Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Adeel M, Afzaal M, Saeed F, Ahmed A, Mahmood K, Abbas Shah Y, et al.
    J Food Sci, 2023 Sep;88(9):3839-3848.
    PMID: 37530623 DOI: 10.1111/1750-3841.16709
    Probiotics viability and stability is a core challenge for the food processing industry. To prolong the viability of probiotics (Lactobacillus acidophilus), gelatin (GE)-chitosan (CH) polyelectrolytes-coated nanoliposomes were developed and characterized. The average particle size of the nanoliposomes was in the range of 131.7-431.6 nm. The mean zeta potential value of the nanoliposomes differed significantly from -42.2 to -9.1 mV. Scanning electron micrographs indicated that the nanoliposomes were well distributed and had a spherical shape with a smooth surface. The Fourier transform infrared spectra revealed that the GE-CH polyelectrolyte coating has been effectively applied on the surface of nanoliposomes and L. acidophilus cells were successfully encapsulated in the lipid-based nanocarriers. X-ray diffraction results indicated that nanoliposomes are semicrystalline and GE-CH polyelectrolyte coating had an influence on the crystalline nature of nanoliposomes. Moreover, the coating of L. acidophilus-loaded nanoliposomes with GE-CH polyelectrolytes significantly improved its viability when exposed to simulated gastrointestinal environments. The findings of the current study indicated that polyelectrolyte-coated nanoliposomes could be used as an effective carrier for the delivery of probiotics and their application to food matrix for manufacturing functional foods.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  2. Loh JY, Kay GL, Ting ASY
    Mar Biotechnol (NY), 2018 Jun;20(3):353-362.
    PMID: 29654379 DOI: 10.1007/s10126-018-9813-9
    Predominance of beneficial bacteria helps to establish a healthy microbiota in fish gastrointestinal system and thus to reduce emerging pathogen. In this study, the colonization efficacy of Lactococcus lactis subsp. lactis CF4MRS in Artemia franciscana and its potential as a probiotic in suppressing Edwardsiella sp. infection were investigated in vivo. The colonization extent of the bioencapsulated L. lactis was established through visualization of gfp gene-transformed L. lactis in A. franciscana. Here, we demonstrate that when A. franciscana is administrated with L. lactis at 108 CFU mL-1 for 8 h, the highest relative percentage of survival (RPS = 50.0) is observed after inoculation with Edwardsiella sp. The total counts of L. lactis entrapped in Artemia were the highest (ranged from 3.2 to 5.1 × 108 CFU mL-1), when 108-109 CFU mL-1 of L. lactis was used as starting inoculum, with the bioencapsulation performed within 8-24 h. Fluorescent microscopy showed gfp-transformed L. lactis colonized the external trunk surfaces, mid-gut and locomotion antennules of the A. franciscana nauplii. These illustrations elucidate the efficiency of colonization of L. lactis in the gastrointestinal tract and on the body surfaces of Artemia. In conclusion, L. lactis subsp. lactis CF4MRS shows a good efficacy of colonization in Artemia and has the potential for biocontrol/probiotic activity against Edwardsiella sp. infection.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  3. Khan NA, Soopramanien M, Maciver SK, Anuar TS, Sagathevan K, Siddiqui R
    Molecules, 2021 Aug 18;26(16).
    PMID: 34443585 DOI: 10.3390/molecules26164999
    Crocodiles are remarkable animals that have the ability to endure extremely harsh conditions and can survive up to a 100 years while being exposed to noxious agents that are detrimental to Homo sapiens. Besides their immunity, we postulate that the microbial gut flora of crocodiles may produce substances with protective effects. In this study, we isolated and characterized selected bacteria colonizing the gastrointestinal tract of Crocodylusporosus and demonstrated their inhibitory effects against three different cancerous cell lineages. Using liquid chromatography-mass spectrometry, several molecules were identified. For the first time, we report partial analyses of crocodile's gut bacterial molecules.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  4. Haghshenas B, Abdullah N, Nami Y, Radiah D, Rosli R, Yari Khosroushahi A
    J Appl Microbiol, 2015 Apr;118(4):1048-57.
    PMID: 25619628 DOI: 10.1111/jam.12762
    Investigation on the use of herbal-based biopolymers for probiotic-Lactobacillus plantarum 15HN-encapsulation is presented. The objectives are to enhance its oral delivery, colonic release and survival rate of these probiotic cultures in gastrointestinal environment.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  5. Yap IK, Kho MT, Lim SH, Ismail NH, Yam WK, Chong CW
    Mol Biosyst, 2015 Jan;11(1):297-306.
    PMID: 25382376 DOI: 10.1039/c4mb00463a
    Understanding the basal gut bacterial community structure and the host metabolic composition is pivotal for the interpretation of laboratory treatments designed to answer questions pertinent to host-microbe interactions. In this study, we report for the first time the underlying gut microbiota and systemic metabolic composition in BALB/c mice during the acclimatisation period. Our results showed that stress levels were reduced in the first three days of the study when the animals were subjected to repetitive handling daily but the stress levels were increased when handling was carried out at lower frequencies (weekly). We also observed a strong influence of stress on the host metabolism and commensal compositional variability. In addition, temporal biological compartmental variations in the responses were observed. Based on these results, we suggest that consistency in the frequency and duration of laboratory handling is crucial in murine models to minimise the impact of stress levels on the commensal and host metabolism dynamics. Furthermore, caution is advised in consideration of the temporal delay effect when integrating metagenomics and metabonomics data across different biological matrices (i.e. faeces and urine).
    Matched MeSH terms: Gastrointestinal Tract/microbiology*
  6. Iqbal MZ, Qadir MI, Hussain T, Janbaz KH, Khan YH, Ahmad B
    Pak J Pharm Sci, 2014 Mar;27(2):405-15.
    PMID: 24577933
    Joint FAO/WHO expert's consultation report defines probiotics as: Live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most commonly used probiotics are Lactic acid bacteria (LAB) and bifidobacteria. There are other examples of species used as probiotics (certain yeasts and bacilli). Probiotic supplements are popular now a days. From the beginning of 2000, research on probiotics has increased remarkably. Probiotics are now day's widely studied for their beneficial effects in treatment of many prevailing diseases. Here we reviewed the beneficiary effects of probiotics in some diseases.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  7. Daniel DS, Ng YK, Chua EL, Arumugam Y, Wong WL, Kumaran JV
    Microbiol Res, 2013 Oct 1;168(8):485-96.
    PMID: 23706760 DOI: 10.1016/j.micres.2013.04.001
    Studies on the microbial ecology of gut microbiota in bats are limited and such information is necessary in determining the ecological significance of these hosts. Short-nosed fruit bats (Cynopterus brachyotis brachyotis) are good candidates for microbiota studies given their close association with humans in urban areas. Thus, this study explores the gut microbiota of this species from Peninsular Malaysia by means of biochemical tests and 16S rRNA gene sequences analysis. The estimation of viable bacteria present in the stomach and intestine of C. b. brachyotis ranged from 3.06×10(10) to 1.36×10(15)CFU/ml for stomach fluid and 1.92×10(10) to 6.10×10(15)CFU/ml for intestinal fluid. A total of 34 isolates from the stomach and intestine of seven C. b. brachyotis were retrieved. A total of 16 species of bacteria from eight genera (Bacillus, Enterobacter, Enterococcus, Escherichia, Klebsiella, Pantoea, Pseudomonas and Serratia) were identified, Enterobacteriaceae being the most prevalent, contributing 12 out of 16 species isolated. Most isolates from the Family Enterobacteriaceae have been reported as pathogens to humans and wildlife. With the possibility of human wildlife transmission, the findings of this study focus on the importance of bats as reservoirs of potential bacterial pathogens.
    Matched MeSH terms: Gastrointestinal Tract/microbiology*
  8. Lee SH, Ooi SK, Mahadi NM, Tan MW, Nathan S
    PLoS One, 2011;6(3):e16707.
    PMID: 21408228 DOI: 10.1371/journal.pone.0016707
    Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental factors that lead to the manifestation of the clinical symptoms of melioidosis.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  9. Ramasamy K, Abdullah N, Wong MC, Karuthan C, Ho YW
    J Sci Food Agric, 2010 Jan 15;90(1):65-9.
    PMID: 20355013 DOI: 10.1002/jsfa.3780
    Bile salt deconjugation by Lactobacillus strains is often closely linked to bile tolerance and survival of the strains in the gut and lowering of cholesterol in the host. The present study investigated the deconjugation of bile salts and removal of cholesterol by 12 Lactobacillus strains in vitro. The 12 strains were previously isolated from the gastrointestinal tract of chickens.
    Matched MeSH terms: Gastrointestinal Tract/microbiology*
  10. Lee CM, Sieo CC, Abdullah N, Ho YW
    FEMS Microbiol Lett, 2008 Oct;287(1):136-41.
    PMID: 18707622 DOI: 10.1111/j.1574-6968.2008.01305.x
    The copy numbers of 16S rRNA genes in 12 probiotic Lactobacillus strains of poultry origin were analyzed. Genomic DNA of the strains was digested with restriction endonucleases that do not cut within the 16S rRNA gene of the strains. This was followed by Southern hybridization with a biotinylated probe complementary to the 16S rRNA gene. The copy number of the 16S rRNA gene within a Lactobacillus species was found to be conserved. From the hybridization results, Lactobacillus salivarius I 24 was estimated to have seven copies of the 16S rRNA gene, Lactobacillus panis C 17 to have five copies and Lactobacillus gallinarum strains I 16 and I 26 four copies. The 16S rRNA gene copy numbers of L. gallinarum and L. panis reported in the present study are the first record. Lactobacillus brevis strains I 12, I 23, I 25, I 211, I 218 and Lactobacillus reuteri strains C 1, C 10, C 16 were estimated to have at least four copies of the 16S rRNA gene. In addition, distinct rRNA restriction patterns which could discriminate the strains of L. reuteri and L. gallinarum were also detected. Information on 16S rRNA gene copy number is important for physiological, evolutionary and population studies of the bacteria.
    Matched MeSH terms: Gastrointestinal Tract/microbiology*
  11. Firouzi S, Barakatun-Nisak MY, Ismail A, Majid HA, Nor Azmi K
    Int J Food Sci Nutr, 2013 Sep;64(6):780-6.
    PMID: 23484591 DOI: 10.3109/09637486.2013.775227
    Evidences from several studies suggest that probiotics affect glucose homeostasis. This paper reviews the results of animal and human studies on the role of probiotics in modulating glucose homeostasis.
    Matched MeSH terms: Gastrointestinal Tract/microbiology*
  12. Wong WZ, H'ng PS, Chin KL, Sajap AS, Tan GH, Paridah MT, et al.
    Environ Entomol, 2015 Oct;44(5):1367-74.
    PMID: 26314017 DOI: 10.1093/ee/nvv115
    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  13. Zarkasi KZ, Taylor RS, Abell GC, Tamplin ML, Glencross BD, Bowman JP
    Microb Ecol, 2016 Apr;71(3):589-603.
    PMID: 26780099 DOI: 10.1007/s00248-015-0728-y
    To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60-86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses.
    Matched MeSH terms: Gastrointestinal Tract/microbiology*
  14. Zepeda Mendoza ML, Roggenbuck M, Manzano Vargas K, Hansen LH, Brunak S, Gilbert MTP, et al.
    Acta Vet Scand, 2018 Oct 11;60(1):61.
    PMID: 30309375 DOI: 10.1186/s13028-018-0415-3
    BACKGROUND: Vultures have adapted the remarkable ability to feed on carcasses that may contain microorganisms that would be pathogenic to most other animals. The holobiont concept suggests that the genetic basis of such adaptation may not only lie within their genomes, but additionally in their associated microbes. To explore this, we generated shotgun DNA sequencing datasets of the facial skin and large intestine microbiomes of the black vulture (Coragyps atratus) and the turkey vulture (Cathartes aura). We characterized the functional potential and taxonomic diversity of their microbiomes, the potential pathogenic challenges confronted by vultures, and the microbial taxa and genes that could play a protective role on the facial skin and in the gut.

    RESULTS: We found microbial taxa and genes involved in diseases, such as dermatitis and pneumonia (more abundant on the facial skin), and gas gangrene and food poisoning (more abundant in the gut). Interestingly, we found taxa and functions with potential for playing beneficial roles, such as antilisterial bacteria in the gut, and genes for the production of antiparasitics and insecticides on the facial skin. Based on the identified phages, we suggest that phages aid in the control and possibly elimination, as in phage therapy, of microbes reported as pathogenic to a variety of species. Interestingly, we identified Adineta vaga in the gut, an invertebrate that feeds on dead bacteria and protozoans, suggesting a defensive predatory mechanism. Finally, we suggest a colonization resistance role through biofilm formation played by Fusobacteria and Clostridia in the gut.

    CONCLUSIONS: Our results highlight the importance of complementing genomic analyses with metagenomics in order to obtain a clearer understanding of the host-microbial alliance and show the importance of microbiome-mediated health protection for adaptation to extreme diets, such as scavenging.

    Matched MeSH terms: Gastrointestinal Tract/microbiology*
  15. Takeuchi Y, Chaffron S, Salcher MM, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, et al.
    Syst Appl Microbiol, 2015 Jul;38(5):330-9.
    PMID: 26138047 DOI: 10.1016/j.syapm.2015.05.006
    Pitchers are modified leaves used by carnivorous plants for trapping prey. Their fluids contain digestive enzymes from the plant and they harbor abundant microbes. In this study, the diversity of bacterial communities was assessed in Nepenthes pitcher fluids and the composition of the bacterial community was compared to that in other environments, including the phyllosphere of Arabidopsis, animal guts and another pitcher plant, Sarracenia. Diversity was measured by 454 pyrosequencing of 16S rRNA gene amplicons. A total of 232,823 sequences were obtained after chimera and singleton removal that clustered into 3260 distinct operational taxonomic units (OTUs) (3% dissimilarity), which were taxonomically distributed over 17 phyla, 25 classes, 45 orders, 100 families, and 195 genera. Pyrosequencing and fluorescence in situ hybridization yielded similar estimates of community composition. Most pitchers contained high proportions of unique OTUs, and only 22 OTUs (<0.6%) were shared by ≥14/16 samples, suggesting a unique bacterial assemblage in each pitcher at the OTU level. Diversity analysis at the class level revealed that the bacterial communities of both opened and unopened pitchers were most similar to that of Sarracenia and to that in the phyllosphere. Therefore, the bacterial community in pitchers may be formed by environmental filtering and/or by phyllosphere bacteria.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  16. Nami Y, Haghshenas B, Abdullah N, Barzegari A, Radiah D, Rosli R, et al.
    J Med Microbiol, 2015 Feb;64(Pt 2):137-46.
    PMID: 25525206 DOI: 10.1099/jmm.0.078923-0
    Genetic and environmental factors can affect the intestinal microbiome and microbial metabolome. Among these environmental factors, the consumption of antibiotics can significantly change the intestinal microbiome of individuals and consequently affect the corresponding metagenome. The term 'probiotics' is related to preventive medicine rather than therapeutic procedures and is, thus, considered the opposite of antibiotics. This review discusses the challenges between these opposing treatments in terms of the following points: (i) antibiotic resistance, the relationship between antibiotic consumption and microbiome diversity reduction, antibiotic effect on the metagenome, and disease associated with antibiotics; and (ii) probiotics as living drugs, probiotic effect on epigenetic alterations, and gut microbiome relevance to hygiene indulgence. The intestinal microbiome is more specific for individuals and may be affected by environmental alterations and the occurrence of diseases.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  17. Zarkasi KZ, Taylor RS, Glencross BD, Abell GCJ, Tamplin ML, Bowman JP
    Res. Microbiol., 2017 Oct;168(8):751-759.
    PMID: 28728852 DOI: 10.1016/j.resmic.2017.07.003
    In this study, microbial community dynamics were assessed within a simple in vitro model system in order to understand those changes influenced by diet. The abundance and diversity of bacteria were monitored within different treatment slurries inoculated with salmon faecal samples in order to mimic the effects of dietary variables. A total of five complete diets and two ingredients (plant meal) were tested. The total viable counts (TVCs) and sequencing data revealed that there was very clear separation between the complete diets and the plant meal treatments, suggesting a dynamic response by the allochthonous bacteria to the treatments. Automated ribosomal intergenic spacer analysis (ARISA) results showed that different diet formulations produced different patterns of fragments, with no separation between the complete diets. However, plant-based protein ingredients were clearly separated from the other treatments. 16S rRNA Illumina-based sequencing analysis showed that members of the genera Aliivibrio, Vibrio and Photobacterium became predominant for all complete diets treatments. The plant-based protein ingredient treatments only sustained weak growth of the genus Sphingomonas. In vitro based testing of diets could be a useful strategy to determine the potential impact of either complete feeds or ingredients on major fish gastrointestinal tract microbiome members.
    Matched MeSH terms: Gastrointestinal Tract/microbiology*
  18. Shokryazdan P, Faseleh Jahromi M, Liang JB, Ho YW
    J Am Coll Nutr, 2017 09 22;36(8):666-676.
    PMID: 28937854 DOI: 10.1080/07315724.2017.1337529
    Probiotics have become highly recognized as supplements for humans and animals because of their beneficial effects on health and well-being. The present review aims to provide an overview of different steps through which microbial strains become applicable probiotics in food and/or feed industries. Isolation of potential probiotic strains is the first step. Lactic acid bacteria are the most frequently used microorganisms as probiotics, which can be isolated from human, animal, plant, and environment. The next steps are identification of the isolates and characterization of them based on the main selection criteria for any potential probiotic microorganism, including resistance to gastric acidity and bile salt, adherence to mucus and/or intestinal epithelial cells and cell lines, and antimicrobial and antagonism activity against potentially pathogenic microbes. There are additional probiotic properties that may be considered for selection of probiotic strains with specific effects, such as cholesterol reduction ability, antioxidant activity, or cytotoxic effect against cancer cells. However, a potential probiotic does not need to fulfill all such selection criteria. As the last step, safety status of probiotics for humans is verified by taxonomy clarification, in vitro and in vivo tests, human trials, and genome sequencing.
    Matched MeSH terms: Gastrointestinal Tract/microbiology
  19. Kaur CP, Vadivelu J, Chandramathi S
    J Dig Dis, 2018 May;19(5):262-271.
    PMID: 29573336 DOI: 10.1111/1751-2980.12595
    The 2016 Global Burden of Disease report by WHO revealed that diseases of the gastrointestinal tract (GIT) had one of the highest incidence rates worldwide. The plethora of factors that contribute to the development of GIT-related illnesses can be divided into genetic, environmental and lifestyle factors. Apart from that, the role that infectious agents play in the development of GIT diseases has piqued the interest of researchers worldwide. The human gut harbors approximately 1014 bacteria in it with increasing concentration toward the lower GIT. Among the various microbiota that colonize the human gut, Gram-negative bacteria have been most notoriously linked to GIT-related diseases such as inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis and colorectal cancer (CRC). Some of the notable culprits that have been attributed to these diseases are Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli and Helicobacter pylori. However, studies in recent years are beginning to recognize a new player, Klebsiella pneumoniae (K. pneumoniae) in the causation and progression of GIT diseases. Once synonymous with infections and diseases of the upper respiratory tract, K. pneumoniae has now emerged as one of the pathogens commonly isolated from patients with GIT diseases. However, extensive studies attributing K. pneumoniae to GIT diseases, particularly that of CRC are scanty. Therefore, this review intends to shed light on the association of K. pneumoniae in gastrointestinal diseases such as Crohn's disease, ulcerative colitis as well as CRC.
    Matched MeSH terms: Lower Gastrointestinal Tract/microbiology*
  20. Shamekhi F, Shuhaimi M, Ariff A, Manap YA
    Folia Microbiol (Praha), 2013 Mar;58(2):91-101.
    PMID: 22843029 DOI: 10.1007/s12223-012-0183-9
    The purpose of this study was to improve the survival of Bifidobacterium animalis subsp. lactis 10140 during freeze-drying process by microencapsulation, using a special pediatric prebiotics mixture (galactooligosaccharides and fructooligosaccharides). Probiotic microorganisms were encapsulated with a coat combination of prebiotics-calcium-alginate prior to freeze-drying. Both encapsulated and free cells were then freeze-dried in their optimized combinations of skim milk and prebiotics. Response surface methodology (RSM) was used to produce a coating combination as well as drying medium with the highest cell viability during freeze-drying. The optimum encapsulation composition was found to be 2.1 % Na-alginate, 2.9 % prebiotic, and 21.7 % glycerol. Maximum survival predicted by the model was 81.2 %. No significant (p > 0.05) difference between the predicted and experimental values verified the adequacy of final reduced models. The protection ability of encapsulation was then examined over 120 days of storage at 4 and 25 °C and exposure to a sequential model of infantile GIT conditions including both gastric conditions (pH 3.0 and 4.0, 90 min, 37 °C) and intestinal conditions (pH 7.5, 5 h, 37 °C). Significantly improved cell viability showed that microencapsulation of B. lactis 10140 with the prebiotics was successful in producing a stable symbiotic powdery nutraceutical.
    Matched MeSH terms: Gastrointestinal Tract/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links