Displaying publications 1 - 20 of 70 in total

Abstract:
Sort:
  1. Harlita TD, Oedjijono, Asnani A
    Trop Life Sci Res, 2018 Jul;29(2):39-52.
    PMID: 30112140 DOI: 10.21315/tlsr2018.29.2.4
    Antibacterial activity of indigenous Dayak onion (Eleutherine palmifolia (L.) Merr) was investigated. The Dayak onion was solvent extracted with n-hexane, ethyl acetate, and ethanol 96% consecutively. Each extract was tested its antibacterial activity towards methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus, Shigella sp., and Pseudomonas aeruginosa using disc diffusion method. The test results showed that the n-hexane, ethyl acetate, and ethanol 96% extracts positively inhibited the growth of MRSA, B. cereus, Shigella sp., and P. aeruginosa. The highest inhibition activity of each extract was obtained with 10 mg/mL of extract concentration; whereas the minimum inhibitory concentration (MIC) of each extract was 2 mg/mL. Extract with the highest inhibition activity was ethyl acetate extract against B. cereus (139.58%). TLC evaluation of ethyl acetate extract showed four spots and bioautography indicated that ethyl acetate extract contained four types of compounds with inhibition activity against B. cereus, in which two compounds have higher antibacterial activity than the other two.
    Matched MeSH terms: Bacillus cereus
  2. Shami AM, Philip K, Muniandy S
    BMC Complement Altern Med, 2013 Dec 16;13:360.
    PMID: 24330547 DOI: 10.1186/1472-6882-13-360
    BACKGROUND: A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture.

    METHODS: Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes.

    RESULTS: Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities.

    CONCLUSIONS: It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications.

    Matched MeSH terms: Bacillus cereus/drug effects; Bacillus cereus/ultrastructure
  3. Noor Fazdilah Mustari, Zafira Ayushah Zainul Alamin, Noraziah Mohammad Zin, Dayang Fredalina Basri
    MyJurnal
    The objective of this study was to evaluate the antimicrobial potential of methanol, acetone and distilled water stem
    bark extracts from Canarium odontophyllum against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 6633,
    Escherichia coli ATCC 25932, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii strain sensitive, Candida
    albicans ATCC 64677, Candida glabrata ATCC 90028, Aspergillus niger and Fusarium solani M2781. The extracts from
    C. odontophyllum stem bark from 3.125 mg/ml to 25 mg/ml were screened against the tested microorganisms using disc
    diffusion method. The Minimum inhibitory concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the
    extracts against susceptible organisms were determined using microbroth dilution method and streak-plate technique,
    respectively. From the antibacterial screening assay, the growth of S. aureus, B. cereus and A. baumannii were inhibited
    by methanol extract whereas the acetone extract was capable of inhibiting all the tested microorganisms except E.coli,
    F. solani and A. niger. The lowest MIC value for methanol extract was against A. baumannii (0.195 mg/ml) whereas
    its MBC value was twice its MIC value (0.391 mg/ml), indicating that methanol extract was bacteriostatic against A.
    baumannii. While for acetone extract, S. aureus showed bactericidal effect with equal MIC and MBC values at 0.195 mg/
    ml. In conclusion, stem bark of C. odontophyllum has the potential to be the source of antibacterial agent and can be
    exploited as an alternative phytoantimicrobial.
    Matched MeSH terms: Bacillus cereus
  4. Lau, K.Y., Rukayadi, Y.
    MyJurnal
    Bacterial spores have special significance in foods because they are much more resistant to physical and chemical antimicrobial treatment. Nowadays, there is interest in using natural products such as plant extract for food preservation. In this study, 26 of tropical medicinal plants and spices were screened for their sporicidal activity against the spores of Bacillus cereus. The spores of B. cereus was harvested after incubation at 30°C for 1 week and treated with various plant extracts using the method of Standard Operating Procedure for the AOAC (Association of Official Analytical Chemists) Sporicidal Activity. Glutaraldehyde was used as a positive control. Among them, Indonesian bay leaf (Eugenia polyantha Wight) inactivated more than 3 log of spores/ml of B. cereus (99.99%) at the concentration of 1% and completely killed B. cereus spores at concentration of 2.5%. These results suggest that Indonesian bay leaf extract has strong sporicidal activity against spores of B. cereus.
    Matched MeSH terms: Bacillus cereus
  5. MyJurnal
    This study was conducted to evaluate antimicrobial properties of ethanolic extracts of the leaves of Nephelium lappaceum, Curcuma longa, Cinnamomun cassia, Durio zibethinus, Vitex trifolia, Amaranthus tricolor, Syzygium samarangense and Manihot esculenta. Antibacterial properties of the extracts were studied against fifteen strains of different gram positive and gram negative pathogenic bacteria, including Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Vibrio para, and Escherichia coli using the agar disk diffusion method. Among the tested extracts, only Amaranthus tricolor exhibited specific inhibition of one of the tested bacteria; Bacillus cereus. Using the microdilution method, its minimum inhibitory concentration (MIC) value was determined to be 20 mg/mL.
    Matched MeSH terms: Bacillus cereus
  6. Nor FHM, Abdullah S, Ibrahim Z, Nor MHM, Osman MI, Al Farraj DA, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):381-391.
    PMID: 35779113 DOI: 10.1007/s00449-022-02749-1
    An effective biosurfactant producer and extremophiles bacteria, Bacillus cereus KH1, was isolated from textile effluent and the biosurfactant was produced using molasses as the sole carbon source. Growth parameters such as pH, temperature, salinity and concentration of molasses were optimised for decolourising the textile effluent with 24-h incubation. The biosurfactant property of B. cereus KH1 was evaluated based on haemolytic activity, oil displacement technique, drop-collapsing test and emulsification index. The results of the produced biosurfactant showed a positive reaction in haemolytic activity, oil displacement technique, drop-collapsing test and exhibiting a 67% emulsification index. The cell-free broth was stable in 40 °C pH 7, 7% salinity and 7% molasses. Thin-Layer Chromatography and Fourier Transform Infrared Spectroscopy analysis revealed that the biosurfactant was a lipopeptide with a yield 2.98 g L-1. These findings proved the synergistic action of B. cereus KH1 with lipopeptide biosurfactant may accelerated the decolourisation efficiency to 87%.
    Matched MeSH terms: Bacillus cereus
  7. Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, A Elsayed E, et al.
    Molecules, 2021 Mar 12;26(6).
    PMID: 33809305 DOI: 10.3390/molecules26061569
    Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.
    Matched MeSH terms: Bacillus cereus/genetics; Bacillus cereus/physiology*
  8. Sarwar A, Katas H, Samsudin SN, Zin NM
    PLoS One, 2015;10(4):e0123084.
    PMID: 25928293 DOI: 10.1371/journal.pone.0123084
    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan.
    Matched MeSH terms: Bacillus cereus/drug effects
  9. Chan KG, Wong CS, Yin WF, Sam CK, Koh CL
    Antonie Van Leeuwenhoek, 2010 Oct;98(3):299-305.
    PMID: 20376561 DOI: 10.1007/s10482-010-9438-0
    A bacterial strain, KM1S, was isolated from a Malaysian rainforest soil sample by using a defined enrichment medium that specifically facilitates selection of quorum quenching bacteria. KM1S was clustered closely to Bacillus cereus by 16S ribosomal DNA sequence analysis. It degraded N-3-oxo-hexanoyl homoserine lactone and N-3-oxo-octanoyl homoserine lactone in vitro rapidly at 4.98 and 6.56 microg AHL h(-1) per 10(9) CFU/ml, respectively, as determined by the Rapid Resolution Liquid Chromatography. The aiiA homologue, encoding an autoinducer inactivation enzyme catalyzing the degradation of N-acylhomoserine lactones, of KM1S was amplified and cloned. Sequence analysis indicated the presence of the motif (106)HXDH-59 amino acids-H(169)-21 amino acids-D(191) for N-acylhomoserine lactone lactonases.
    Matched MeSH terms: Bacillus cereus/genetics; Bacillus cereus/isolation & purification; Bacillus cereus/metabolism*
  10. Lin YK, Show PL, Yap YJ, Ariff AB, Mohammad Annuar MS, Lai OM, et al.
    J Biosci Bioeng, 2016 Jun;121(6):692-696.
    PMID: 26702953 DOI: 10.1016/j.jbiosc.2015.11.001
    Aqueous two-phase system (ATPS) extractive bioconversion provides a technique which integrates bioconversion and purification into a single step process. Extractive bioconversion of gamma-cyclodextrin (γ-CD) from soluble starch with cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) enzyme derived from Bacillus cereus was evaluated using polyethylene glycol (PEG)/potassium phosphate based on ATPS. The optimum condition was attained in the ATPS constituted of 30.0% (w/w) PEG 3000 g/mol and 7.0% (w/w) potassium phosphate. A γ-CD concentration of 1.60 mg/mL with a 19% concentration ratio was recovered after 1 h bioconversion process. The γ-CD was mainly partitioned to the top phase (YT=81.88%), with CGTase partitioning in the salt-rich bottom phase (KCGTase=0.51). Repetitive batch processes of extractive bioconversion were successfully recycled three times, indicating that this is an environmental friendly and a cost saving technique for γ-CD production and purification.
    Matched MeSH terms: Bacillus cereus/enzymology*
  11. Jeyaletchumi, P., Ardi, A, Noraliza, M.A., Nurul Aini, I., Maizatul Akmar, H., Suraya, H., et al.
    MyJurnal
    Two hundred and sixty four samples of ready -to-eat foods (RTE) were obtained over a period of six months (April to September 2005) from 33 school hostel kitchens and canteens previously implicated in food poisoning outbreaks from 2000 to 2004. Sampling was done by food technologists and assistant environmental health ofhcers from various districts in Pahang while microbiological analysis was carried out at the Mentakab Food Quality Control Laboratory. The objective of the study was to obtain a comprehensive picture on the microbiological status of the foods that may have accounted for food poisoning outbreaks at school hostels and canteens in Pahang. Each food sample was analyzed for Total Plate Count (TPC), Salmonella, Coliform, Escheria coli, Staphylococcus aerus and Bacillus cereus. lt was found that none of the ready-to-eat foods sampled contained Salmonella although hve samples contained Bacillus cereus , four samples contained Staphylococcus aerus. High Coliform Counts were found in 15 food samples while Escheria coli was detected in two samples. Overall, it was found that 10.2 % of the samples had unsatisfactory counts.
    Matched MeSH terms: Bacillus cereus
  12. Rusul G, Yaacob NH
    Int J Food Microbiol, 1995 Apr;25(2):131-9.
    PMID: 7547144
    Enterotoxigenic Bacillus cereus was detected in cooked foods (17), rice noodles (3), wet wheat noodles (2), dry wheat noodles (10), spices (8), grains (4), legumes (11) and legume products (3). One hundred ninety-four (42.3%), 70 (15.3%) and 23 (5.2%) of the 459 presumptive B. cereus colonies isolated from PEMBA agar were identified as B. cereus, Bacillus thuringiensis and B. mycoides, respectively. B. cereus isolates were examined for growth temperature, pH profile and enterotoxin production using both TECRA-VIA and BCET-RPLA kits. One hundred seventy-eight (91.8%) and 164 (84%) of the strains were enterotoxigenic as determined using TECRA-VIA and BCET-RPLA, respectively. Eighty-two (50%) of the enterotoxigenic strains were capable of growing at 5 degrees C, and 142 (86.6%) grew at 7 degrees C within 7 days of incubation. The enterotoxigenic strains did not grow at pH 4.0 but 69 (42.0%) of the strains were able to grow at pH 4.5 within 7 days at 37 degrees C. The isolates were resistant to ampicillin (98.8%), cloxallin (100%) and tetracycline (61.0%), and susceptible to chloroamphenicol (87%), erythromycin (77.4%), gentamycin (100%) and streptomycin (98.7%).
    Matched MeSH terms: Bacillus cereus/drug effects; Bacillus cereus/growth & development; Bacillus cereus/isolation & purification*; Bacillus cereus/metabolism
  13. Lesley, M.B., Velnetti, L., Kasing, A., Samuel, L., Yousr, A.N.
    MyJurnal
    Bacillus cereus is a soil inhabitant gram positive bacterium, and is known to cause severe food poisoning. The objective of this study was to isolate and identify the presence of Bacillus cereus s.l. from selected ready to eat cereals purchased randomly from local supermarkets in Kuching and Kota Samarahan, Sarawak. The result showed that four of the 30 food samples were detected to be contaminated by B. cereus s.l. . Our findings suggested that it is important for the public to be aware of the safety of RTE cereals consumption, as it is possible that B. cereus s.l. may be present in high count number and pose hazardous health effects to the consumers.
    Matched MeSH terms: Bacillus cereus
  14. Malahubban M, Alimon AR, Sazili AQ, Fakurazi S, Zakry FA
    Trop Biomed, 2013 Sep;30(3):467-80.
    PMID: 24189677 MyJurnal
    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.
    Matched MeSH terms: Bacillus cereus/drug effects
  15. Wayah SB, Philip K
    Front Microbiol, 2018;9:564.
    PMID: 29636737 DOI: 10.3389/fmicb.2018.00564
    Micrococcus luteus, Listeria monocytogenes, and Bacillus cereus are major food-borne pathogenic and spoilage bacteria. Emergence of antibiotic resistance and consumer demand for foods containing less of chemical preservatives led to a search for natural antimicrobials. A study aimed at characterizing, investigating the mechanism of action and regulation of biosynthesis and evaluating the biopreservative potential of pentocin from Lactobacillus pentosus CS2 was conducted. Pentocin MQ1 is a novel bacteriocin isolated from L. pentosus CS2 of coconut shake origin. The purification strategy involved adsorption-desorption of bacteriocin followed by RP-HPLC. It has a molecular weight of 2110.672 Da as determined by MALDI-TOF mass spectrometry and a molar extinction value of 298.82 M-1 cm-1. Pentocin MQ1 is not plasmid-borne and its biosynthesis is regulated by a quorum sensing mechanism. It has a broad spectrum of antibacterial activity, exhibited high chemical, thermal and pH stability but proved sensitive to proteolytic enzymes. It is potent against M. luteus, B. cereus, and L. monocytogenes at micromolar concentrations. It is quick-acting and exhibited a bactericidal mode of action against its targets. Target killing was mediated by pore formation. We report for the first time membrane permeabilization as a mechanism of action of the pentocin from the study against Gram-positive bacteria. Pentocin MQ1 is a cell wall-associated bacteriocin. Application of pentocin MQ1 improved the microbiological quality and extended the shelf life of fresh banana. This is the first report on the biopreservation of banana using bacteriocin. These findings place pentocin MQ1 as a potential biopreservative for further evaluation in food and medical applications.
    Matched MeSH terms: Bacillus cereus
  16. SAWEI J, NORRAKIAH ABDULLAH SANI, AMINAH ABDULLAH, SAHILAH ABD. MUTALIB
    Sains Malaysiana, 2013;42:1715-1720.
    Kajian ini dijalankan untuk mengesahkan kemampuan teknologi DNA mikroaturan cip gen OliproTM FoodPATH bagi mengesan bakteria patogen makanan. Sebanyak 9 jenis DNA bakteria patogen makanan telah digunakan iaitu Bacillus cereus, Escherichia coli O157:H7, Staphylococcus aureus, Vibrio cholerae, Vibrio parahaemolyticus, Listeria monocytogenes, Salmonella spp., Shigella spp. dan Campylobacter spp. Sebanyak 36 kombinasi templat DNA bakteria patogen makanan telah digunakan. Pengesahan bagi mengesan bakteria patogen makanan dilakukan dengan menggunakan kaedah reaksi berantai polimerase (PCR) dan penghibridan Southern-blotting di atas cip gen untuk mengesahkan kemampuannya. Keputusan daripada analisis hibridasi di atas cip gen telah dibandingkan dengan hasil gel elektroforesis 2.0% (w/v). Lima saringan diperlukan untuk menghabiskan 36 kombinasi templat DNA bakteria patogen makanan. Setiap saringan, satu cip gen telah digunakan sebagai kawalan negatif tidak diinokulasikan dengan sebarang kombinasi DNA bakteria patogen makanan. Daripada hasil kajian, didapati bahawa semua kombinasi templat DNA bakteria patogen makanan telah dapat dikesan. Cip yang digunakan sebagai kawalan negatif tidak menunjukkan kehadiran DNA. Oleh itu, daripada kajian ini cip gen OliproTM FoodPATH didapati memberikan keputusan yang lebih baik berbanding dengan 2.0% (w/v) gel elektroforesis.
    Matched MeSH terms: Bacillus cereus
  17. Ahmad NH, Huang L, Juneja V
    Food Res Int, 2024 Jan;176:113786.
    PMID: 38163703 DOI: 10.1016/j.foodres.2023.113786
    Liquid egg yolk (LEY) is often treated with phospholipase A2 (PLA2) to improve its emulsifying capacity and thermal stability. However, this process may allow certain pathogens to grow. The objective of this study was to evaluate the growth kinetics of mesophilic Bacillus cereus in LEY during PLA2 treatment. Samples, inoculated with B. cereus vegetative cells, were incubated isothermally at different temperatures between 9 and 50 °C to observe the bacterial growth and survival. Under the observation conditions, bacterial growth occurred between 15 and 48 °C, but not at 9 and 50 °C. The growth curves were analyzed using the USDA IPMP-Global Fit, with the no-lag phase model as the primary model in combination with either the cardinal temperatures model (CTM) or the Huang square-root model (HSRM) as the secondary model. While similar maximum growth temperatures (Tmax) were determined (48.4 °C for HSRM and 48.1 °C for CTM), the minimum growth temperature (Tmin) of the HSRM more accurately described the lower limit (9.26 °C), in contrast to 6.51 °C for CTM, suggesting that the combination of the no-lag phase model and HSRM was more suitable to describe the growth of mesophilic B. cereus in LEY. The root mean square error (RMSE) of model validation and development was <0.5 log CFU/g, indicating the combination of the no-lag phase model and HSRM could predict the growth of mesophilic B. cereus in LEY during PLA2 treatment. The results of this study may allow the food industry to choose a suitable temperature for PLA2 treatment of LEY to prevent the growth of mesophilic B. cereus.
    Matched MeSH terms: Bacillus cereus*
  18. Bala JD, Lalung J, Al-Gheethi AAS, Hossain K, Ismail N
    Trop Life Sci Res, 2018 Jul;29(2):131-163.
    PMID: 30112146 MyJurnal DOI: 10.21315/tlsr2018.29.2.10
    This study was aimed at identifying indigenous microorganisms from palm oil mill effluent (POME) and to ascertain the microbial load. Isolation and identification of indigenous microorganisms was subjected to standard microbiological methods and sequencing of the 16S rRNA and 18S rRNA genes. Sequencing of the 16S rRNA and 18S rRNA genes for the microbial strains signifies that they were known as Micrococcus luteus 101PB, Stenotrophomonas maltophilia 102PB, Bacillus cereus 103PB, Providencia vermicola 104PB, Klebsiella pneumoniae 105PB, Bacillus subtilis 106PB, Aspergillus fumigatus 107PF, Aspergillus nomius 108PF, Aspergillus niger 109PF and Meyerozyma guilliermondii 110PF. Results revealed that the population of total heterotrophic bacteria (THB) ranged from 9.5 × 105 - 7.9 × 106 cfu/mL. The total heterotrophic fungi (THF) ranged from 2.1 × 104 - 6.4 × 104 cfu/mL. Total viable heterotrophic indigenous microbial population on CMC agar ranged from 8.2 × 105 - 9.1 × 106 cfu/mL and 1.4 × 103 - 3.4 × 103 cfu/mL for bacteria and fungi respectively. The microbial population of oil degrading bacteria (ODB) ranged from 6.4 × 105 - 4.8 × 106 cfu/mL and the oil degrading fungi (ODF) ranged from 2.8 × 103 - 4.7 × 104 cfu/mL. The findings revealed that microorganisms flourish well in POME. Therefore, this denotes that isolating native microorganisms from POME is imperative for effectual bioremediation, biotreatment and biodegradation of industrial wastewaters.
    Matched MeSH terms: Bacillus cereus
  19. Abu Bakar A, Abdul Rafa AA, Abdullah Sani A
    MyJurnal
    Food contamination is a crucial health problem as it could result in food-borne illness. This research aimed to evaluate the microbiological quality of ready-to-eat (RTE) fried rice dishes sold at different type of food premises in Kuantan city, Pahang. Total Plate Count (TPC), Staphylococcus aureus, Bacillus cereus and Aeromonas spp. bacteria were used as microbiological contamination indicators. About 52 samples were collected stratified randomly from four types of food premises (restaurant, cafeteria, food stall and night market) where about 13 samples were respectively collected from each type of the food premises. The results showed that TPC had medium mean count (6.30x105±1.47x105 cfu/g), S. aureus and B. cereus had high mean counts (7.70x104±2.22x105 cfu/g and 3.85x105±1.67x106 cfu/g respectively), while Aeromonas spp. had medium mean count (7.13x104±2.42x105 cfu/g). The mean counts of TPC in the samples collected from cafeteria were highest compare to other food premises.
    Matched MeSH terms: Bacillus cereus
  20. Azhar NS, Md Zin NH, Hamid THTA
    Trop Life Sci Res, 2017 Jul;28(2):107-118.
    PMID: 28890764 MyJurnal DOI: 10.21315/tlsr2017.28.2.8
    In this study, a Lactic acid bacteria (LAB) strain was isolated on MRS medium from gastro-intestinal tissues of Broadhead catfish (Clarias macrocephalus). Out of 50 isolates, 25 isolates were found to be positive on lactose utilisation test and were identified to be gram positive cocci. Using disc diffusion methods, one out of 22 isolates, i.e., a strain A5 demonstrated inhibitions against three indicator organisms; Bacillus cereus, Staphylococcus aureus and Salmonella thyphimurium. Partial 16S rDNA sequencing identified isolate A5 as a member of Lactococcus lactis, with 100% DNA homology. Cell free supernatant fluid from Lactococcus lactis A5 showed inhibitory activities against both gram positive pathogens (Bacillus cereus and Staphylococcus aureus) and gram negative pathogens (Salmonella thyphimurium). Chloroform precipitated bacteriocin retained antagonistic activities in the presence of catalase and lysozyme; and was completely inactivated by Proteinase K treatment. The bacteriocin has a molecular weight of 3.4 kDa, based on SDS-PAGE analysis and the extract was heat stable at 37°C and 65°C, for 15 minutes. The antibacterial activity was suppressed with the addition of EDTA but was significantly increased with the addition of SDS, Triton X-100, Tween 20 and Tween 80. This bacteriocin belongs to class 1 bacteriocin, which was shown to have a nisin-like properties. This strain can be used as potential probiotics in animal or aquaculture feeding; and the bacteriocin it produces will be useful in food preservative.
    Matched MeSH terms: Bacillus cereus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links