptococcus neoformans, Cryptococcus gattii, environmental isolates of C. neoformans and non-neoformans Cryptococcus. Most of the cryptococcal isolates investigated in this study exhibited proteinase and phospholipase activities. Laccase activity was detected from all the C. neoformans and C. gattii isolates, but not from the non-neoformans Cryptococcus isolates. There was no significant difference in the proteinase, phospholipase and laccase activities of C. neoformans and C. gattii. However, significant difference in the enzymatic activities of beta-glucuronidase, alpha-glucosidase, beta-glucosidase and N-acetyl-beta-glucosaminidase between C. neoformans and C. gattii isolates was observed in this study. Environmental isolates of C. neoformans exhibited similar enzymatic profiles as the clinical isolates of C. neoformans, except for lower proteinase and laccase activities.
    Matched MeSH terms: alpha-Glucosidases/analysis
  4. Manaharan T, Palanisamy UD, Ming CH
    Molecules, 2012;17(5):5915-23.
    PMID: 22609782 DOI: 10.3390/molecules17055915
    Preliminary investigations on 14 plant extracts (obtained by ethanolic and aqueous extraction) identified those having high antioxidant and a significant total phenolic content. Antihyperglycemic, α-amylase and α-glucosidase inhibition activities were also observed. A correlation between the antihyperglycemic activity, total phenolic content and antioxidant (DPPH scavenging) activity was established. To further substantiate these findings, the possibility of tannins binding non-specifically to enzymes and thus contributing to the antihyperglycemic activity was also investigated. Our study clearly indicated that the antihyperglycemic activity observed in the plant extracts was indeed not due to non-specific tannin absorption.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  5. Vincent-Chong VK, Anwar A, Karen-Ng LP, Cheong SC, Yang YH, Pradeep PJ, et al.
    PLoS ONE, 2013;8(2):e54705.
    PMID: 23405089 DOI: 10.1371/journal.pone.0054705
    Despite the advances in diagnosis and treatment of oral squamous cell carcinoma (OSCC), mortality and morbidity rates have not improved over the past decade. A major drawback in diagnosis and treatment of OSCC is the lack of knowledge relating to how genetic instability in oral cancer genomes affects oral carcinogenesis. Hence, the key aim of this study was to identify copy number alterations (CNAs) that may be cancer associated in OSCC using high-resolution array comparative genomic hybridization (aCGH). To our knowledge this is the first study to use ultra-high density aCGH microarrays to profile a large number of OSCC genomes (n = 46). The most frequently amplified CNAs were located on chromosome 11q11(52%), 2p22.3(52%), 1q21.3-q22(54%), 6p21.32(59%), 20p13(61%), 7q34(52% and 72%),8p11.23-p11.22(80%), 8q11.1-q24.4(54%), 9q13-q34.3(54%), 11q23.3-q25(57%); 14q21.3-q31.1(54%); 14q31.3-q32.33(57%), 20p13-p12.3(54%) and 20q11.21-q13.33(52%). The most frequently deleted chromosome region was located on 3q26.1 (54%). In order to verify the CNAs from aCGH using quantitative polymerase chain reaction (qPCR), the three top most amplified regions and their associated genes, namely ADAM5P (8p11.23-p11.22), MGAM (7q34) and SIRPB1 (20p13.1), were selected in this study. The ADAM5P locus was found to be amplified in 39 samples and deleted in one; MGAM (24 amplifications and 3 deletions); and SIRPB1 (12 amplifications, others undetermined). On the basis of putative cancer-related annotations, two genes, namely ADAM metallopeptidase domain 9 (ADAM9) and maltase-glucoamylase alpha-glucosidase (MGAM), that mapped to CNA regions were selected for further evaluation of their mRNA expression using reverse transcriptase qPCR. The over-expression of MGAM was confirmed with a 6.6 fold increase in expression at the mRNA level whereas the fold change in ADAM9 demonstrated a 1.6 fold increase. This study has identified significant regions in the OSCC genome that were amplified and resulted in consequent over-expression of the MGAM and ADAM9 genes that may be utilized as biological markers for OSCC.
    Matched MeSH terms: alpha-Glucosidases/biosynthesis*; alpha-Glucosidases/genetics
  6. Javadi N, Abas F, Abd Hamid A, Simoh S, Shaari K, Ismail IS, et al.
    J. Food Sci., 2014 Jun;79(6):C1130-6.
    PMID: 24888400 DOI: 10.1111/1750-3841.12491
    Cosmos caudatus, which is known as "Ulam Raja," is an herbal plant used in Malaysia to enhance vitality. This study focused on the evaluation of the α-glucosidase inhibitory activity of different ethanolic extracts of C. caudatus. Six series of samples extracted with water, 20%, 40%, 60%, 80%, and 100% ethanol (EtOH) were employed. Gas chromatography-mass spectrometry (GC-MS) and orthogonal partial least-squares (OPLS) analysis was used to correlate bioactivity of different extracts to different metabolite profiles of C. caudatus. The obtained OPLS scores indicated a distinct and remarkable separation into 6 clusters, which were indicative of the 6 different ethanol concentrations. GC-MS can be integrated with multivariate data analysis to identify compounds that inhibit α-glucosidase activity. In addition, catechin, α-linolenic acid, α-D-glucopyranoside, and vitamin E compounds were identified and indicate the potential α-glucosidase inhibitory activity of this herb.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  7. Khan KM, Rahim F, Wadood A, Kosar N, Taha M, Lalani S, et al.
    Eur J Med Chem, 2014 Jun 23;81:245-52.
    PMID: 24844449 DOI: 10.1016/j.ejmech.2014.05.010
    In our effort directed toward the discovery of new anti-diabetic agent for the treatment of diabetes, a library of biscoumarin derivative 1-18 was synthesized and evaluated for α-glucosidase inhibitory potential. All eighteen (18) compounds displayed assorted α-glucosidase activity with IC50 values 16.5-385.9 μM, if compared with the standard acarbose (IC50 = 906 ± 6.387 μM). In addition, molecular docking studies were carried out to explore the binding interactions of biscoumarin derivatives with the enzyme. This study has identified a new class of potent α-glucosidase inhibitors.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  8. Sulaiman SF, Ooi KL
    J. Agric. Food Chem., 2014 Oct 1;62(39):9576-85.
    PMID: 25198055 DOI: 10.1021/jf502912t
    The present study compared pH, total soluble solids, vitamin C, and total phenolic contents, antioxidant activities, and α-glucosidase inhibitory activities of 40 fresh juices. The juice of Baccaurea polyneura showed the highest yield (74.17 ± 1.44%) and total soluble solids (32.83 ± 0.27 °Brix). The highest and lowest pH values were respectively measured from the juices of Dimocarpus longan (6.87 ± 0.01) and Averrhoa bilimbi (1.67 ± 0.67). The juice of Psidium guajava gave the highest total phenolic (857.24 ± 12.65 μg GAE/g sample) and vitamin C contents (590.31 ± 7.44 μg AAE/g sample). The juice of Phyllanthus acidus with moderate contents of total phenolics and vitamin C was found to exhibit the greatest scavenging (613.71 ± 2.59 μg VCEAC/g sample), reducing (2784.89 ± 3.93 μg TEAC/g sample), and α-glucosidase inhibitory activities (95.37 ± 0.15%). The juice of Barringtonia racemosa was ranked second in the activities and total phenolic content. Gallic and ellagic acids, which were quantified as the major phenolics of the respective juices, are suggested to be the main contributors to the antioxidant activities. The α-glucosidase inhibitory activity of the juices could be derived from myricetin and quercetin (that were previously reported as potent α-glucosidase inhibitors) in the hydrolyzed juice extracts. The juice of Syzygium samarangense, which was found to be highest in metal chelating activity (82.28 ± 0.10%), also was found to have these phenolics.
    Matched MeSH terms: alpha-Glucosidases/chemistry
  9. Lee, S.Y., Mediani, A., Nur Ashikin, A.H., Abas, F., Azliana, A.B.S.
    MyJurnal
    The study was aimed to determine the antioxidant and α-glucosidase inhibition activities of
    the stem and leaf of five different traditional medicinal plants. The studied plants exhibited
    varied antioxidant and α-glucosidase inhibition activities. The antioxidant activities of the
    plants were determined through their free radical scavenging capabilities using DPPH assay.
    The most potent antioxidant activity was demonstrated by Neptunia oleracea with an IC50 of
    35.45 and 29.72 μg/mL for leaf and stem, respectively. For α-glucosidase inhibition activity,
    Neptunia oleracea exhibited potential α-glucosidase inhibition activity with IC50 value of
    19.09 and 19.74 μg/mL for leaf and stem, respectively. The highest total phenolic content
    (TPC) was also marked in Neptunia oleracea leaf and stem with value of 40.88 and 21.21 mg
    GAE/g dry weight, respectively. The results also showed that Strobilanthes crispus collected
    from two different locations possessed different levels of phenolic content, antioxidant and
    α-glucosidase inhibition activities. The study revealed that phenolic compounds could be the
    main contributors to the antioxidant and α-glucosidase inhibition activities with R values of 78.9
    and 67.4%, respectively. In addition, antioxidant and α-glucosidase were positively correlated
    (R = 81.9%). Neptunia oleracea could be suggested as a potential natural source of antioxidant
    and antidiabetic compounds that can be used for the prevention or treatment of diabetes.
    Matched MeSH terms: alpha-Glucosidases
  10. Wahab NA, Abdullah N, Aminudin N
    Biomed Res Int, 2014;2014:131607.
    PMID: 25243114 DOI: 10.1155/2014/131607
    Pleurotus pulmonarius has been reported to have a potent remedial effect on diabetic property and considered to be an alternative for type 2 diabetes mellitus treatment. This study aimed to investigate the antidiabetic properties of ammonium sulphate precipitated protein fractions from P. pulmonarius basidiocarps. Preliminary results demonstrated that 30% (NH4)2SO4 precipitated fraction (F30) inhibited Saccharomyces cerevisiae α-glucosidase activity (24.18%), and 100% (NH4)2SO4 precipitated fraction (F100) inhibited porcine pancreatic α-amylase activity (41.80%). Following RP-HPLC purification, peak 3 from F30 fraction demonstrated inhibition towards α-glucosidase at the same time with meagre inhibition towards α-amylase activity. Characterisation of proteins using MALDI-TOF/TOF MS demonstrated the presence of four different proteins, which could be implicated in the regulation of blood glucose level via various mechanisms. Therefore, this study revealed the presence of four antidiabetic-related proteins which are profilin-like protein, glyceraldehyde-3-phosphate dehydrogenase-like protein, trehalose phosphorylase-like (TP-like) protein, and catalase-like protein. Hence, P. pulmonarius basidiocarps have high potential in lowering blood glucose level, reducing insulin resistance and vascular complications.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  11. Ado MA, Abas F, Ismail IS, Ghazali HM, Shaari K
    J. Sci. Food Agric., 2015 Feb;95(3):635-42.
    PMID: 25048579 DOI: 10.1002/jsfa.6832
    The aim of the current study was (i) to evaluate the bioactive potential of the leaf methanolic extract of Cynometra cauliflora L., along with its respective hexane, dichloromethane, ethyl acetate (EtOAc), n-butanol (n-BuOH) and aqueous fractions, in inhibiting the enzymes α-glucosidase, acetylcholinesterase (AChE) and tyrosinase as well as evaluating their antioxidant activities. (ii) In addition, in view of the limited published information regarding the metabolite profile of C. cauliflora, we further characterized the profiles of the EtOAc and n-BuOH fractions using liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  12. Taha M, Ismail NH, Lalani S, Fatmi MQ, Atia-Tul-Wahab, Siddiqui S, et al.
    Eur J Med Chem, 2015 Mar 6;92:387-400.
    PMID: 25585009 DOI: 10.1016/j.ejmech.2015.01.009
    In an effort to design and synthesize a new class of α-glucosidase inhibitor, we synthesized benzothiazole hybrid having benzohydrazide moiety (5). Compound 5 was reacted with various substituted aryl aldehyde to generate a small library of compounds 6-35. Synthesis of compounds was confirmed by the spectral information. These compounds were screened for their α-glucosidase activity. They showed a varying degree of α-glucosidase inhibition with IC50 values ranging between 5.31 and 53.34 μM. Compounds 6, 7, 9-16, 19, 21-30, 32-35 showed superior activity as compared to standard acarbose (IC50 = 906 ± 6.3 μM). This has identified a new class of α-glucosidase inhibitors. The predicted physico-chemical properties indicated the drug appropriateness for most of these compounds, as they obey Lipinski's rule of five (RO5). A hybrid B3LYP density functional theory (DFT) was employed for energy, minimization of 3D structures for all synthetic compounds using 6-311 + G(d,p) basis sets followed by molecular docking to explore their interactions with human intestinal C- and N-terminal domains of α-glucosidase. All compounds bind to the prospective allosteric site of the C- terminal domain, and consequently, may be considered as mixed inhibitors. It was hypothesized that both the dipole moment and H-bond interactions govern the biological activation of these compounds.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  13. Ooi KL, Loh SI, Tan ML, Muhammad TS, Sulaiman SF
    J Ethnopharmacol, 2015 Mar 13;162:55-60.
    PMID: 25554642 DOI: 10.1016/j.jep.2014.12.030
    The juice of the entire fresh herb and infusion of dried sample of Murdannia bracteata are consumed to treat liver cancer and diabetes in Malaysia. However, no scientific evidence of these bioactivities has been reported.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  14. Rahim F, Malik F, Ullah H, Wadood A, Khan F, Javid MT, et al.
    Bioorg. Chem., 2015 Jun;60:42-8.
    PMID: 25955493 DOI: 10.1016/j.bioorg.2015.03.005
    Isatin base Schiff bases (1-20) were synthesized, characterized by (1)H NMR and EI/MS and evaluated for α-glucosidase inhibitory potential. Out of these twenty (20) compounds only six analogs showed potent α-glucosidase inhibitory potential with IC50 value ranging in between 2.2±0.25 and 83.5±1.0μM when compared with the standard acarbose (IC50=840±1.73μM). Among the series compound 2 having IC50 value (18.3±0.56μM), 9 (83.5±1.0μM), 11 (3.3±0.25μM), 12 (2.2±0.25μM), 14 (11.8±0.15μM), and 20 (3.0±0.15μM) showed excellent inhibitory potential many fold better than the standard acarbose. The binding interactions of these active analogs were confirmed through molecular docking.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  15. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, et al.
    Plant Foods Hum Nutr, 2015 Jun;70(2):184-92.
    PMID: 25800644 DOI: 10.1007/s11130-015-0478-5
    The study investigated the changes in the metabolite, antioxidant and α-glucosidase inhibitory activities of Phyllanthus niruri after three drying treatments: air, freeze and oven dryings. Water extracts and extracts obtained using different solvent ratios of ethanol and methanol (50, 70, 80 and 100%) were compared. The relationships among the antioxidant, α-glucosidase inhibitory activity and metabolite levels of the extracts were evaluated using partial least-square analysis (PLS). The solvent selectivity was assessed based on the phytochemical constituents present in the extract and their concentrations quantitatively analyzed using high performance liquid chromatography. The freeze-dried P. niruri samples that were extracted with the mixture of ethanol or methanol with low ratio of water showed higher biological activity values compared with the other extracts. The PLS results for the ethanolic with different ratio and water extracts demonstrated that phenolic acids (chlorogenic acid and ellagic acid) and flavonoids were highly linked to strong α-glucosidase inhibitory and antioxidant activities.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  16. Yusoff NA, Ahmad M, Al-Hindi B, Widyawati T, Yam MF, Mahmud R, et al.
    Nutrients, 2015 Aug;7(8):7012-26.
    PMID: 26308046 DOI: 10.3390/nu7085320
    Nypa fruticans Wurmb. vinegar, commonly known as nipa palm vinegar (NPV) has been used as a folklore medicine among the Malay community to treat diabetes. Early work has shown that aqueous extract (AE) of NPV exerts a potent antihyperglycemic effect. Thus, this study is conducted to evaluate the effect of AE on postprandial hyperglycemia in an attempt to understand its mechanism of antidiabetic action. AE were tested via in vitro intestinal glucose absorption, in vivo carbohydrate tolerance tests and spectrophotometric enzyme inhibition assays. One mg/mL of AE showed a comparable outcome to the use of phloridzin (1 mM) in vitro as it delayed glucose absorption through isolated rat jejunum more effectively than acarbose (1 mg/mL). Further in vivo confirmatory tests showed AE (500 mg/kg) to cause a significant suppression in postprandial hyperglycemia 30 min following respective glucose (2 g/kg), sucrose (4 g/kg) and starch (3 g/kg) loadings in normal rats, compared to the control group. Conversely, in spectrophotometric enzymatic assays, AE showed rather a weak inhibitory activity against both α-glucosidase and α-amylase when compared with acarbose. The findings suggested that NPV exerts its anti-diabetic effect by delaying carbohydrate absorption from the small intestine through selective inhibition of intestinal glucose transporters, therefore suppressing postprandial hyperglycemia.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  17. Taha M, Ismail NH, Imran S, Rokei MQ, Saad SM, Khan KM
    Bioorg. Med. Chem., 2015 Aug 1;23(15):4155-62.
    PMID: 26183542 DOI: 10.1016/j.bmc.2015.06.060
    Oxadiazole derivatives (6-28) having hydrazone linkage, were synthesized through condensation reaction between benzohydrazide 5 with various benzaldehydes. The oxadiazoles derivatives (6-28) were evaluated for their α-glucosidase inhibitory activity. The IC50 values for inhibition activity vary in the range between 2.64 ± 0.05 and 460.14 ± 3.25 μM. The IC50 values were being compared to the standard acarbose (IC50=856.45 ± 5.60 μM) and it was found that compounds 6-9, 12, 13, 16, 18, 20, 22-28 were found to be more active than acarbose, while other compounds showed no activity. Structure-activity relationship (SAR) studies suggest that oxadiazole benzohydrazones (6-28) inhibitory potential is dependent on substitution of the N-benzylidene part. Compound 18 (IC50=2.64 ± 0.05 μM), which has trihydroxy substitution at C-2', C-4', and C-5' on N-benzylidene moiety, recorded the highest inhibition activity that is three-hundred times more active than the standard drug, acarbose (IC50=856.45 ± 5.60 μM). Compound 23 (IC50=34.64 ± 0.35 μM) was found to be the most active among compounds having single hydroxyl substitution. Shifting hydroxyl from C-2' to C-4' (6) and C-3' (7) reduces inhibitory activity significantly. Compounds with chlorine substituent (compounds 16, 28, and 27) showed potent activities but lower as compared to hydroxyl analogs. Substituent like nitro or methyl groups at any position suppresses enzyme inhibition activity. This reveals the important presence of hydroxyl and halo groups to have enzyme inhibitory potential.
    Matched MeSH terms: alpha-Glucosidases
  18. Hashim SE, Sirat HM, Yen KH, Ismail IS, Matsuki SN
    Nat Prod Commun, 2015 Sep;10(9):1561-3.
    PMID: 26594759
    Seven compounds were isolated from the n-hexane and chloroform extracts of the flowers and leaves of four Hornstedtia species and their structures were identified using spectroscopic techniques as 3,7,4'-trimethylkaempferol (1), 3,7-dimethylkaempferol (2), 7,4'-dimethylkaempferol (3), 3,5-dimethylkaempferol (4), 3-methylkaempferol (5), stigmast-4-en-3-one (6), and 6-hydroxy-stigmast-4-en-3-one (7). Compounds 1 to 7 were isolated from these species for the first time. They were assayed for free radical scavenging and α-glucosidase inhibition activities. The DPPH assay showed that 3-methylkaempferol (5) was the most potent antioxidant agent with an IC50 value 78.6 µM, followed by 7,4'-dimethylkaempferol (3) (IC50 = 86.1 µM). For α-glucosidase inhibition activity, 3-methylkaempferol (5) exhibited significant inhibitory activity with an IC50 value 21.0 µM. The present study revealed that Hornstedtia species have potential activities as antioxidant and α-glucosidase inhibitors.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  19. Rahim F, Ullah H, Javid MT, Wadood A, Taha M, Ashraf M, et al.
    Bioorg. Chem., 2015 Oct;62:15-21.
    PMID: 26162519 DOI: 10.1016/j.bioorg.2015.06.006
    A series of thiazole derivatives 1-21 were prepared, characterized by EI-MS and (1)H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23±0.03 and 424.41±0.94μM when compared with the standard acarbose (IC50, 38.25±0.12μM). Compound (8) (IC50, 18.23±0.03μM) and compound (7) (IC50=36.75±0.05μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25±0.12μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors.
    Matched MeSH terms: alpha-Glucosidases/drug effects*; alpha-Glucosidases/chemistry
  20. Barakat A, Islam MS, Al-Majid AM, Ghabbour HA, Fun HK, Javed K, et al.
    Bioorg. Med. Chem., 2015 Oct 15;23(20):6740-8.
    PMID: 26381063 DOI: 10.1016/j.bmc.2015.09.001
    We describe here the synthesis of dihydropyrimidines derivatives 3a-p, and evaluation of their α-glucosidase enzyme inhibition activities. Compounds 3b (IC50=62.4±1.5 μM), 3c (IC50=25.3±1.26 μM), 3d (IC50=12.4±0.15 μM), 3e (IC50=22.9±0.25 μM), 3g (IC50=23.8±0.17 μM), 3h (IC50=163.3±5.1 μM), 3i (IC50=30.6±0.6 μM), 3m (IC50=26.4±0.34 μM), and 3o (IC50=136.1±6.63 μM) were found to be potent α-glucosidase inhibitors in comparison to the standard drug acarbose (IC50=840±1.73 μM). The compounds were also evaluated for their in vitro cytotoxic activity against PC-3, HeLa, and MCF-3 cancer cell lines, and 3T3 mouse fibroblast cell line. All compounds were found to be non cytotoxic, except compounds 3f and 3m (IC50=17.79±0.66-20.44±0.30 μM), which showed a weak cytotoxic activity against the HeLa, and 3T3 cell lines. In molecular docking simulation study, all the compounds were docked into the active site of the predicted homology model of α-glucosidase enzyme. From the docking result, it was observed that most of the synthesized compounds showed interaction through carbonyl oxygen atom and polar phenyl ring with active site residues of the enzyme.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links