Displaying publications 1 - 20 of 156 in total

Abstract:
Sort:
  1. Tan JC, Chuah CH, Cheng SF
    J Sci Food Agric, 2017 Apr;97(6):1784-1789.
    PMID: 27470073 DOI: 10.1002/jsfa.7975
    BACKGROUND: Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater.

    RESULTS: A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg(-1) ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres.

    CONCLUSION: Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Arecaceae/chemistry*
  2. Lasekan O
    Molecules, 2013 Sep 25;18(10):11809-23.
    PMID: 24071987 DOI: 10.3390/molecules181011809
    The influence of human salivary enzymes on palm wines' odorant concentrations were investigated by the application of aroma extracts dilution analysis (AEDA) and by the calculation of odour activity values (OAVs), respectively. The odorants were quantified by means of stable isotope dilution assays (SIDA), and the degradation profiles of odorants by human saliva were also studied. Results revealed 46 odour-active compounds in the flavour dilution (FD) factor range of 4-256, and all were subsequently identified. Of the 46 odorants, 41 were identified in the Elaeis guineensis wine, 36 in Raphia hookeri wine and 29 in Borassus flabellifer wine. Among the odorants, the highest FD-factors were obtained from acetoin, 2-acetyl-1-pyrroline and 3-isobutyl-2-methoxypyrazine. Among the 13 potent odorants identified, five aroma compounds are reported here as important contributors to palm wine aroma, namely 3-isobutyl-2-methoxy-pyrazine, acetoin, 2-acetyl-1-pyrroline, 3-methylbutylacetate and ethyl hexanoate. Meanwhile, salivary enzymic degradation of odorants was more pronounced among the aldehydes, esters and thiols.
    Matched MeSH terms: Arecaceae/chemistry*
  3. Idris J, Eyu GD, Mansor AM, Ahmad Z, Chukwuekezie CS
    ScientificWorldJournal, 2014;2014:638687.
    PMID: 24693241 DOI: 10.1155/2014/638687
    Oil spill constitutes a major source of fresh and seawater pollution as a result of accidental discharge from tankers, marine engines, and underwater pipes. Therefore, the need for cost-effective and environmental friendly sorbent materials for oil spill cleanup cannot be overemphasized. The present work focuses on the preliminary study of empty palm fruit bunch fibre as a promising sorbent material. The morphology of the unmodified empty palm fruit bunch, EPFB fibre, was examined using an optical microcopy, scanning electron microcopy coupled with EDX and X-ray diffraction. The effects of oil volume, fibre weight, and time on oil absorption of EPFB fibre were evaluated with new engine oil from the model oil. The results show that EPFB fibre consists of numerous micro pores, hydrophobic, and partially crystalline and amorphous with approximately 13.5% carbon. The oil absorbency of the fibre increased with the increase in oil volume, immersion time, and fibre weight. However, sorption capacity decreased beyond 3 g in 100 mL. Additionally unmodified EPFB fibre showed optimum oil sorption efficiency of approximately 2.8 g/g within three days of immersion time.
    Matched MeSH terms: Arecaceae/chemistry*
  4. Asadpour R, Sapari NB, Isa MH, Kakooei S
    Environ Sci Pollut Res Int, 2016 Jun;23(12):11740-50.
    PMID: 26944428 DOI: 10.1007/s11356-016-6349-2
    Removal of oil spillage from the environment is a global concern. Various methods, including the use of fibers as sorbents, have been developed for oil spill control. Oil palm empty fruit bunch (OPEFB) fiber is a plant biomass that may be acetylated by acetic anhydride using N-bromosuccinimide (NBS) as a catalyst; here, the extent of acetylation may be calculated in terms of weight percent gain (WPG). The modified fiber was used to remove Tapis and Arabian crude oils. The optimum time, temperature, and catalyst concentration were 4 h, 120 °C, and 3 %, respectively, and these parameters could achieve an 11.49 % increase in WPG. The optimized parameters improved the adsorption capacity of OPEFB fibers for crude oil removal. The acetylated OPEFB fibers were characterized by using Fourier transform infrared spectroscopy and field emission scanning electron microscopy to observe the functional groups available and morphology. Kinetic and isotherm studies were conducted using different contact times and oil/water ratios. The rate of oil sorption onto the OPEFB fibers can be adequately described by the pseudo-second-order equation. Adsorption studies revealed that adsorption of crude oil on treated OPEFB fiber could be best described by the Langmuir isotherm model.
    Matched MeSH terms: Arecaceae/chemistry*
  5. Syahmi AR, Vijayarathna S, Sasidharan S, Latha LY, Kwan YP, Lau YL, et al.
    Molecules, 2010 Nov 10;15(11):8111-21.
    PMID: 21072022 DOI: 10.3390/molecules15118111
    Elaeis guineensis (Arecaceae) is widely used in West African traditional medicine for treating various ailments. An evaluation on the toxicity of extracts of this plant is crucial to support the therapeutic claims. The acute oral toxicity and brine shrimp lethality of a methanolic extract of this plant was tested. Oral administration of crude extract at the highest dose of 5,000 mg/kg resulted in no mortalities or evidence of adverse effects, implying that E. guineensis is nontoxic. Normal behavioral pattern, clinical signs and histology of vital organs confirm this evidence. The E. guineensis extracts screened for toxicity against brine shrimp had 50% lethal concentration (LC₅₀) values of more than 1.0 mg/mL (9.00 and 3.87 mg/mL, at 6 and 24 h, respectively), confirming that the extract was not toxic. Maximum mortalities occurred at 100 mg/mL concentration while the least mortalities happened to be at 0.195 mg/mL concentration. The results of both tests confirm that E. guineensis is nontoxic and hence safe for commercial utilization.
    Matched MeSH terms: Arecaceae/chemistry*
  6. Ahmad AA, Hameed BH, Aziz N
    J Hazard Mater, 2007 Mar 6;141(1):70-6.
    PMID: 16887263
    Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.
    Matched MeSH terms: Arecaceae/chemistry*
  7. Thenapakiam S, Kumar DG, Pushpamalar J, Saravanan M
    Carbohydr Polym, 2013 Apr 15;94(1):356-63.
    PMID: 23544549 DOI: 10.1016/j.carbpol.2013.01.004
    The carboxymethyl sago pulp (CMSP) with a degree of substitution of 0.4% was synthesized from sago waste. The CMSP beads with an average diameter of 3.1-4.8 mm were formed by aluminium chloride gelation as well as further cross-linked by irradiation. To evaluate colon targeted release, a model drug, 5-aminosalicylic acid (5-ASA) was encapsulated in CMSP beads. Fourier-transform infrared spectroscopy and X-ray diffraction studies indicated intact and amorphous nature of entrapped drug. A pH dependent drug release was observed, and about 90% of the drug was released only at pH 7.4 over 9 h. Irradiated beads were resisted the drug release in an acidic environment at a higher extent than non-irradiated beads. The drug release from 6% (w/w) of 5-ASA loaded bead followed zero order, whereas, 15 and 22% loaded beads followed first order. The release exponent n value suggests non-fickian transport of 5-ASA from the beads.
    Matched MeSH terms: Arecaceae/chemistry*
  8. Mohtar SS, Tengku Malim Busu TN, Md Noor AM, Shaari N, Mat H
    Carbohydr Polym, 2017 Jun 15;166:291-299.
    PMID: 28385235 DOI: 10.1016/j.carbpol.2017.02.102
    This work reports on a complete isolation and characterization of lignocellulosic compounds from oil palm empty fruit bunch (OPEFB) by ionic liquid (IL) treatment and alkaline treatment processes. The fractionated lignocellulosic compounds were confirmed by FTIR and CP/MAS 13CNMR analyses. The yield of the cellulose, hemicellulose and lignin fractions was 52.72±1.50% wt., 27.17±1.68% wt. and 16.82±1.15% wt. with molecular weight of 1869g/mol, 1736g/mol and 2695g/mol, and degradation temperature of 325.65°C, 236.25°C, and 201.40°C, respectively. The SEM image illustrates the bundle-like fiber of cellulose fraction and smaller particle size of hemicellulose and lignin fractions with inconsistent shape. The XRD patterns depict the crystalline cellulose, amorphous lignin and partially amorphous hemicellulose fractions property. The IL could be recovered and reused with an overall recovery of 48% wt. after the fourth cycle.
    Matched MeSH terms: Arecaceae/chemistry*
  9. Jaffri JM, Mohamed S, Rohimi N, Ahmad IN, Noordin MM, Manap YA
    J Med Food, 2011 Jul-Aug;14(7-8):775-83.
    PMID: 21631357 DOI: 10.1089/jmf.2010.1170
    Oil palm (Elaeis guineensis) leaf extract (OPLE) possesses good ex vivo vasodilation and antioxidant properties. This study evaluated the catechin-rich OPLE antioxidant, antihypertensive, and cardiovascular effects in normal and nitric oxide (NO)-deficient hypertensive rats. OPLE was administered orally (500 mg/kg of body weight/day) to normotensive Wistar rats and N(ω)-nitro-L-arginine methyl ester (L-NAME)-induced NO-deficient hypertensive rats. OPLE significantly (P
    Matched MeSH terms: Arecaceae/chemistry*
  10. Varatharajan R, Sattar MZ, Chung I, Abdulla MA, Kassim NM, Abdullah NA
    PMID: 24074026 DOI: 10.1186/1472-6882-13-242
    Catechins-rich oil palm (Elaeis guineensis) leaves extract (OPLE) is known to have antioxidant activity. Several polyphenolic compounds reported as antioxidants such as quercetin, catechins and gallic acid have been highlighted to have pro-oxidant activity at high doses. Therefore, the present study was conducted to investigate the antioxidant and pro-oxidant effects of chronically administering high dose of OPLE (1000 mg kg⁻¹) in an animal model of diabetic nephropathy (DN).
    Matched MeSH terms: Arecaceae/chemistry*
  11. Lau BY, Clerens S, Morton JD, Dyer JM, Deb-Choudhury S, Ramli US
    Protein J, 2016 Apr;35(2):163-70.
    PMID: 26993480 DOI: 10.1007/s10930-016-9655-0
    The details of plant lipid metabolism are relatively well known but the regulation of fatty acid production at the protein level is still not understood. Hence this study explores the importance of phosphorylation as a mechanism to control the activity of fatty acid biosynthetic enzymes using low and high oleic acid mesocarps of oil palm fruit (Elaeis guineensis variety of Tenera). Adaptation of neutral loss-triggered tandem mass spectrometry and selected reaction monitoring to detect the neutral loss of phosphoric acid successfully found several phosphoamino acid-containing peptides. These peptides corresponded to the peptides from acetyl-CoA carboxylase and 3-enoyl-acyl carrier protein reductase as identified by their precursor ion masses. These findings suggest that these enzymes were phosphorylated at 20th week after anthesis. Phosphorylation could have reduce their activities towards the end of fatty acid biosynthesis at ripening stage. Implication of phosphorylation in the regulation of fatty acid biosynthesis at protein level has never been reported.
    Matched MeSH terms: Arecaceae/chemistry
  12. Yusoff NA, Ahmad M, Al-Hindi B, Widyawati T, Yam MF, Mahmud R, et al.
    Nutrients, 2015 Aug;7(8):7012-26.
    PMID: 26308046 DOI: 10.3390/nu7085320
    Nypa fruticans Wurmb. vinegar, commonly known as nipa palm vinegar (NPV) has been used as a folklore medicine among the Malay community to treat diabetes. Early work has shown that aqueous extract (AE) of NPV exerts a potent antihyperglycemic effect. Thus, this study is conducted to evaluate the effect of AE on postprandial hyperglycemia in an attempt to understand its mechanism of antidiabetic action. AE were tested via in vitro intestinal glucose absorption, in vivo carbohydrate tolerance tests and spectrophotometric enzyme inhibition assays. One mg/mL of AE showed a comparable outcome to the use of phloridzin (1 mM) in vitro as it delayed glucose absorption through isolated rat jejunum more effectively than acarbose (1 mg/mL). Further in vivo confirmatory tests showed AE (500 mg/kg) to cause a significant suppression in postprandial hyperglycemia 30 min following respective glucose (2 g/kg), sucrose (4 g/kg) and starch (3 g/kg) loadings in normal rats, compared to the control group. Conversely, in spectrophotometric enzymatic assays, AE showed rather a weak inhibitory activity against both α-glucosidase and α-amylase when compared with acarbose. The findings suggested that NPV exerts its anti-diabetic effect by delaying carbohydrate absorption from the small intestine through selective inhibition of intestinal glucose transporters, therefore suppressing postprandial hyperglycemia.
    Matched MeSH terms: Arecaceae/chemistry*
  13. Jung YH, Kim S, Yang TH, Lee HJ, Seung D, Park YC, et al.
    Bioprocess Biosyst Eng, 2012 Nov;35(9):1497-503.
    PMID: 22644062 DOI: 10.1007/s00449-012-0739-8
    Oil palm fronds are the most abundant lignocellulosic biomass in Malaysia. In this study, fronds were tested as the potential renewable biomass for ethanol production. The soaking in aqueous ammonia pretreatment was applied, and the fermentability of pretreated fronds was evaluated using simultaneous saccharification and fermentation. The optimal pretreatment conditions were 7 % (w/w) ammonia, 80 °C, 20 h of pretreatment, and 1:12 S/L ratio, where the enzymatic digestibility was 41.4 % with cellulase of 60 FPU/g-glucan. When increasing the cellulase loading in the hydrolysis of pretreated fronds, the enzymatic digestibility increased until the enzyme loading reached 60 FPU/g-glucan. With 3 % glucan loading in the SSF of pretreated fronds, the ethanol concentration and yield based on the theoretical maximum after 12 and 48 h of the SSF were 7.5 and 9.7 g/L and 43.8 and 56.8 %, respectively. The ethanol productivities found at 12 and 24 h from pretreated fronds were 0.62 and 0.36 g/L/h, respectively.
    Matched MeSH terms: Arecaceae/chemistry*
  14. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2013 Mar;132:351-5.
    PMID: 23195653 DOI: 10.1016/j.biortech.2012.10.092
    Palm empty fruit bunch ash (EFB-ash) was used as a natural catalyst, rich in potassium to enhance the CO2 gasification reactivity of palm shell char (PS-char). Various EFB-ash loadings (ranging from 0 to 12.5wt.%) were implemented to improve the reactivity of PS-char during CO2 gasification studies using thermogravimetric analysis. The achieved results explored that the highest gasification reactivity was devoted to 10% EFB-ash loaded char. The SEM-EDS and XRD analyses further confirmed the successful loading of EFB-ash on PS-char which contributed to promoting the gasification reactivity of char. Random pore model was applied to determine the kinetic parameters in catalytic gasification of char at various temperatures of 800-900°C. The dependence of char reaction rate on gasification temperature resulted in a straight line in Arrhenius-type plot, from which the activation energy of 158.75kJ/mol was obtained for the catalytic char gasification.
    Matched MeSH terms: Arecaceae/chemistry*
  15. Samsudin MD, Mat Don M
    Bioresour Technol, 2015 Jan;175:417-23.
    PMID: 25459850 DOI: 10.1016/j.biortech.2014.10.116
    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast.
    Matched MeSH terms: Arecaceae/chemistry
  16. Kok SY, Namasivayam P, Ee GC, Ong-Abdullah M
    J Plant Res, 2013 Jul;126(4):539-47.
    PMID: 23575803 DOI: 10.1007/s10265-013-0560-8
    Developmental biochemical information is a vital base for the elucidation of seed physiology and metabolism. However, no data regarding the biochemical profile of oil palm (Elaeis guineensis Jacq.) seed development has been reported thus far. In this study, the biochemical changes in the developing oil palm seed were investigated to study their developmental pattern. The biochemical composition found in the seed differed significantly among the developmental stages. During early seed development, the water, hexose (glucose and fructose), calcium and manganese contents were present in significantly high levels compared to the late developmental stage. Remarkable changes in the biochemical composition were observed at 10 weeks after anthesis (WAA): the dry weight and sucrose content increased significantly, whereas the water content and hexose content declined. The switch from a high to low hexose/sucrose ratio could be used to identify the onset of the maturation phase. At the late stage, dramatic water loss occurred, whereas the content of storage reserves increased progressively. Lauric acid was the most abundant fatty acid found in oil palm seed starting from 10 WAA.
    Matched MeSH terms: Arecaceae/chemistry
  17. Widyasti E, Shikata A, Hashim R, Sulaiman O, Sudesh K, Wahjono E, et al.
    Enzyme Microb Technol, 2018 Apr;111:21-28.
    PMID: 29421033 DOI: 10.1016/j.enzmictec.2017.12.009
    Oil palm trunk (OPT) is one of the most promising lignocellulosic bioresources. To develop effective biodegradation, thermophilic, anaerobic microorganisms were screened from bovine manure compost using fibrillated OPT (f-OPT) pretreated by wet disk milling as the substrate. One thermophilic, anaerobic bacterium, strain CL-2, whose 16S rDNA gene has 98.6% sequence identity with that of Caldicoprobacter faecale DSM 20678T, exhibited high degradation activity (32.7% reduction in total dry solids of f-OPT). Strain CL-2 did not use cellulose as a carbon source, but used hemicelluloses such as xylan, arabinoxylan, starch and pectin at 70 °C. Phylogenetic and morphologic analyses and the polysaccharide use suggest that CL-2 may be classified as a novel species of Caldicoprobacter, named Caldicoprobacter sp. CL-2. To characterize enzymatic activities of CL-2, extracellular enzymes were prepared from culture broth using beechwood xylan as the carbon source. The extracellular enzymes showed high xylanase activity, but low cellulase activity, suggesting that f-OPT degradation may depend on xylanase activity. To understand the xylanase system of CL-2, a major xylanase was cloned and characterized. The xylanase (CalXyn11A) had a modular structure consisting of a glycoside hydrolase (GH) family-11 domain and a family 36 carbohydrate-binding module. CalXyn11A did not show f-OPT degradation activity, but a strong synergistic effect was observed when CalXyn11A was added to the extracellular enzyme preparation. These results indicate that, rather than working alone, CalXyn11A has an important role in enhancing total lignocellulose degradation activity by cooperation with other GHs.
    Matched MeSH terms: Arecaceae/chemistry*
  18. Alshelmani MI, Loh TC, Foo HL, Lau WH, Sazili AQ
    ScientificWorldJournal, 2014;2014:729852.
    PMID: 25019097 DOI: 10.1155/2014/729852
    Four cellulolytic and hemicellulolytic bacterial cultures were purchased from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). Two experiments were conducted; the objective of the first experiment was to determine the optimum time period required for solid state fermentation (SSF) of palm kernel cake (PKC), whereas the objective of the second experiment was to investigate the effect of combinations of these cellulolytic and hemicellulolytic bacteria on the nutritive quality of the PKC. In the first experiment, the SSF was lasted for 12 days with inoculum size of 10% (v/w) on different PKC to moisture ratios. In the second experiment, fifteen combinations were created among the four microbes with one untreated PKC as a control. The SSF lasted for 9 days, and the samples were autoclaved, dried, and analyzed for proximate analysis. Results showed that bacterial cultures produced high enzymes activities at the 4th day of SSF, whereas their abilities to produce enzymes tended to be decreased to reach zero at the 8th day of SSF. Findings in the second experiment showed that hemicellulose and cellulose was significantly (P < 0.05) decreased, whereas the amount of reducing sugars were significantly (P < 0.05) increased in the fermented PKC (FPKC) compared with untreated PKC.
    Matched MeSH terms: Arecaceae/chemistry*
  19. Sethupathi S, Bashir MJ, Akbar ZA, Mohamed AR
    Waste Manag Res, 2015 Apr;33(4):303-12.
    PMID: 25804669 DOI: 10.1177/0734242X15576026
    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out.
    Matched MeSH terms: Arecaceae/chemistry*
  20. Salim YS, Abdullah AA, Nasri CS, Ibrahim MN
    Bioresour Technol, 2011 Feb;102(3):3626-8.
    PMID: 21115240 DOI: 10.1016/j.biortech.2010.11.020
    Poly(3-hydroxybutyrate-co-38 mol%-3-hydroxyvalerate) [P(3HB-co-38mol%-3HV)] was produced by Cupriavidus sp. USMAA2-4 in the presence of oleic acid and 1-pentanol. Due to enormous production of empty fruit bunch (EFB) in the oil palm plantation and high production cost of P(3HB-co-3HV), oil palm EFB fibers were used for biocomposites preparation. In this study, maleic anhydride (MA) and benzoyl peroxide (DBPO) were used to improve the miscibility between P(3HB-co-3HV) and EFB fibers. Introduction of MA into P(3HB-co-3HV) backbone reduced the molecular weight and improved the thermal stability of P(3HB-co-3HV). Thermal stability of P(3HB-co-3HV)/EFB composites was shown to be comparable to that of commercial packaging product. Composites with 35% EFB fibers content have the highest tensile strength compared to 30% and 40%. P(3HB-co-3HV)/EFB blends showed less chemicals leached compared to commercial packaging.
    Matched MeSH terms: Arecaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links