Displaying publications 1 - 20 of 126 in total

Abstract:
Sort:
  1. Kim JD, Lee AR, Moon DH, Chung YU, Hong SY, Cho HJ, et al.
    Emerg Microbes Infect, 2024 Dec;13(1):2343910.
    PMID: 38618740 DOI: 10.1080/22221751.2024.2343910
    Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV), is a highly threatening disease with no specific treatment. Fortunately, the development of vaccines has enabled effective defense against JE. However, re-emerging genotype V (GV) JEV poses a challenge as current vaccines are genotype III (GIII)-based and provide suboptimal protection. Given the isolation of GV JEVs from Malaysia, China, and the Republic of Korea, there is a concern about the potential for a broader outbreak. Under the hypothesis that a GV-based vaccine is necessary for effective defense against GV JEV, we developed a pentameric recombinant antigen using cholera toxin B as a scaffold and mucosal adjuvant, which was conjugated with the E protein domain III of GV by genetic fusion. This GV-based vaccine antigen induced a more effective immune response in mice against GV JEV isolates compared to GIII-based antigen and efficiently protected animals from lethal challenges. Furthermore, a bivalent vaccine approach, inoculating simultaneously with GIII- and GV-based antigens, showed protective efficacy against both GIII and GV JEVs. This strategy presents a promising avenue for comprehensive protection in regions facing the threat of diverse JEV genotypes, including both prevalent GIII and GI as well as emerging GV strains.
    Matched MeSH terms: Antigens, Viral/genetics; Antigens, Viral/immunology
  2. Tahar AS, Ong EJ, Rahardja A, Mamora D, Lim KT, Ahmed K, et al.
    J Med Virol, 2023 Aug;95(8):e28987.
    PMID: 37501648 DOI: 10.1002/jmv.28987
    Rotavirus is the leading causative viral agent of pediatric acute gastroenteritis globally, infecting mostly children 5 years old and below. Data on rotavirus prevalence in Malaysia is scarce, despite the WHO's recommendation for continuous rotavirus surveillance, and has underestimated the need for national rotavirus vaccination. Characteristics of the current rotavirus strains in Malaysia have to be determined to understand the rotavirus epidemiology and vaccine compatibility. This study sought to determine the genetic relatedness of Sarawak rotavirus strains with global strains and to determine the antigenic coverage and epitope compatibility of Rotarix and RotaTeq vaccines with the Sarawak rotavirus strains via in silico analysis. A total of 89 stool samples were collected from pediatric patients (<5 years old) with acute gastroenteritis at private hospitals in Kuching, Sarawak. Rotavirus was detected using reverse transcription-polymerase chain reaction. Positive amplicons were analyzed using nucleotide sequencing before phylogenetic analyses and assessment of epitope compatibility. Genotyping revealed G1P[8] (1/13; 7.7%), G3P[8] (3/13; 23%), G9P[4] (1/13; 7.7%), and G9P[8] (3/13; 23%), G9P[X] (1/13; 7.7%), GXP[4] (1/13; 7.7%), and GXP[8] (3/13; 23%) in samples. All wild-type Sarawak rotavirus strains, with the exception of G1, showed variations in their phylogenetic and antigenic epitope characteristics.
    Matched MeSH terms: Antigens, Viral/genetics
  3. Amit LN, John JL, Mori D, Chin AZ, Mosiun AK, Ahmed K
    Arch Virol, 2023 Jun 03;168(6):173.
    PMID: 37269384 DOI: 10.1007/s00705-023-05803-9
    Rotaviruses are major causative agents of acute diarrhea in children under 5 years of age in Malaysia. However, a rotavirus vaccine has not been included in the national vaccination program. To date, only two studies have been carried out in the state of Sabah, Malaysia, although children in this state are at risk of diarrheal diseases. Previous studies showed that 16%-17% of cases of diarrhea were caused by rotaviruses and that equine-like G3 rotavirus strains are predominant. Because the prevalence of rotaviruses and their genotype distribution vary over time, this study was conducted at four government healthcare facilities from September 2019 through February 2020. Our study revealed that the proportion of rotavirus diarrhea increased significantly to 37.2% (51/137) after the emergence of the G9P[8] genotype in replacement of the G12P[8] genotype. Although equine-like G3P[8] strains remain the predominant rotaviruses circulating among children, the Sabahan G9P[8] strain belonged to lineage VI and was phylogenetically related to strains from other countries. A comparison of the Sabahan G9 strains with the G9 vaccine strains used in the RotaSiil and Rotavac vaccines revealed several mismatches in neutralizing epitopes, indicating that these vaccines might not be effective in Sabahan children. However, a vaccine trial may be necessary to understand the precise effects of vaccination.
    Matched MeSH terms: Antigens, Viral/genetics
  4. Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, et al.
    Cell Host Microbe, 2021 Nov 10;29(11):1634-1648.e5.
    PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006
    Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
    Matched MeSH terms: Antigens, Viral/immunology
  5. Ngim CF, Husain SMT, Hassan SS, Dhanoa A, Ahmad SAA, Mariapun J, et al.
    PLoS Negl Trop Dis, 2021 05;15(5):e0009445.
    PMID: 34014983 DOI: 10.1371/journal.pntd.0009445
    BACKGROUND: Dengue fever is the most common mosquito-borne infection worldwide where an expanding surveillance and characterization of this infection are needed to better inform the healthcare system. In this surveillance-based study, we explored the prevalence and distinguishing features of dengue fever amongst febrile patients in a large community-based health facility in southern peninsular Malaysia.

    METHODS: Over six months in 2018, we recruited 368 adults who met the WHO 2009 criteria for probable dengue infection. They underwent the following blood tests: full blood count, dengue virus (DENV) rapid diagnostic test (RDT), ELISA (dengue IgM and IgG), nested RT-PCR for dengue, multiplex qRT-PCR for Zika, Chikungunya and dengue as well as PCR tests for Leptopspira spp., Japanese encephalitis and West Nile virus.

    RESULTS: Laboratory-confirmed dengue infections (defined by positive tests in NS1, IgM, high-titre IgG or nested RT-PCR) were found in 167 (45.4%) patients. Of these 167 dengue patients, only 104 (62.3%) were positive on rapid diagnostic testing. Dengue infection was significantly associated with the following features: family or neighbours with dengue in the past week (AOR: 3.59, 95% CI:2.14-6.00, p<0.001), cutaneous rash (AOR: 3.58, 95% CI:1.77-7.23, p<0.001), increased temperature (AOR: 1.33, 95% CI:1.04-1.70, p = 0.021), leucopenia (white cell count < 4,000/μL) (AOR: 3.44, 95% CI:1.72-6.89, p<0.001) and thrombocytopenia (platelet count <150,000/μL)(AOR: 4.63, 95% CI:2.33-9.21, p<0.001). Dengue infection was negatively associated with runny nose (AOR: 0.47, 95% CI:0.29-0.78, p = 0.003) and arthralgia (AOR: 0.42, 95% CI:0.24-0.75, p = 0.004). Serotyping by nested RT-PCR revealed mostly mono-infections with DENV-2 (n = 64), DENV-1 (n = 32) and DENV-3 (n = 17); 14 co-infections occurred with DENV-1/DENV-2 (n = 13) and DENV-1/DENV-4 (n = 1). Besides dengue, none of the pathogens above were found in patients' serum.

    CONCLUSIONS: Acute undifferentiated febrile infections are a diagnostic challenge for community-based clinicians. Rapid diagnostic tests are increasingly used to diagnose dengue infection but negative tests should be interpreted with caution as they fail to detect a considerable proportion of dengue infection. Certain clinical features and haematological parameters are important in the clinical diagnosis of dengue infection.

    Matched MeSH terms: Antigens, Viral/blood
  6. Lim HX, Lim J, Poh CL
    Med Microbiol Immunol, 2021 Feb;210(1):1-11.
    PMID: 33515283 DOI: 10.1007/s00430-021-00700-x
    Dengue virus (DENV) comprises four serotypes (DENV1-4) which cause 390 million global infections with 500,000 hospitalizations and 25,000 fatalities annually. Currently, the only FDA approved DENV vaccine is the chimeric live-attenuated vaccine, Dengvaxia®, which is based on the yellow fever virus (YFV) genome that carries the prM and E genes of the respective DENV 1, 2, 3, and 4 serotypes. However, it has lower efficacies against serotypes DENV1 (51%) and DENV2 (34%) when compared with DENV3 (75%) and DENV4 (77%). The absence of T cell epitopes from non-structural (NS) and capsid (C) proteins of the yellow fever vaccine strain might have prevented Dengvaxia® to elicit robust cellular immune responses, as CD8+ T cell epitopes are mainly localized in the NS3 and NS5 regions. Multi-epitope-based peptide vaccines carrying CD4+, CD8+ T cell and B cell epitopes represent a novel approach to generate specific immune responses. Therefore, assessing and selecting epitopes that can induce robust B and T cell responses is a prerequisite for constructing an efficient multi-epitope peptide vaccine. Potent B and T cell epitopes can be identified by utilizing immunoinformatic analysis, but the immunogenicity of the epitopes have to be experimentally validated. In this review, we presented T cell epitopes that have been predicted by bioinformatic approaches as well as recent experimental validations of CD4+ and CD8+ T cell epitopes by ex-vivo stimulation of PBMCs with specific peptides. Immunoproteomic analysis could be utilized to uncover HLA-specific epitopes presented by DENV-infected cells. Based on various approaches, immunodominant epitopes capable of inducing strong immune responses could be selected and incorporated to form a universally applicable multi-epitope-based peptide dengue vaccine.
    Matched MeSH terms: Antigens, Viral/immunology
  7. Amit LN, Mori D, John JL, Chin AZ, Mosiun AK, Jeffree MS, et al.
    PLoS One, 2021;16(7):e0254784.
    PMID: 34320003 DOI: 10.1371/journal.pone.0254784
    Rotavirus infection is a dilemma for developing countries, including Malaysia. Although commercial rotavirus vaccines are available, these are not included in Malaysia's national immunization program. A scarcity of data about rotavirus genotype distribution could be partially to blame for this policy decision, because there are no data for rotavirus genotype distribution in Malaysia over the past 20 years. From January 2018 to March 2019, we conducted a study to elucidate the rotavirus burden and genotype distribution in the Kota Kinabalu and Kunak districts of the state of Sabah. Stool specimens were collected from children under 5 years of age, and rotavirus antigen in these samples was detected using commercially available kit. Electropherotypes were determined by polyacrylamide gel electrophoresis of genomic RNA. G and P genotypes were determined by RT-PCR using type specific primers. The nucleotide sequence of the amplicons was determined by Sanger sequencing and phylogenetic analysis was performed by neighbor-joining method. Rotavirus was identified in 43 (15.1%) children with watery diarrhea. The male:female ratio (1.9:1) of the rotavirus-infected children clearly showed that it affected predominantly boys, and children 12-23 months of age. The genotypes identified were G3P[8] (74% n = 31), followed by G1P[8] (14% n = 6), G12P[6](7% n = 3), G8P[8](3% n = 1), and GxP[8] (3% n = 1). The predominant rotavirus circulating among the children was the equine-like G3P[8] (59.5% n = 25) with a short electropherotype. Eleven electropherotypes were identified among 34 strains, indicating substantial diversity among the circulating strains. The circulating genotypes were also phylogenetically diverse and related to strains from several different countries. The antigenic epitopes present on VP7 and VP4 of Sabahan G3 and equine-like G3 differed considerably from that of the RotaTeq vaccine strain. Our results also indicate that considerable genetic exchange is occurring in Sabahan strains. Sabah is home to a number of different ethnic groups, some of which culturally are in close contact with animals, which might contribute to the evolution of diverse rotavirus strains. Sabah is also a popular tourist destination, and a large number of tourists from different countries possibly contributes to the diversity of circulating rotavirus genotypes. Considering all these factors which are contributing rotavirus genotype diversity, continuous surveillance of rotavirus strains is of utmost importance to monitor the pre- and post-vaccination efficacy of rotavirus vaccines in Sabah.
    Matched MeSH terms: Antigens, Viral/classification; Antigens, Viral/genetics
  8. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT
    Lab Invest, 2020 Sep;100(9):1262-1275.
    PMID: 32601355 DOI: 10.1038/s41374-020-0456-x
    Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
    Matched MeSH terms: Antigens, Viral/metabolism
  9. Wong PF, Wong LP, AbuBakar S
    J Infect Public Health, 2020 Feb;13(2):193-198.
    PMID: 31405788 DOI: 10.1016/j.jiph.2019.07.012
    BACKGROUND: Delayed diagnosis of dengue cases with increased risk for severe disease could lead to poor disease outcome. To date there is no specific laboratory diagnostic test for severe dengue. This qualitative study explored expert views regarding current issues in diagnosing severe dengue, rationale for severe dengue-specific diagnostics, future prospects and features of potential diagnostics for severe dengue.

    METHODS: In-depth individual interviews with thematic saturation were conducted between May and July 2018. The data was analyzed using thematic analysis.

    RESULTS: Based on expert opinion, diagnosis of severe dengue is challenging as it depends on astute clinical interpretation of non-dengue-specific clinical and laboratory findings. A specific test that detects impending manifestation of severe dengue could 1) overcome failure in identifying severe disease for referral or admission, 2) facilitate timely and appropriate management of plasma leakage and bleeding, 3) overcome the lack of clinical expertise and laboratory diagnosis in rural health settings. The most important feature of any diagnostics for severe dengue is the point-of-care (POC) format where it can be performed at or near the bedside.

    CONCLUSION: The development of diagnostics to detect impending severe dengue is warranted to reduce the morbidity and mortality rates of dengue infection and it should be prioritized.

    Matched MeSH terms: Antigens, Viral
  10. Liew JWK, Selvarajoo S, Tan W, Ahmad Zaki R, Vythilingam I
    Infect Dis Poverty, 2019 Sep 03;8(1):71.
    PMID: 31477185 DOI: 10.1186/s40249-019-0584-y
    BACKGROUND: Dengue is a global disease, transmitted by the Aedes vectors. In 2018, there were 80 615 dengue cases with 147 deaths in Malaysia. Currently, the nationwide surveillance programs are dependent on Aedes larval surveys and notifications of lab-confirmed human infections. The existing, reactive programs appear to lack sensitivity and proactivity. More efficient dengue vector surveillance/control methods are needed.

    METHODS: A parallel, cluster, randomized controlled, interventional trial is being conducted for 18 months in Damansara Damai, Selangor, Malaysia, to determine the efficacy of using gravid oviposition sticky (GOS) trap and dengue non-structural 1 (NS1) antigen test for early surveillance of dengue among Aedes mosquitoes to reduce dengue outbreaks. Eight residential apartments were randomly assigned into intervention and control arms. GOS traps are set at the apartments to collect Aedes weekly, following which dengue NS1 antigen is detected in these mosquitoes. When a dengue-positive mosquito is detected, the community will be advised to execute vector search-and-destroy and protective measures. The primary outcome concerns the the percentage change in the (i) number of dengue cases and (ii) durations of dengue outbreaks. Whereas other outcome measures include the change in density threshold of Aedes and changes in dengue-related knowledge, attitude and practice among cluster inhabitants.

    DISCUSSION: This is a proactive and early dengue surveillance in the mosquito vector that does not rely on notification of dengue cases. Surveillance using the GOS traps should be able to efficiently provide sufficient coverage for multistorey dwellings where population per unit area is likely to be higher. Furthermore, trapping dengue-infected mosquitoes using the GOS trap, helps to halt the dengue transmission carried by the mosquito. It is envisaged that the results of this randomized controlled trial will provide a new proactive, cheap and targeted surveillance tool for the prevention and control of dengue outbreaks.

    TRIAL REGISTRATION: This is a parallel-cluster, randomized controlled, interventional trial, registered at ClinicalTrials.gov (ID: NCT03799237), on 8th January 2019 (retrospectively registered).

    Matched MeSH terms: Antigens, Viral/analysis*
  11. Mustaffa-Kamal F, Liu H, Pedersen NC, Sparger EE
    BMC Vet Res, 2019 May 22;15(1):165.
    PMID: 31118053 DOI: 10.1186/s12917-019-1909-6
    BACKGROUND: Feline infectious peritonitis (FIP) is considered highly fatal in its naturally occurring form, although up to 36% of cats resist disease after experimental infection, suggesting that cats in nature may also resist development of FIP in the face of infection with FIP virus (FIPV). Previous experimental FIPV infection studies suggested a role for cell-mediated immunity in resistance to development of FIP. This experimental FIPV infection study in specific pathogen free (SPF) kittens describes longitudinal antiviral T cell responses and clinical outcomes ranging from rapid progression, slow progression, and resistance to disease.

    RESULTS: Differences in disease outcome provided an opportunity to investigate the role of T cell immunity to FIP determined by T cell subset proliferation after stimulation with different viral antigens. Reduced total white blood cell (WBC), lymphocyte and T cell counts in blood were observed during primary acute infection for all experimental groups including cats that survived without clinical FIP. Antiviral T cell responses during early primary infection were also similar between cats that developed FIP and cats remaining healthy. Recovery of antiviral T cell responses during the later phase of acute infection was observed in a subset of cats that survived longer or resisted disease compared to cats showing rapid disease progression. More robust T cell responses at terminal time points were observed in lymph nodes compared to blood in cats that developed FIP. Cats that survived primary infection were challenged a second time to pathogenic FIPV and tested for antiviral T cell responses over a four week period. Nine of ten rechallenged cats did not develop FIP or T cell depletion and all cats demonstrated antiviral T cell responses at multiple time points after rechallenge.

    CONCLUSIONS: In summary, definitive adaptive T cell responses predictive of disease outcome were not detected during the early phase of primary FIPV infection. However emergence of antiviral T cell responses after a second exposure to FIPV, implicated cellular immunity in the control of FIPV infection and disease progression. Virus host interactions during very early stages of FIPV infection warrant further investigation to elucidate host resistance to FIP.

    Matched MeSH terms: Antigens, Viral/immunology
  12. Lim CC, Woo PCY, Lim TS
    Sci Rep, 2019 Apr 15;9(1):6088.
    PMID: 30988390 DOI: 10.1038/s41598-019-42628-6
    Antibody phage display has been pivotal in the quest to generate human monoclonal antibodies for biomedical and research applications. Target antigen preparation is a main bottleneck associated with the panning process. This includes production complexity, downstream purification, quality and yield. In many instances, purified antigens are preferred for panning but this may not be possible for certain difficult target antigens. Here, we describe an improved procedure of affinity selection against crude or non-purified antigen by saturation of non-binders with blocking agents to promote positive binder enrichment termed as Yin-Yang panning. A naïve human scFv library with kappa light chain repertoire with a library size of 109 was developed. The improved Yin-Yang biopanning process was able to enrich monoclonal antibodies specific to the MERS-CoV nucleoprotein. Three unique monoclonal antibodies were isolated in the process. The Yin-Yang biopanning method highlights the possibility of utilizing crude antigens for the isolation of monoclonal antibodies by phage display.
    Matched MeSH terms: Antigens, Viral/immunology*
  13. Roberts R, Yee PTI, Mujawar S, Lahiri C, Poh CL, Gatherer D
    Sci Rep, 2019 04 01;9(1):5427.
    PMID: 30931960 DOI: 10.1038/s41598-019-41662-8
    Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).
    Matched MeSH terms: Antigens, Viral/immunology
  14. Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, et al.
    Sci Rep, 2019 03 18;9(1):4805.
    PMID: 30886246 DOI: 10.1038/s41598-019-41285-z
    Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
    Matched MeSH terms: Antigens, Viral/analysis; Antigens, Viral/immunology
  15. Yu SP, Ong KC, Perera D, Wong KT
    Virology, 2019 01 15;527:107-115.
    PMID: 30481615 DOI: 10.1016/j.virol.2018.10.015
    Japanese encephalitis virus (JEV) causes central nervous system neuronal injury and inflammation. A clear understanding of neuronal responses to JEV infection remains elusive. Using the Affymetrix array to investigate the transcriptome of infected SK-N-MC cells, 1316 and 2737 dysregulated genes (≥ 2/-2 fold change, P 
    Matched MeSH terms: Antigens, Viral/metabolism
  16. Takahashi S, Metcalf CJE, Arima Y, Fujimoto T, Shimizu H, Rogier van Doorn H, et al.
    J R Soc Interface, 2018 09 12;15(146).
    PMID: 30209044 DOI: 10.1098/rsif.2018.0507
    Outbreaks of hand, foot and mouth disease have been documented in Japan since 1963. This disease is primarily caused by the two closely related serotypes of Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16). Here, we analyse Japanese virologic and syndromic surveillance time-series data from 1982 to 2015. As in some other countries in the Asia Pacific region, EV-A71 in Japan has a 3 year cyclical component, whereas CV-A16 is predominantly annual. We observe empirical signatures of an inhibitory interaction between the serotypes; virologic lines of evidence suggest they may indeed interact immunologically. We fit the time series to mechanistic epidemiological models: as a first-order effect, we find the data consistent with single-serotype susceptible-infected-recovered dynamics. We then extend the modelling to incorporate an inhibitory interaction between serotypes. Our results suggest the existence of a transient cross-protection and possible asymmetry in its strength such that CV-A16 serves as a stronger forcing on EV-A71. Allowing for asymmetry yields accurate out-of-sample predictions and the directionality of this effect is consistent with the virologic literature. Confirmation of these hypothesized interactions would have important implications for understanding enterovirus epidemiology and informing vaccine development. Our results highlight the general implication that even subtle interactions could have qualitative impacts on epidemic dynamics and predictability.
    Matched MeSH terms: Antigens, Viral
  17. Nyon MP, Du L, Tseng CK, Seid CA, Pollet J, Naceanceno KS, et al.
    Vaccine, 2018 03 27;36(14):1853-1862.
    PMID: 29496347 DOI: 10.1016/j.vaccine.2018.02.065
    Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 2040 patients and caused 712 deaths since its first appearance in 2012, yet neither pathogen-specific therapeutics nor approved vaccines are available. To address this need, we are developing a subunit recombinant protein vaccine comprising residues 377-588 of the MERS-CoV spike protein receptor-binding domain (RBD), which, when formulated with the AddaVax adjuvant, it induces a significant neutralizing antibody response and protection against MERS-CoV challenge in vaccinated animals. To prepare for the manufacture and first-in-human testing of the vaccine, we have developed a process to stably produce the recombinant MERS S377-588 protein in Chinese hamster ovary (CHO) cells. To accomplish this, we transfected an adherent dihydrofolate reductase-deficient CHO cell line (adCHO) with a plasmid encoding S377-588 fused with the human IgG Fc fragment (S377-588-Fc). We then demonstrated the interleukin-2 signal peptide-directed secretion of the recombinant protein into extracellular milieu. Using a gradually increasing methotrexate (MTX) concentration to 5 μM, we increased protein yield by a factor of 40. The adCHO-expressed S377-588-Fc recombinant protein demonstrated functionality and binding specificity identical to those of the protein from transiently transfected HEK293T cells. In addition, hCD26/dipeptidyl peptidase-4 (DPP4) transgenic mice vaccinated with AddaVax-adjuvanted S377-588-Fc could produce neutralizing antibodies against MERS-CoV and survived for at least 21 days after challenge with live MERS-CoV with no evidence of immunological toxicity or eosinophilic immune enhancement. To prepare for large scale-manufacture of the vaccine antigen, we have further developed a high-yield monoclonal suspension CHO cell line.
    Matched MeSH terms: Antigens, Viral/genetics*; Antigens, Viral/immunology*
  18. Poddar, S., Hati, A.K., Pal, D., Bhattacharya, N., Mukim, Y.
    JUMMEC, 2018;21(2):10-14.
    MyJurnal
    Purpose: The object of this study was to identify patients with diagnosed dengue infection, who were positive
    for both dengue-specific NS1 antigen and IgM antibody.
    Method: From January 2013 to December 2016, in Central Kolkata in West Bengal in India, patients with
    symptoms of dengue infection, were sent to the laboratory by the physicians for confirmatory diagnosis of
    dengue infection. A total of 4762 patients were seen, and serum samples tested and distributed into seven
    panels, according to the investigations requested. 1436 patients were tested positive.
    Results: 1053 cases were tested for both NS1 and Ig M antibody, 835 for dengue-specific NS1 antigen, IgM and
    IgG antibodies and 218 for NS1 dengue-specific antigen and IgM antibody. Of these, dengue was confirmed in
    34.3 %, with 16.6% positive for both NS1 antigen and IgM antibody. Eleven were diagnosed, with late dengue
    infection, thirty-nine with late primary infections and ten with late secondary dengue infection.
    Conclusions: Many of the patients were reactive for both NS1 antigen and IgM antibody, and they required
    proper attention and strict vigilance with effective monitoring and treatment, not of early dengue infection,
    but of late dengue infection. Unless the serological tests for Ig M and IgG antibodies, and the dengue specific
    viral antigen NS1 are performed simultaneously, these types of cases would not all be detected.
    Matched MeSH terms: Antigens, Viral
  19. Barathan M, Mohamed R, Vadivelu J, Chang LY, Vignesh R, Krishnan J, et al.
    Cell Immunol, 2017 03;313:1-9.
    PMID: 28104239 DOI: 10.1016/j.cellimm.2016.12.002
    Hepatitis C virus (HCV)-specific CD4+ and CD8+ T cells are key to successful viral clearance in HCV disease. Accumulation of exhausted HCV-specific T cells during chronic infection results in considerable loss of protective functional immune responses. The role of T-cell exhaustion in chronic HCV disease remains poorly understood. Here, we studied the frequency of HCV peptide-stimulated T cells expressing negative immune checkpoints (PD-1, CTLA-4, TRAIL, TIM-3 and BTLA) by flow cytometry, and measured the levels of Th1/Th2/Th17 cytokines secreted by T cells by a commercial Multi-Analyte ELISArray™ following in vitro stimulation of T cells using HCV peptides and phytohemagglutinin (PHA). HCV peptide-stimulated CD4+ and CD8+ T cells of chronic HCV (CHC) patients showed significant increase of CTLA-4. Furthermore, HCV peptide-stimulated CD4+ T cells of CHC patients also displayed relatively higher levels of PD-1 and TRAIL, whereas TIM-3 was up-regulated on HCV peptide-stimulated CD8+ T cells. Whereas the levels of IL-10 and TGF-β1 were significantly increased, the levels of pro-inflammatory cytokines IL-2, TNF-α, IL-17A and IL-6 were markedly decreased in the T cell cultures of CHC patients. Chronic HCV infection results in functional exhaustion of CD4+ and CD8+ T cells likely contributing to viral persistence.
    Matched MeSH terms: Antigens, Viral/immunology
  20. Yee SF, Chu CH, Poili E, Sum MSH
    J Virol Methods, 2017 02;240:69-72.
    PMID: 27923590 DOI: 10.1016/j.jviromet.2016.12.001
    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes.
    Matched MeSH terms: Antigens, Viral/genetics*; Antigens, Viral/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links