Displaying publications 1 - 20 of 114 in total

Abstract:
Sort:
  1. Umar Mustapha M, Halimoon N, Wan Johari WL, Abd Shukor MY
    Molecules, 2020 Jun 16;25(12).
    PMID: 32560037 DOI: 10.3390/molecules25122771
    Extensive use of carbofuran insecticide harms the environment and human health. Carbofuran is an endocrine disruptor and has the highest acute toxicity to humans than all groups of carbamate pesticides used. Carbofuran is highly mobile in soil and soluble in water with a lengthy half-life (50 days). Therefore, it has the potential to contaminate groundwater and nearby water bodies after rainfall events. A bacterial strain BRC05 was isolated from agricultural soil characterized and presumptively identified as Enterobacter sp. The strain was immobilized using gellan gum as an entrapment material. The effect of different heavy metals and the ability of the immobilized cells to degrade carbofuran were compared with their free cell counterparts. The results showed a significant increase in the degradation of carbofuran by immobilized cells compared with freely suspended cells. Carbofuran was completely degraded within 9 h by immobilized cells at 50 mg/L, while it took 12 h for free cells to degrade carbofuran at the same concentration. Besides, the immobilized cells completely degraded carbofuran within 38 h at 100 mg/L. On the other hand, free cells degraded the compound in 68 h. The viability of the freely suspended cell and degradation efficiency was inhibited at a concentration greater than 100 mg/L. Whereas, the immobilized cells almost completely degraded carbofuran at 100 mg/L. At 250 mg/L concentration, the rate of degradation decreased significantly in free cells. The immobilized cells could also be reused for about nine cycles without losing their degradation activity. Hence, the gellan gum-immobilized cells of Enterobacter sp. could be potentially used in the bioremediation of carbofuran in contaminated soil.
    Matched MeSH terms: Groundwater
  2. Mohammed, Thamer Ahmed, Abdul Halim Ghazali
    MyJurnal
    In Malaysia, the use of groundwater can help to meet the increasing water demand. The utilization of the aquifers is currently contributing in water supplies, particularly for the northern states. In this study, quantitative and qualitative assessments were carried out for the groundwater exploitation in the states of Kelantan, Melaka, Terengganu and Perak. The relevant data was acquired from the Department of Mineral and Geoscience, Malaysia. The quantitative assessment mainly included the determination of the use to yield ratio (UTY). The formula was proposed to determine the UTY ratio for aquifers in Malaysia. The proposed formula was applied to determine the maximum UTY ratios for the aquifers located in the states of Kelantan, Melaka, and Terengganu, and were found to be 4.2, 5.2 and 0.6, respectively. This indicated that exploitation of groundwater was beyond the safe limit in the states of Kelantan and Melaka. The qualitative assessment showed that the groundwater is slightly acidic. In addition, the concentrations of iron and manganese were found to be higher than the allowable limits, but the chloride concentration was found within the allowable limit.
    Matched MeSH terms: Groundwater
  3. Zaini Hamzah, Wan Noorhayani Wan Rosdi, Abdul Khalik Wood
    MyJurnal
    Well water is a renewable natural resources and one of the drinking water sources. The well water may constituted of dissolved essential chemicals such as K+, Ca''+ and Na+ ; and natural radionuclides such as radioisotopes from uranium-thorium decay series. The geology and mineral composition of the soil will determined the kinds and levels of chemical contents in the groundwater resources. The water flows through the geological formation and dissolved the chemicals before reaching the aquifers. To evaluate how much chemicals and natural radioactive in the water resources, a study has been carried out. Well water samples in this study were taken from 3 districts in Kelantan, which is Bachok, Machang and Kuala Krai. Similarly, in situ water quality parameters were measured using YSI portable water quality parameter include pH, salinity, dissolve oxygen(DO), conductivity, turbidity and total dissolved solids(TDS). The concentrations of K', Ca" and Na' were determined using Energy Dispersive X-ray Fluorescence (EDXRF). Five ml of filtered sample was pipette into the sample cup and, irradiated and measured for 100 seconds counting times. The type of filter used for measuring If+ and Cat{ was Al-thin and default for Nat The ranged of concentration of Kt Ce and Na+ is 23.04-251.89, 3.12-.45.41, and 3.71-125.75 ppm, respectively.
    Matched MeSH terms: Groundwater
  4. Alsaleh M, Chen T, Abdul-Rahim AS
    Environ Technol, 2024 Mar;45(7):1271-1289.
    PMID: 36305514 DOI: 10.1080/09593330.2022.2141662
    This study's main goal is to evaluate how the research will look at the impact of geothermal energy production on the quality of the subterranean in the 27 European nations from 1990 to 2021. A considerable decline in the subterranean water supply can occur in EU14 emerging nations employing geothermal energy growth compared to EU13 emerging economies, according to research that uses the autoregressive distributed lag (ARDL). Fossil fuel use, population growth, and economic expansion are some factors that have a more detrimental effect on the subterranean water supply in EU14 emerging economies than in EU13 emerging nations. In contrast, the study's findings indicate that EU13 emerging nations may be better able to enhance their underground water supply than EU14 emerging economies because of more effective institutional qualities. The findings so indicate that increasing the amount of geothermal energy generation among the 27 European Union countries can accelerate subsurface water degradation at a high capacity and help achieve unionism's 2030 energy-related goals. When this is achieved, climate change will be put to check, as pollution of the environment. All calculations projected were seen to be of a good level of validity, and this is ascertained through three estimators considered in this study.
    Matched MeSH terms: Groundwater*
  5. Alslaibi TM, Abunada Z, Abu Amr SS, Abustan I
    Environ Technol, 2018 Nov;39(21):2691-2702.
    PMID: 28789588 DOI: 10.1080/09593330.2017.1365936
    Landfills are one of the main point sources of groundwater pollution. This research mainly aims to assess the risk of nitrate [Formula: see text] transport from the unlined landfill to subsurface layers and groundwater using experimental results and the SESOIL model. Samples from 12 groundwater wells downstream of the landfill were collected and analyzed in 2008, 21 years after the landfill construction. The average [Formula: see text] concentration in the wells was 54 mg/L, slightly higher than the World Health Organization ([Formula: see text] 50 mg/L) standards. SESOIL model was used to predict the [Formula: see text] concentration at the bottom of the unsaturated zone. Results indicated that the current mean [Formula: see text] concentration at the bottom of the unsaturated zone is 75 mg/L. the model predicted that the level of NO3 will increased up to 325 mg/L within 30 years. Accordingly, the [Formula: see text] concentration in groundwater wells near the landfill area is expected to gradually increase with time. Although the current risk associated with the [Formula: see text] level might not be harm to adults, however, it might pose severe risks to both adults and infants in the near future due to [Formula: see text] leaching. Urgent mitigation measures such as final cell cover (cap), lining system and vertical expansion should be considered at the landfill to protect the public health in the area.
    Matched MeSH terms: Groundwater*
  6. Affum AO, Osae SD, Nyarko BJ, Afful S, Fianko JR, Akiti TT, et al.
    Environ Monit Assess, 2015 Feb;187(2):1.
    PMID: 25600401 DOI: 10.1007/s10661-014-4167-x
    In recent times, surface water resource in the Western Region of Ghana has been found to be inadequate in supply and polluted by various anthropogenic activities. As a result of these problems, the demand for groundwater by the human populations in the peri-urban communities for domestic, municipal and irrigation purposes has increased without prior knowledge of its water quality. Water samples were collected from 14 public hand-dug wells during the rainy season in 2013 and investigated for total coliforms, Escherichia coli, mercury (Hg), arsenic (As), cadmium (Cd) and physicochemical parameters. Multivariate statistical analysis of the dataset and a linear stoichiometric plot of major ions were applied to group the water samples and to identify the main factors and sources of contamination. Hierarchal cluster analysis revealed four clusters from the hydrochemical variables (R-mode) and three clusters in the case of water samples (Q-mode) after z score standardization. Principal component analysis after a varimax rotation of the dataset indicated that the four factors extracted explained 93.3 % of the total variance, which highlighted salinity, toxic elements and hardness pollution as the dominant factors affecting groundwater quality. Cation exchange, mineral dissolution and silicate weathering influenced groundwater quality. The ranking order of major ions was Na(+) > Ca(2+) > K(+) > Mg(2+) and Cl(-) > SO4 (2-) > HCO3 (-). Based on piper plot and the hydrogeology of the study area, sodium chloride (86 %), sodium hydrogen carbonate and sodium carbonate (14 %) water types were identified. Although E. coli were absent in the water samples, 36 % of the wells contained total coliforms (Enterobacter species) which exceeded the WHO guidelines limit of zero colony-forming unit (CFU)/100 mL of drinking water. With the exception of Hg, the concentration of As and Cd in 79 and 43 % of the water samples exceeded the WHO guideline limits of 10 and 3 μg/L for drinking water, respectively. Reported values in some areas in Nigeria, Malaysia and USA indicated that the maximum concentration of Cd was low and As was high in this study. Health risk assessment of Cd, As and Hg based on average daily dose, hazard quotient and cancer risk was determined. In conclusion, multiple natural processes and anthropogenic activities from non-point sources contributed significantly to groundwater salinization, hardness, toxic element and microbiological contamination of the study area. The outcome of this study can be used as a baseline data to prioritize areas for future sustainable development of public wells.
    Matched MeSH terms: Groundwater/microbiology; Groundwater/chemistry
  7. Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, et al.
    Sci Total Environ, 2018 Sep 01;634:853-867.
    PMID: 29653429 DOI: 10.1016/j.scitotenv.2018.04.055
    The aim of the current study was to produce groundwater spring potential maps using novel ensemble weights-of-evidence (WoE) with logistic regression (LR) and functional tree (FT) models. First, a total of 66 springs were identified by field surveys, out of which 70% of the spring locations were used for training the models and 30% of the spring locations were employed for the validation process. Second, a total of 14 affecting factors including aspect, altitude, slope, plan curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), sediment transport index (STI), lithology, normalized difference vegetation index (NDVI), land use, soil, distance to roads, and distance to streams was used to analyze the spatial relationship between these affecting factors and spring occurrences. Multicollinearity analysis and feature selection of the correlation attribute evaluation (CAE) method were employed to optimize the affecting factors. Subsequently, the novel ensembles of the WoE, LR, and FT models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) curves, standard error, confidence interval (CI) at 95%, and significance level P were employed to validate and compare the performance of three models. Overall, all three models performed well for groundwater spring potential evaluation. The prediction capability of the FT model, with the highest AUC values, the smallest standard errors, the narrowest CIs, and the smallest P values for the training and validation datasets, is better compared to those of other models. The groundwater spring potential maps can be adopted for the management of water resources and land use by planners and engineers.
    Matched MeSH terms: Groundwater
  8. Noorain Mohd Isa, Ahmad Zaharin Aris
    Sains Malaysiana, 2012;41:23-32.
    Classified as a small island, Kapas Island experiences major problems especially in supplying freshwater where groundwater abstraction is the only way to meet the demand of drinking water and domestic use. Groundwater samples were collected from seven constructed boreholes to examine the hydrochemistry properties of major ions and in-situ parameters as these could provide a basis for future reference. The chemical composition showed strong and significant correlation for each studied parameter; an indication of the effect of environmental variables to the groundwater composition. The composition changed from Ca-rich to Na-rich are explained mostly by mixing and cation exchange processes. This study provided an input for water management at Kapas Island where groundwater is a crucial resource to maintain the hydrogeological balance of the island.
    Matched MeSH terms: Groundwater
  9. Mohd Azlan NNI, Abdul Malek M, Zolkepli M, Mohd Salim J, Ahmed AN
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20261-20272.
    PMID: 33405154 DOI: 10.1007/s11356-020-11908-4
    Sustainable water demand management has become a necessity to the world since the immensely growing population and development have caused water deficit and groundwater depletion. This study aims to overcome water deficit by analyzing water demand at Kenyir Lake, Terengganu, using a fuzzy inference system (FIS). The analysis is widened by comparing FIS with the multiple linear regression (MLR) method. FIS applied as an analysis tool provides good generalization capability for optimum solutions and utilizes human behavior influenced by expert knowledge in water resources management for fuzzy rules specified in the system, whereas MLR can simultaneously adjust and compare several variables as per the needs of the study. The water demand dataset of Kenyir Lake was analyzed using FIS and MLR, resulting in total forecasted water consumptions at Kenyir Lake of 2314.38 m3 and 1358.22 m3, respectively. It is confirmed that both techniques converge close to the actual water consumption of 1249.98 m3. MLR showed the accuracy of the water demand values with smaller forecasted errors to be higher than FIS did. To attain sustainable water demand management, the techniques used can be examined extensively by researchers, educators, and learners by adding more variables, which will provide more anticipated outcomes.
    Matched MeSH terms: Groundwater*
  10. Boo KBW, El-Shafie A, Othman F, Khan MMH, Birima AH, Ahmed AN
    Water Res, 2024 Mar 15;252:121249.
    PMID: 38330715 DOI: 10.1016/j.watres.2024.121249
    Groundwater, the world's most abundant source of freshwater, is rapidly depleting in many regions due to a variety of factors. Accurate forecasting of groundwater level (GWL) is essential for effective management of this vital resource, but it remains a complex and challenging task. In recent years, there has been a notable increase in the use of machine learning (ML) techniques to model GWL, with many studies reporting exceptional results. In this paper, we present a comprehensive review of 142 relevant articles indexed by the Web of Science from 2017 to 2023, focusing on key ML models, including artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support vector regression (SVR), evolutionary computing (EC), deep learning (DL), ensemble learning (EN), and hybrid-modeling (HM). We also discussed key modeling concepts such as dataset size, data splitting, input variable selection, forecasting time-step, performance metrics (PM), study zones, and aquifers, highlighting best practices for optimal GWL forecasting with ML. This review provides valuable insights and recommendations for researchers and water management agencies working in the field of groundwater management and hydrology.
    Matched MeSH terms: Groundwater*
  11. Ahmed JB, Salisu A, Pradhan B, Alamri AM
    Insects, 2020 Oct 24;11(11).
    PMID: 33114307 DOI: 10.3390/insects11110728
    Termite nests have long been suggested to be good indicators of groundwater but only a few studies are available to demonstrate the relationship between the two. This study therefore aims at investigating the most favourable spots for locating groundwater structures on a small parcel of land with conspicuous termite activity. To achieve this, geophysical soundings using the renowned vertical electrical sounding (VES) technique was carried out on the gridded study area. A total of nine VESs with one at the foot of a termitarium were conducted. The VES results were interpreted and assessed via two different techniques: (1) physical evaluation as performed by drillers in the field and (2) integration of primary and secondary geoelectrical parameters in a geographic information system (GIS). The result of the physical evaluation indicated a clear case of subjectivity in the interpretation but was consistent with the choice of VES points 1 and 6 (termitarium location) as being the most prospective points to be considered for drilling. Similarly, the integration of the geoelectrical parameters led to the mapping of the most prospective groundwater portion of the study area with the termitarium chiefly in the center of the most suitable region. This shows that termitaria are valuable landscape features that can be employed as biomarkers in the search of groundwater.
    Matched MeSH terms: Groundwater
  12. Ashraf MA, Yusoff I, Yusof M, Alias Y
    Environ Sci Pollut Res Int, 2013 Jul;20(7):4689-710.
    PMID: 23292199 DOI: 10.1007/s11356-012-1423-x
    Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options.
    Matched MeSH terms: Groundwater/analysis
  13. Ismanto A, Hadibarata T, Widada S, Indrayanti E, Ismunarti DH, Safinatunnajah N, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):467-482.
    PMID: 36520279 DOI: 10.1007/s00449-022-02826-5
    Groundwater is defined as water that exists underground in voids or gaps in sediments and is extracted for human consumption from aquifers. It is critical to our daily lives because it contributes to the sustainability of our natural ecosystem while also providing economic benefits. Heavy metals are metallic compounds with a relatively high atomic weight and density compared to water. In Malaysia, heavy metal contamination of groundwater has become a concern due to rapid population growth, economic development, and a lack of environmental awareness. Environmental factors or their behaviors, such as density, viscosity, or volume, affect the distribution and transportation of heavy metals. The article discusses the difficulties created by the presence of heavy metals in groundwater supplies and the resulting health problems. Additionally, remediation methods are discussed for managing contaminated water to preserve the ecological environment for current and future generations, as well as their advantages and disadvantages.
    Matched MeSH terms: Groundwater*
  14. Rahim F, Abdullah SRS, Hasan HA, Kurniawan SB, Mamat A, Yusof KA, et al.
    Sci Total Environ, 2022 Mar 25;814:152799.
    PMID: 34982990 DOI: 10.1016/j.scitotenv.2021.152799
    A reedbed system planted with Phragmites australis was implemented to treat chlorinated hydrocarbon-contaminated groundwater in an industrial plant area. Reedbed commissioning was conducted from July 2016 to November 2016 to treat contaminated groundwater via a pump-and-treat mechanism. Combination of horizontal and vertical reedbed systems was applied to treat 1,2-dichloroethane (1,2 DCA) under four parallel installations. The 2-acre horizontal and vertical reedbed systems were designed to treat approximately 305 m3/day of pumped groundwater. Initial concentration of 1,2 DCA was observed at 0.362 mg/L to 4320 mg/L, and the reedbed system successfully reduced the concentration up to 67.9%. The average outlet concentration was measured to be 2.08 mg/L, which was lower than the site-specific target level of 156 mg/L. Natural attenuation analysis was conducted using first-order decay kinetics, showing an average natural attenuation rate of 0.00372/year. Natural attenuation of 1,2 DCA was observed in shallow monitoring wells, which was indicated by the reduction trend of 1,2 DCA concentration, thereby confirming that the reedbed system worked well to remove 1.2 DCA from contaminated groundwater at the shallow profile.
    Matched MeSH terms: Groundwater*
  15. Ainon Hamzah, Tavakoli A, Amir Rabu
    Sains Malaysiana, 2011;40:1231-1235.
    Toluene (C7H8) a hydrocarbon in crude oil, is a common contaminant in soil and groundwater. In this study, the ability to degrade toluene was investigated from twelve bacteria isolates which were isolated from soil contaminated with oil. Out of 12 bacterial isolates tested, most of Pseudomonas sp. showed the capability to grow in 1 mM of toluene compared with other isolates on the third day of incubation. Based on enzyme assays towards toluene monooxygenase, Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were shown to have the highest ability to degrade toluene. The toluene monoxygenase activity was analysed by using two calorimetric methods, Horseradish peroxidase (HRP) and indole-indigo. Both of the methods measured the production of catechol by the enzymatic reaction of toluene monooxygenase. In the HRP assay, the highest enzyme activity was 0.274 U/mL, exhibited by Pseudomonas aeruginosa UKMP-14T. However, for indole-indigo assay, Bacillus cereus UKMP-6G produced the highest enzyme activity of 0.291 U/ml. Results from both experiments showed that Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were able to degrade toluene.
    Matched MeSH terms: Groundwater
  16. Abdul Rashid, Abdullah, Ariful, Islam
    MyJurnal
    Readymade garments (RMG) industry of Bangladesh are lesser revealed to sustainable outlines that originating avoidance related with standard health and safety provisions, labor rights, women safety, child labor, pollution, waste disposal and ground water depletion. Recently there are also several safety hazards by way of fire incidents and building collapses which caused death and injury of thousand or garment workers at Bangladesh. Actually a suitable sustainable development scheme for this industry includes the insights of proper employee involvement based upon what is known (knowledge) and done (behavior). So the study aims to investigate the relationship between knowledge and behavior which reflects the complication between what is in fact known and what is done in case of sustainable issues. The study has used both questionnaire survey and interview procedures on 10 BGMEA registered factories of Chittagong to recognize the connection between knowledge and behavior. The target populace of the study has been limited only to the white collar employees. However, the study identified that employee knowledge and behavior of sustainable development contains a moderate, positive relationship (r=.315, n=150, p
    Matched MeSH terms: Groundwater
  17. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Zaudi MA, Aris AZ
    ScientificWorldJournal, 2014;2014:796425.
    PMID: 25574493 DOI: 10.1155/2014/796425
    The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1-10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt) from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2) reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm) shrink with time, the low resistivity (10 Ωm) tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add more scientific weight to the theoretical assumptions on the effects of pumping on seawater intrusion and upconing.
    Matched MeSH terms: Groundwater
  18. Sheikhy Narany T, Sefie A, Aris AZ
    Sci Total Environ, 2018 Jul 15;630:931-942.
    PMID: 29499548 DOI: 10.1016/j.scitotenv.2018.02.190
    In many regions around the world, there are issues associated with groundwater resources due to human and natural factors. However, the relation between these factors is difficult to determine due to the large number of parameters and complex processes required. In order to understand the relation between land use allocations, the intrinsic factors of the aquifer, climate change data and groundwater chemistry in the multilayered aquifer system in Malaysia's Northern Kelantan Basin, twenty-two years hydrogeochemical data set was used in this research. The groundwater salinisation in the intermediate aquifer, which mainly extends along the coastal line, was revealed through the hydrogeochemical investigation. Even so, there had been no significant trend detected on groundwater salinity from 1989 to 2011. In contrast to salinity, as seen from the nitrate contaminations there had been significantly increasing trends in the shallow aquifer, particularly in the central part of the study area. Additionally, a strong association between high nitrate values and the areas covered with palm oil cultivations and mixed agricultural have been detected by a multiple correspondence analysis (MCA), which implies that the increasing nitrate concentrations are associated with nitrate loading from the application of N-fertilisers. From the process of groundwater salinisation in the intermediate aquifer, could be seen that it has a strong correlation the aquifer lithology, specifically marine sediments which are influenced by the ancient seawater trapped within the sediments.
    Matched MeSH terms: Groundwater
  19. Kura NU, Ramli MF, Sulaiman WNA, Ibrahim S, Aris AZ
    Environ Sci Pollut Res Int, 2018 Mar;25(8):7231-7249.
    PMID: 26686857 DOI: 10.1007/s11356-015-5957-6
    In this paper, numerous studies on groundwater in Malaysia were reviewed with the aim of evaluating past trends and the current status for discerning the sustainability of the water resources in the country. It was found that most of the previous groundwater studies (44 %) focused on the islands and mostly concentrated on qualitative assessment with more emphasis being placed on seawater intrusion studies. This was then followed by inland-based studies, with Selangor state leading the studies which reflected the current water challenges facing the state. From a methodological perspective, geophysics, graphical methods, and statistical analysis are the dominant techniques (38, 25, and 25 %) respectively. The geophysical methods especially the 2D resistivity method cut across many subjects such as seawater intrusion studies, quantitative assessment, and hydraulic parameters estimation. The statistical techniques used include multivariate statistical analysis techniques and ANOVA among others, most of which are quality related studies using major ions, in situ parameters, and heavy metals. Conversely, numerical techniques like MODFLOW were somewhat less admired which is likely due to their complexity in nature and high data demand. This work will facilitate researchers in identifying the specific areas which need improvement and focus, while, at the same time, provide policymakers and managers with an executive summary and knowledge of the current situation in groundwater studies and where more work needs to be done for sustainable development.
    Matched MeSH terms: Groundwater/analysis*
  20. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ
    Environ Sci Pollut Res Int, 2014;21(11):7047-64.
    PMID: 24532282 DOI: 10.1007/s11356-014-2598-0
    In this study, geophysics, geochemistry, and geostatistical techniques were integrated to assess seawater intrusion in Kapas Island due to its geological complexity and multiple contamination sources. Five resistivity profiles were measured using an electric resistivity technique. The results reveal very low resistivity <1 Ωm, suggesting either marine clay deposit or seawater intrusion or both along the majority of the resistivity images. As a result, geochemistry was further employed to verify the resistivity evidence. The Chadha and Stiff diagrams classify the island groundwater into Ca-HCO3, Ca-Na-HCO3, Na-HCO3, and Na-Cl water types, with Ca-HCO3 as the dominant. The Mg(2+)/Mg(2+)+Ca(2+), HCO3 (-)/anion, Cl(-)/HCO3 (-), Na(+)/Cl(-), and SO4 (2-)/Cl(-) ratios show that some sampling sites are affected by seawater intrusion; these sampling sites fall within the same areas that show low-resistivity values. The resulting ratios and resistivity values were then used in the geographical information system (GIS) environment to create the geostatistical map of individual indicators. These maps were then overlaid to create the final map showing seawater-affected areas. The final map successfully delineates the area that is actually undergoing seawater intrusion. The proposed technique is not area specific, and hence, it can work in any place with similar completed characteristics or under the influence of multiple contaminants so as to distinguish the area that is truly affected by any targeted pollutants from the rest. This information would provide managers and policy makers with the knowledge of the current situation and will serve as a guide and standard in water research for sustainable management plan.
    Matched MeSH terms: Groundwater/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links