Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Rosenthal VD, Bat-Erdene I, Gupta D, Belkebir S, Rajhans P, Zand F, et al.
    Infect Control Hosp Epidemiol, 2020 05;41(5):553-563.
    PMID: 32183925 DOI: 10.1017/ice.2020.20
    BACKGROUND: Short-term peripheral venous catheter-related bloodstream infection (PVCR-BSI) rates have not been systematically studied in resource-limited countries, and data on their incidence by number of device days are not available.

    METHODS: Prospective, surveillance study on PVCR-BSI conducted from September 1, 2013, to May 31, 2019, in 727 intensive care units (ICUs), by members of the International Nosocomial Infection Control Consortium (INICC), from 268 hospitals in 141 cities of 42 countries of Africa, the Americas, Eastern Mediterranean, Europe, South East Asia, and Western Pacific regions. For this research, we applied definition and criteria of the CDC NHSN, methodology of the INICC, and software named INICC Surveillance Online System.

    RESULTS: We followed 149,609 ICU patients for 731,135 bed days and 743,508 short-term peripheral venous catheter (PVC) days. We identified 1,789 PVCR-BSIs for an overall rate of 2.41 per 1,000 PVC days. Mortality in patients with PVC but without PVCR-BSI was 6.67%, and mortality was 18% in patients with PVC and PVCR-BSI. The length of stay of patients with PVC but without PVCR-BSI was 4.83 days, and the length of stay was 9.85 days in patients with PVC and PVCR-BSI. Among these infections, the microorganism profile showed 58% gram-negative bacteria: Escherichia coli (16%), Klebsiella spp (11%), Pseudomonas aeruginosa (6%), Enterobacter spp (4%), and others (20%) including Serratia marcescens. Staphylococcus aureus were the predominant gram-positive bacteria (12%).

    CONCLUSIONS: PVCR-BSI rates in INICC ICUs were much higher than rates published from industrialized countries. Infection prevention programs must be implemented to reduce the incidence of PVCR-BSIs in resource-limited countries.

    Matched MeSH terms: Enterobacter
  2. Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NAI, et al.
    Microorganisms, 2021 Mar 26;9(4).
    PMID: 33810209 DOI: 10.3390/microorganisms9040682
    As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain losses were alarming and resulted in a heightened awareness on the importance of rice plants' health and increased interest against phytopathogens in rice. To serve this interest, this review will provide a summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including biocontrol of bacterial rice pathogens and enhancement of rice plant's growth. Currently, a plethora of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions. As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in improving rice plants' health and simultaneously controlling bacterial rice pathogens in vitro and in the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now very well-known. Applications of PGPB as bioformulations are found to be effective in improving rice productivity and provide an eco-friendly alternative to agroecosystems.
    Matched MeSH terms: Enterobacter
  3. Akinsanya MA, Goh JK, Lim SP, Ting AS
    FEMS Microbiol Lett, 2015 Dec;362(23):fnv184.
    PMID: 26454221 DOI: 10.1093/femsle/fnv184
    Twenty-nine culturable bacterial endophytes were isolated from surface-sterilized tissues (root, stem and leaf) of Aloe vera and molecularly characterized to 13 genera: Pseudomonas, Bacillus, Enterobacter, Pantoea, Chryseobacterium, Sphingobacterium, Aeromonas, Providencia, Cedecea, Klebsiella, Cronobacter, Macrococcus and Shigella. The dominant genera include Bacillus (20.7%), Pseudomonas (20.7%) and Enterobacter (13.8%). The crude and ethyl acetate fractions of the metabolites of six isolates, species of Pseudomonas, Bacillus, Chryseobacterium and Shigella, have broad spectral antimicrobial activities against pathogenic Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Streptococcus pyogenes and Candida albicans, with inhibition zones ranging from 6.0 ± 0.57 to 16.6 ± 0.57 mm. In addition, 80% of the bacterial endophytes produced 1,1-diphenyl-2-picrylhydrazyl (DPPH) with scavenging properties of over 75% when their crude metabolites were compared with ascorbic acid (92%). In conclusion, this study revealed for the first time the endophytic bacteria communities from A. vera (Pseudomonas hibiscicola, Macrococcus caseolyticus, Enterobacter ludwigii, Bacillus anthracis) that produce bioactive compounds with high DPPH scavenging properties (75-88%) and (Bacillus tequilensis, Pseudomonas entomophila, Chryseobacterium indologenes, Bacillus aerophilus) that produce bioactive compounds with antimicrobial activities against bacterial pathogens. Hence, we suggest further investigation and characterization of their bioactive compounds.
    Matched MeSH terms: Enterobacter
  4. Phoon HYP, Hussin H, Hussain BM, Lim SY, Woon JJ, Er YX, et al.
    J Glob Antimicrob Resist, 2018 09;14:132-140.
    PMID: 29540306 DOI: 10.1016/j.jgar.2018.02.022
    OBJECTIVES: Hospital environments are potential reservoirs of bacteria associated with nosocomial infections. In this study, the distribution of cultivable environmental bacteria of clinical importance from a Malaysian tertiary hospital was determined and their resistotypes and genotypes were investigated.

    METHODS: Swab and fluid samples (n=358) from healthcare workers' hands, frequently touched surfaces, medical equipment, patients' immediate surroundings, ward sinks and toilets, and solutions or fluids of 12 selected wards were collected. Biochemical tests, PCR and 16S rRNA sequencing were used for identification following isolation from CHROMagar™ Orientation medium. Clinically important bacteria such as Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter spp., Pseudomonas aeruginosa and Enterobacter spp. were further characterised by disc diffusion method and rep-PCR.

    RESULTS: The 24 Gram-negative and 19 Gram-positive bacteria species identified were widely distributed in the hospital environment. Staphylococci were predominant, followed by Bacillus spp. and P. aeruginosa. Frequently touched surfaces, medical equipment, and ward sinks and toilets were the top three sources of bacterial species. Nine S. aureus, four Acinetobacter spp., one K. pneumoniae and one Enterobacter spp. were multidrug-resistant (MDR). The ESKAPE organisms were genetically diverse and widely dispersed across the hospital wards. A MDR MRSA clone was detected in a surgical ward isolation room.

    CONCLUSION: The large variety of cultivable, clinically important bacteria, especially the genetically related MDR S. aureus, K. pneumoniae, Acinetobacter spp. and Enterobacter spp., from various sampling sites indicated that the surfaces and fomites in the hospital were potential exogenous sources of nosocomial infection in the hospital.

    Matched MeSH terms: Enterobacter
  5. Shukor MY, Rahman MF, Shamaan NA, Lee CH, Karim MI, Syed MA
    Appl Biochem Biotechnol, 2008 Mar;144(3):293-300.
    PMID: 18556818
    Molybdenum-reducing activity in the heterotrophic bacteria is a phenomenon that has been reported for more than 100 years. In the presence of molybdenum in the growth media, bacterial colonies turn to blue. The enzyme(s) responsible for the reduction of molybdenum to molybdenum blue in these bacteria has never been purified. In our quest to purify the molybdenum-reducing enzyme, we have devised a better substrate for the enzyme activity using laboratory-prepared phosphomolybdate instead of the commercial 12-phosphomolybdate we developed previously. Using laboratory-prepared phosphomolybdate, the highest activity is given by 10:4-phosphomolybdate. The apparent Michaelis constant, Km for the laboratory-prepared 10:4-phosphomolybdate is 2.56 +/- 0.25 mM (arbitrary concentration), whereas the apparent V(max) is 99.4 +/- 2.85 nmol Mo-blue min(-1) mg(-1) protein. The apparent Michaelis constant or Km for NADH as the electron donor is 1.38 +/- 0.09 mM, whereas the apparent V(max) is 102.6 +/- 1.73 nmol Mo-blue min(-1) mg(-l) protein. The apparent Km and V(max) for another electron donor, NADPH, is 1.43 +/- 0.10 mM and 57.16 +/- 1.01 nmol Mo-blue min(-1) mg(-1) protein, respectively, using the same batch of molybdenum-reducing enzyme. The apparent V(max) obtained for NADH and 10:4-phosphomolybdate is approximately 13 times better than 12-phoshomolybdate using the same batch of enzyme, and hence, the laboratory-prepared phosphomolybdate is a much better substrate than 12-phoshomolybdate. In addition, 10:4-phosphomolybdate can be routinely prepared from phosphate and molybdate, two common chemicals in the laboratory.
    Matched MeSH terms: Enterobacter cloacae/enzymology*; Enterobacter cloacae/metabolism*
  6. Shukor MY, Rahman MF, Shamaan NA, Syed MA
    J Basic Microbiol, 2009 Sep;49 Suppl 1:S43-54.
    PMID: 19455513 DOI: 10.1002/jobm.200800312
    Extensive use of metals in various industrial applications has caused substantial environmental pollution. Molybdenum-reducing bacteria isolated from soils can be used to remove molybdenum from contaminated environments. In this work we have isolated a local bacterium with the capability to reduce soluble molybdate to the insoluble molybdenum blue. We studied several factors that would optimize molybdate reduction. Electron donor sources such as glucose, sucrose, lactose, maltose and fructose (in decreasing efficiency) supported molybdate reduction after 24 h of incubation with optimum glucose concentration for molybdate reduction at 1.5% (w/v). The optimum pH, phosphate and molybdate concentrations, and temperature for molybdate reduction were pH 6.5, 5.0, 25 to 50 mM and 37 degrees C, respectively. The Mo-blue produced by cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Metal ions such as chromium, cadmium, copper, silver and mercury caused approximately 73, 71, 81, 77 and 78% inhibition of the molybdenum-reducing activity, respectively. All of the respiratory inhibitors tested namely rotenone, azide, cyanide and antimycin A did not show any inhibition to the molybdenum-reducing activity suggesting components of the electron transport system are not responsible for the reducing activity. The isolate was tentatively identified as Enterobacter sp. strain Dr.Y13 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny.
    Matched MeSH terms: Enterobacter/genetics; Enterobacter/isolation & purification; Enterobacter/metabolism*
  7. Ghani B, Takai M, Hisham NZ, Kishimoto N, Ismail AK, Tano T, et al.
    Appl Environ Microbiol, 1993 Apr;59(4):1176-80.
    PMID: 16348915
    A Mo -reducing bacterium (strain 48), which grew on medium supplemented with 200 mM Mo, was isolated from stream water obtained from Chengkau, Malaysia. The chemical properties of strain 48 conform to the characteristics of Enterobacter cloacae. Under anaerobic conditions in the glucose-yeast extract medium containing phosphate ion (2.9 mM) and Mo (10 mM), the bacterium reduced Mo to form molybdenum blue. Approximately 27% of Mo added to the medium was reduced after 28 h of cultivation. The reduction of Mo with glucose as an electron donor was strongly inhibited by iodoacetic acid, sodium fluoride, and sodium cyanide, suggesting an involvement of the glycolytic pathway and electron transport in Mo reduction. NADH and N,N,N',N' -tetramethyl-p-phenylenediamine served as electron donors for Mo reduction. When NADH was used as an electron donor, at first cytochrome b in the cell extract was reduced, and then molybdenum blue was formed. Sodium cyanide strongly inhibited Mo reduction by NADH (5 mM) but not the reduction of cytochrome b in the cell extract, suggesting that the reduced component of the electron transport system after cytochrome b serves as an electron donor for Mo reduction. Both ferric and stannous ions strongly enhanced the activity of Mo reduction by NADH.
    Matched MeSH terms: Enterobacter cloacae
  8. Haryani, Y., Tunung, R., Chai, L.C., Lee, H.Y., Tang, S.Y., Son, R.
    MyJurnal
    A total of 78 samples comprising different types of street foods, sold in different locations in Malaysia, were examined for the presence of Enterobacter cloacae. E. cloacae contamination was recorded in 9% of the samples examined. Tests for susceptibility to 12 different antibiotics showed that all were resistant to six or more antibiotics, but susceptible to chloramphenicol and gentamicin. Plasmids of four different sizes were detected from the three plasmid positive isolates. RAPD analysis using four primers yielded completely different banding patterns for all E. cloacae studied. In Malaysia, no published information on street foods in the epidemiological investigation of E.cloacae related disease is available. However, their occurrences have provided compelling evidence that the risk of disease transmission caused by E. cloacae through street foods is moderate.
    Matched MeSH terms: Enterobacter cloacae
  9. Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA
    BMC Vet Res, 2017 Aug 18;13(1):254.
    PMID: 28821244 DOI: 10.1186/s12917-017-1159-4
    BACKGROUND: Selenium (Se) is an essential trace mineral in broilers, which has several important roles in biological processes. Organic forms of Se are more efficient than inorganic forms and can be produced biologically via Se microbial reduction. Hence, the possibility of using Se-enriched bacteria as feed supplement may provide an interesting source of organic Se, and benefit broiler antioxidant system and other biological processes. The objective of this study was to examine the impacts of inorganic Se and different bacterial organic Se sources on the performance, serum and tissues Se status, antioxidant capacity, and liver mRNA expression of selenoproteins in broilers.

    RESULTS: Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite.

    CONCLUSIONS: The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of Se in broiler chickens.

    Matched MeSH terms: Enterobacter cloacae/metabolism
  10. Dasgupta C, Rafi MA, Salam MA
    Pak J Med Sci, 2020 9 25;36(6):1297-1302.
    PMID: 32968397 DOI: 10.12669/pjms.36.6.2943
    Objectives: Urinary tract infections due to multi drug resistant bacteria have been on the rise globally with serious implications for public health. The objective of this study was to explore the prevalence of multi drug resistant uropathogens and to correlate the urinary tract infections with some demographic and clinical characteristics of patients admitted in a tertiary care hospital in Bangladesh.

    Methods: A cross sectional prospective study was conducted at Shaheed Ziaur Rahman Medical College Hospital, Bogura, Bangladesh among clinically suspected urinary tract infection patients from January to December, 2018. Clean-catch midstream or catheter-catch urine samples were subjected to bacteriological culture using chromogenic agar media. Antimicrobial susceptibility testing of the isolates was done by Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Descriptive statistical methods were used for data analysis.

    Results: Culture yielded a total of 537 (42.8%) significant bacterial growths including 420 (78.2%) multi drug resistant uropathogens from 1255 urine samples. Escherichia coli was the most common isolate (61.6%) followed by Klebsiella spp. (22.5%), Pseudomonas spp. (7.8%), Staphylococcus aureus (5.4%) and Enterobacter spp. (2.6%) with multi drug resistance frequency of 77.6%, 71.9%, 90.5%, 86.2% and 92.9% respectively. There was female preponderance (M:F; 1:1.97; P=0.007) but insignificant differences between paediatric and adult population (43.65% vs. 42.57%) and also among different age groups. Diabetes, chronic renal failure, fever and supra-pubic pain had significant association as co-morbidities and presentations of urinary tract infections (P<0.05). Multi drug resistance ranged from 3.7 to 88.1% including moderate to high resistance found against commonly used antibiotics like ciprofloxacin, cephalosporin, azithromycin, aztreonam, cotrimoxazole and nalidixic acid (28.6 to 92.9%). Isolates showed 2.4 to 32.2% resistance to nitrofurantoin, amikacin, netilmicin and carbapenems except Pseudomonas spp. (66.7% resistance to nitrofurantoin) and Enterobacter spp. (28.6 to 42.9% resistance to carbapenems).

    Conclusion: There is very high prevalence of multi drug resistant uropathogens among hospitalized patients and emergence of carbapenem resistance is an alarming situation. Antibiotic stewardship program is highly recommended for hospitals to combat antimicrobial resistance.

    Matched MeSH terms: Enterobacter
  11. Nooratiny, I., Sahilah, A.M.
    MyJurnal
    Detection of enterotoxin by targeting entFM and hblA genes in Bacillus cereus BC1 strain inoculated into ready to eat food (RTF) and drink samples using polymerase chain reaction (PCR) was conducted. The B. cereus BC1 strain was confirmed as a Bacillus diarrhoeal enterotoxin (BDE) when tested by a commercially available Enzyme-linked immunosorbent assay-BDE immunoassay (ELISA-BDE immunoassay, TECRA). In the specificity study, both enterotoxin genes were detected on chromosomal DNA of B. cereus BC1 strain by showing a specific band of 1269 bp (entFM) and 874 bp (hblA), respectively. However, none of the target genes were detected for the other 15 genomic DNA bacteria (B. cereus (ATCC 11779), B. subtilis (ATCC 6633), Campylobacter jejuni (ATCC 29428), C. coli (Jabatan Kimia Malaysia, JKM), Clostridium perfringen (ATCC 13124), Enterobacter sakazaki (ATCC 51329), Escherichia coli (ATCC 43888), E. coli (ATCC 11735), Legionella pneumophila (ATCC 33152), Listeria monocytogenes (ATCC 35967), Salmonella typhi (IMR), S. enteritidis (ATCC 13076), S. typhimurium (ATCC 14028), Shigella flexeneri (ATCC 12022) and Vibrio cholerae bengal (Institute Medical Research (IMR), Malaysia) examined. The detection limit of both genes was 0.1 ng of genomic DNA. Thus, in the presence study it is evidence that the PCR analysis targeting enterotoxin of entFM and hblA genes are suitable and useful in detecting enterotoxic B. cereus in RTFs and drinks contaminated sample.
    Matched MeSH terms: Enterobacter
  12. Sheikh HM, Reshi NA
    Trop Biomed, 2020 Sep 01;37(3):812-821.
    PMID: 33612794 DOI: 10.47665/tb.37.3.812
    The bioactivity of R. nasutus leaf extracts was assessed on Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Streptococcus pyogenes, Vibrio parahaemolyticus, Enterobacter aerogenes, Proteus mirabilis, and Klebsiella pneumoniae. Crude chloroform, petroleum ether, ethyl acetate, ethanol and methanol extracts were screened by disc diffusion method. Promising crude extract was further subjected to the column fractionation followed by the screening of the antibacterial activity of individual fractions. Biologically active pure fraction was subjected to the advanced analytical studies like HPLC, LC-MS, IR and NMR for characterisation of the bioactive compound. Ethanolic extract exhibited the maximum antibacterial activity against Klebsiella pneumoniae with the maximum of 35±0.42 mm zone of inhibition. The biologically potent column fraction from ethanol extract with 40±0.42 mm zone of inhibition upon subject to the HPLC, LC-MS, IR and NMR revealed that the active compound is rhinacanthin-C, a naphthoquinone.
    Matched MeSH terms: Enterobacter aerogenes
  13. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M
    Braz J Microbiol, 2014;45(4):1309-15.
    PMID: 25763035
    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
    Matched MeSH terms: Enterobacter/classification; Enterobacter/drug effects*; Enterobacter/growth & development; Enterobacter/isolation & purification
  14. Wan Hanifah W, Lee J, Quah B
    Malays J Med Sci, 2000 Jan;7(1):33-40.
    PMID: 22844213
    Nosocomial infection is a common problem in the Neonatal Intensive Care Unit (NICU) and a knowledge of the pattern of nosocomial infection will contribute greatly to the intensification of infection control measures and the development of antibiotic policies in the NICU. This study aims to compare the incidence and clinical characteristics of neonates with nosocomial infection in NICU of both Kuala Terengganu Hospital (HKT) and Universiti Sains Malaysia Hospital (HUSM). Neonates who had both clinical signs of sepsis and positive blood cultures, 48 hours after admission to NICU, from 1(st) January to 31(st) December 1998, in both hospitals were retrospectively studied. Among neonates admitted to NICU, 30 (5.4%) in HKT and 65 (3.6%) in HUSM had nosocomial infection (p = 0.07). The mean duration of hospitalisation was shorter (HUSM 37 days, HKT 49 days; p = 0.02), and the number of neonates with predisposing factors for infection is higher (HUSM 100%, HKT 73.3%; p < 0.001) in HUSM compared with HKT. There were no differences in gestation, mean age of onset of infection and mortality between both hospitals. The most common organism isolated from the blood in HKT was Klebsiella pneumoniae (33.3%), and in HUSM Klebsiella aerogenes (24.6%). Half of Klebsiella pneumoniae isolates were resistant to cephalosporins and aminoglycosides in HKT and a similar number of Klebsiella aerogenes isolates were resistant to piperacillin and aminoglycosides in HUSM. In conclusion nosocomial infection is a common problem in both hospitals. Except for more frequent predisposing factors for infection in HUSM, and a longer duration of hospital stay among neonates in HKT, the clinical characteristics of neonates with nosocomial infection in both hospitals were similar.
    Matched MeSH terms: Enterobacter aerogenes
  15. Norrakiah Abdullah Sani, Masomeh Ghassem, Abdul Salam Babji, Uma Priya Kupusamy, Norizan Jaafar
    Sains Malaysiana, 2014;43:1855-1863.
    Enterobacter sakazakii previously known as 'yellow-pigmented E. cloacae' has been classified as a new genus 'Cronobacter' based on taxonomic analysis and geno-and phenotypic evaluation. This pathogenic organism has been associated with rare form of infant meningitis and necrotizing enterocolitis (NEC) with high mortality rate (40-80%). Some cases have been linked to the consumption of contaminated powdered infant formula milk (PIF). The objective of this study was to determine the presence of Cronobacter spp. in PIF sold in Malaysia. A selective chromogenic agar, Brilliance Enterobacter sakazakii (DFI, Oxoid), was used for detection of Cronobacter strains. Presumptive Cronobacter isolates were identified using biochemical tests (API 20E and MicrogenTM) and molecular assays (SYBR Green Real-time PCR and 16S ribosomal DNA sequencing). All presumptive Cronobacter strains produced typical blue-green colonies and non-Cronobacter strains produced yellow colonies on Brilliance Enterobacter sakazakii agar (DFI formulation). A total of 12 presumptive isolates were selected from DFI agar and identified with biochemical and molecular tests. The results indicated prevalence of 12.5% C. sakazakii contamination from 72 PIF samples. Molecular detection methods such as Real-time PCR and 16S rDNA proved to have higher identification percentage compared to the biochemical tests. In this study, it was observed that molecular assays were suitable means for sensitive identification of Cronobacter strains in PIF samples.
    Matched MeSH terms: Enterobacter
  16. Wong, C.M.V.L., Chung, H.H., Aisyah, S., Omar, S., Cheah, Y.K., Maria de, L.G., et al.
    ASM Science Journal, 2009;3(2):107-112.
    MyJurnal
    There are relatively little data on bacteria with antimicrobial activities from Antarctic, especially from the South Shetland Islands when compared to the other parts of the world. Hence, this project was set to isolate and characterize bacteria that produce anti-microbial compounds from Greenwich Island (one of the South Shetland Islands), Antarctica. A total of 356 strains of bacteria were isolated from Greenwich Island. They were screened for antimicrobial activities against 13 Gram-negative and one Gram-positive indicator food-borne pathogens. Two out of the 356 Antarctic bacterial strains exhibited an antagonistic effect on the indicator strains, Escherichia coli, Salmonella spp., Klebsiella pneumoniae, Enterobacter cloacae, Vibrio parahaemolyticus and Bacillus cereus. The two Antarctic bacterial strains were designated as SS157 and SR13. Biochemical and 16S rDNA analysis indicated that the strain SS157 was closely related to Pseudomonas congelans while the strain SR13 was closely related to Pseudomonas tremae. The anti-microbial compounds produced by the two Antarctic bacteria were not sensitive to temperature and were not degraded by trypsin or pronase indicating that they were likely to be chemical compounds or antibiotics. Antimicrobial compounds from strains SS157 and SR13 were broad spectrum, and targeted both Gram-positive and negative pathogens.
    Matched MeSH terms: Enterobacter cloacae
  17. Noradilah SA, Lee IL, Anuar TS, Salleh FM, Abdul Manap SN, Mohd Mohtar NS, et al.
    PeerJ, 2016;4:e2541.
    PMID: 27761331
    In the tropics, there are too few studies on isolation of Blastocystis sp. subtypes from water sources; in addition, there is also an absence of reported studies on the occurrence of Blastocystis sp. subtypes in water during different seasons. Therefore, this study was aimed to determine the occurrence of Blastocystis sp. subtypes in river water and other water sources that drained aboriginal vicinity of highly endemic intestinal parasitic infections during wet and dry seasons. Water samples were collected from six sampling points of Sungai Krau (K1-K6) and a point at Sungai Lompat (K7) and other water sources around the aboriginal villages. The water samples were collected during both seasons, wet and dry seasons. Filtration of the water samples were carried out using a flatbed membrane filtration system. The extracted DNA from concentrated water sediment was subjected to single round polymerase chain reaction and positive PCR products were subjected to sequencing. All samples were also subjected to filtration and cultured on membrane lactose glucuronide agar for the detection of faecal coliforms. During wet season, Blastocystis sp. ST1, ST2 and ST3 were detected in river water samples. Blastocystis sp. ST3 occurrence was sustained in the river water samples during dry season. However Blastocystis sp. ST1 and ST2 were absent during dry season. Water samples collected from various water sources showed contaminations of Blastocystis sp. ST1, ST2, ST3 and ST4, during wet season and Blastocystis sp. ST1, ST3, ST8 and ST10 during dry season. Water collected from all river sampling points during both seasons showed growth of Escherichia coli and Enterobacter aerogenes, indicating faecal contamination. In this study, Blastocystis sp. ST3 is suggested as the most robust and resistant subtype able to survive in any adverse environmental condition. Restriction and control of human and animal faecal contaminations to the river and other water sources shall prevent the transmission of Blastocystis sp. to humans and animals in this aboriginal community.
    Matched MeSH terms: Enterobacter aerogenes
  18. Lihan, S., Tian, P.K,, Chiew, T.S., Ching, C.L., Shahbudin, A., Hussain, H., et al.
    MyJurnal
    Enterobacteriaceae is a large family within the Gram-negative bacteria that primarily inhabits in the gastrointestinal tract of human and animals. The bacteria within this group are readily survived in the environment with some species found living free in the water where energy sources are scarce, making them ideal indicators for faecal contamination of the river water. Some species within the family have been used as indicator for the presence of pathogenic bacteria whilst on the other hand some species have been directly associated with various diseases in human and animals. The main aim of this research study was to determine the distribution and characteristics of the Enterobacteriaceae in water samples collected from river and waterfalls within a community resort. The health risk associated with the bacteria was analysed with regard to their susceptibility to antibiotics. Samples were collected from surface water and water falling down directly from waterfalls of river within the community resort. The samples collected were plated onto Eosine Methylene Blue agar (EMBA) for the isolation of the Enterobacteriaceae. Bacterial colonies growing on the agar were randomly picked, purified, stocked and then identified using API 20E identification kit. DNA fingerprinting using (GTG)5-PCR was utilised to determine their genetic profiles before the isolates were grouped into a dendrogram using RAPDistance software package. The level of antibiotic susceptibility of the bacteria isolates was analysed using disc diffusion technique. This study confirmed the presence of Enterobacter, Klebsiella, Citrobacter, Pantoea and Serratia in the water samples with their single and multiple antibiotic resistance and susceptible characteristics. The dendrogram presented in this study shows genetic similarities and differences among the strains, suggesting while there is a potential for single distribution of a clone, there is also possibility of the distribution of different strains within species in the water environment. Therefore, awareness on the potential risk associated with genetically diverse intermediate and resistant enteric bacteria in the recreational water should be communicated to the public especially communities within the study area.
    Matched MeSH terms: Enterobacter
  19. Abdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, et al.
    Bioresour Technol, 2016 Jul;211:200-8.
    PMID: 27017130 DOI: 10.1016/j.biortech.2016.02.135
    Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.
    Matched MeSH terms: Enterobacter
  20. Nur Hafizah Zakaria, Husnul Azan Tajarudin, Mohd Sharizal Mohd Sapingi, Mohamad Fared Murshed
    Scientific Research Journal, 2017;14(1):42-52.
    MyJurnal
    This study focused on the identification of pathogenic bacteria in raw water intake and after sand filtration for drinking water treatment plant during flood event in 2014. The samples was collected from the Lubok Buntar Water Treatment Plant (WTP) and processed through bacterial isolation using chocolate agar as a media. The isolation process conducted based on serial samples dilution and streaking method prior to DNA extraction. Deoxyribonucleic acid (DNA) extraction kit was used to get selected bacteria DNA and further analysis using Polymerase Chain Reaction (PCR) test and electrophoresis to get DNA sequences. The Basic Local Alignment Search Tool (BLAST) analysis was employed to identify the species of the isolated bacteria. As a result, Pantoeaagglomerans and Enterobacter sp. were found in raw and filtered water sample and indicating the same family types. It was concluded that bacteria of the same species were found before and after sand filtration and need to be removed by disinfectant process. The findings also indicated that all the physicochemical parameters measured were within the values prescribed by the Interim National Water Quality Standard (INWQS).
    Matched MeSH terms: Enterobacter
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links