Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Hashmi SF, Rathore HA, Sattar MA, Johns EJ, Gan CY, Chia TY, et al.
    Biomolecules, 2021 Oct 19;11(10).
    PMID: 34680182 DOI: 10.3390/biom11101549
    Our main objective was to investigate the effect of chronic administration of hydrogen sulphide donor (sodium hydrosulphide) on the expression of intercellular adhesion molecule-1 (ICAM-1) and concentration of nuclear factor-kappa B (NF-kB) in a renal ischemia-reperfusion injury (IRI) model of WKY and L-nitro-arginine-methyl-ester (L-NAME)-induced hypertensive rats. Sodium hydrosulphide (NaHS) was administered intraperitoneally (i.p.) for 35 days while cystathionine gamma lyase (CSE) inhibitor dL-propargylglycine (PAG) was administered at a single dose of 50 mg/kg. Animals were anesthetised using sodium pentobarbitone (60 mg/kg) and then prepared to induce renal ischemia by clamping the left renal artery for 30 min followed by 3 h of reperfusion. Pre-treatment with NaHS improved the renal functional parameters in both WKY and L-NAME-induced hypertensive rats along with reduction of blood pressure in hypertensive groups. Oxidative stress markers like malondialdehyde (MDA), total superoxide dismutase (T-SOD) and glutathione (GSH) were also improved by NaHS treatment following renal IRI. Levels of ICAM-1 and NF-kB concentration were reduced by chronic treatment with NaHS and increased by PAG administration after renal IRI in plasma and kidney. Treatment with NaHS improved tubular morphology and glomerulus hypertrophy. Pre-treatment with NaHS reduced the degree of renal IRI by potentiating its antioxidant and anti-inflammatory mechanism, as evidenced by decreased NF-kB concentration and downregulation of ICAM-1 expression.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/genetics*
  2. Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, et al.
    Eur J Pharmacol, 2015 Feb 15;749:1-11.
    PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015
    2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/genetics; Intercellular Adhesion Molecule-1/metabolism
  3. Ang KP, Tan HK, Selvaraja M, Kadir AA, Somchit MN, Akim AM, et al.
    Planta Med, 2011 Nov;77(16):1782-7.
    PMID: 21614753 DOI: 10.1055/s-0030-1271119
    Development of early stage atherosclerosis involves the activation of endothelial cells by oxidized low-density lipoprotein (oxLDL) with subsequent increases in endothelial permeability and expression of adhesion molecules favoring the adherence of monocytes to the endothelium. Cryptotanshinone (CTS), a major compound derived from the Chinese herb Salvia miltiorrhiza, is known for its protective effects against cardiovascular diseases. The aim of this study was to determine whether CTS could prevent the oxLDL-induced early atherosclerotic events. OxLDL (100 µg/mL) was used to increase endothelial permeability and induce monocyte-endothelial cell adhesion in human umbilical vein endothelial cells (HUVECs). Endothelial nitric oxide (NO) concentrations, a permeability-regulating molecule, and expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were measured. Results show that a) endothelial hyperpermeability was suppressed by 94 % (p 1 and VCAM-1 expressions by 90 % (p 1-10 µM. These findings indicate that CTS suppresses an increase in endothelial permeability, likely due to the restoration of NO bioavailability in endothelial cells. They also indicate that CTS may attenuate monocyte adhesion to endothelial cells through the inhibition of adhesion molecules' expression. Thus, CTS may play an important role in the prevention of early or pre-lesional stage of atherosclerosis.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/drug effects; Intercellular Adhesion Molecule-1/metabolism
  4. Barber BE, Grigg MJ, Piera KA, William T, Cooper DJ, Plewes K, et al.
    Emerg Microbes Infect, 2018 Jun 06;7(1):106.
    PMID: 29872039 DOI: 10.1038/s41426-018-0105-2
    Plasmodium knowlesi occurs throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Severe disease in humans is characterised by high parasite biomass, reduced red blood cell deformability, endothelial activation and microvascular dysfunction. However, the roles of intravascular haemolysis and nitric oxide (NO)-dependent endothelial dysfunction, important features of severe falciparum malaria, have not been evaluated, nor their role in acute kidney injury (AKI). In hospitalised Malaysian adults with severe (n = 48) and non-severe (n = 154) knowlesi malaria, and in healthy controls (n = 50), we measured cell-free haemoglobin (CFHb) and assessed associations with the endothelial Weibel-Palade body (WPB) constituents, angiopoietin-2 and osteoprotegerin, endothelial and microvascular function, and other markers of disease severity. CFHb was increased in knowlesi malaria in proportion to disease severity, and to a greater extent than previously reported in severe falciparum malaria patients from the same study cohort. In knowlesi malaria, CFHb was associated with parasitaemia, and independently associated with angiopoietin-2 and osteoprotegerin. As with angiopoietin-2, osteoprotegerin was increased in proportion to disease severity, and independently associated with severity markers including creatinine, lactate, interleukin-6, endothelial cell adhesion molecules ICAM-1 and E-selectin, and impaired microvascular reactivity. Osteoprotegerin was also independently associated with NO-dependent endothelial dysfunction. AKI was found in 88% of those with severe knowlesi malaria. Angiopoietin-2 and osteoprotegerin were both independent risk factors for acute kidney injury. Our findings suggest that haemolysis-mediated endothelial activation and release of WPB constituents is likely a key contributor to end-organ dysfunction, including AKI, in severe knowlesi malaria.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/metabolism
  5. Al Batran R, Al-Bayaty F, Al-Obaidi MM, Ashrafi A
    Naunyn Schmiedebergs Arch Pharmacol, 2014 Dec;387(12):1141-52.
    PMID: 25172523 DOI: 10.1007/s00210-014-1041-x
    Atherosclerosis is the commonest and most important vascular disease. Andrographolide (AND) is the main bioactive component of the medicinal plant Andrographis paniculata and is used in traditional medicine. This study was aimed to evaluate the antiatherogenic effect of AND against atherosclerosis induced by Porphyromonas gingivalis in White New Zealand rabbits. Thirty rabbits were divided into five groups as follows: G1, normal group; G2-5, were orally challenged with P. gingivalis five times a week over 12 weeks; G2, atherogenic control group; G3, standard group treated with atorvastatin (AV) 5 mg/kg; and G4 and G5, treatment groups treated with AND 10 and 20 mg/kg, respectively over 12 weeks. Serums were subjected to antioxidant enzymatic and anti-inflammatory activities, and the aorta was subjected to histological analyses. Groups treated with AND showed a significant reversal of liver and renal biochemical changes, compared with the atherogenic control group. In the same groups, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total glutathione (GSH) levels in serum were significantly increased (P < 0.05), and lipid peroxidation (malondialdehyde (MDA)) levels were significantly decreased (P < 0.05), respectively. Furthermore, treated groups with AV and AND showed significant decrease in the level of VCAM-1 and ICAM-1 compared with the atherogenic control group. In aortic homogenate, the level of nitrotyrosine was significantly increased, while the level of MCP1 was significantly decreased in AV and AND groups compared with the atherogenic control group. In addition, staining the aorta with Sudan IV showed a reduction in intimal thickening plaque in AV and AND groups compared with the atherogenic control group. AND has showed an antiatherogenic property as well as the capability to reduce lipid, liver, and kidney biomarkers in atherogenic serum that prevents atherosclerosis complications caused by P. gingivalis.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/metabolism
  6. Gangoda SVS, Avadhanam B, Jufri NF, Sohn EH, Butlin M, Gupta V, et al.
    Sci Rep, 2018 01 26;8(1):1689.
    PMID: 29374229 DOI: 10.1038/s41598-018-20117-6
    Amyloid β (Aβ) deposition is a hallmark of Alzheimer's disease (AD). Vascular modifications, including altered brain endothelial cell function and structural viability of the blood-brain barrier due to vascular pulsatility, are implicated in AD pathology. Pulsatility of phenomena in the cerebral vasculature are often not considered in in vitro models of the blood-brain barrier. We demonstrate, for the first time, that pulsatile stretch of brain vascular endothelial cells modulates amyloid precursor protein (APP) expression and the APP processing enzyme, β-secretase 1, eventuating increased-Aβ generation and secretion. Concurrent modulation of intercellular adhesion molecule 1 and endothelial nitric oxide synthase (eNOS) signaling (expression and phosphorylation of eNOS) in response to pulsatile stretch indicates parallel activation of endothelial inflammatory pathways. These findings mechanistically support vascular pulsatility contributing towards cerebral Aβ levels.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/analysis
  7. Tessema SK, Utama D, Chesnokov O, Hodder AN, Lin CS, Harrison GLA, et al.
    Infect Immun, 2018 08;86(8).
    PMID: 29784862 DOI: 10.1128/IAI.00485-17
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLβ domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLβ3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLβ3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLβ3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLβ sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLβ domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/metabolism
  8. Wong CY, Tan EL, Cheong SK
    Cell Biol Int, 2014 Apr;38(4):497-501.
    PMID: 24375917 DOI: 10.1002/cbin.10231
    Mesangial cells are one of the three major cell types of the kidney glomerulus that provide physical support for the glomerular capillary lumen of the kidney. Loss of mesangial cells due to pathologic conditions, such as glomerulonephritis and diabetic nephropathy, can impair renal function. Mesenchymal stem cells (MSC) are attractive candidates for kidney repair therapy since they can enhance recovery and protect against kidney failure. MSC can differentiate into mesangial cells in vivo. We have investigated the ability of MSC to differentiate into mesangial cells in vitro; they were co-cultured with oxidant-injured mesangial cells before being analysed by flow cytometry and for contractility. MSC co-cultured with injured mesangial cells had a mesangial cell-like morphology and contracted in response to angiotensin II. They expressed CD54(-) CD62E(+) in direct contrast to the CD54(+) CD62E(-) of pure MSC. In conclusion, MSC can differentiate into mesangial cells in vitro when co-cultured with injured mesangial cells.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/metabolism
  9. Mustaffa KMF, Storm J, Whittaker M, Szestak T, Craig AG
    Malar J, 2017 07 05;16(1):279.
    PMID: 28679447 DOI: 10.1186/s12936-017-1930-9
    BACKGROUND: Sequestration of parasitized red blood cells from the peripheral circulation during an infection with Plasmodium falciparum is caused by an interaction between the parasite protein PfEMP1 and receptors on the surface of host endothelial cells, known as cytoadherence. Several lines of evidence point to a link between the pathology of severe malaria and cytoadherence, therefore blocking adhesion receptors involved in this process could be a good target to inhibit pRBC sequestration and prevent disease. In a malaria endemic setting this is likely to be used as an adjunct therapy by reversing existing cytoadherence. Two well-characterized parasite lines plus three recently derived patient isolates were tested for their cytoadherence to purified receptors (CD36 and ICAM-1) as well as endothelial cells. Monoclonal antibodies against human CD36 and ICAM-1 were used to inhibit and reverse infected erythrocyte binding in static and flow-based adhesion assays.

    RESULTS: Anti-ICAM-1 and CD36 monoclonal antibodies were able to inhibit and reverse P. falciparum binding of lab and recently adapted patient isolates in vitro. However, reversal of binding was incomplete and varied in its efficiency between parasite isolates.

    CONCLUSIONS: The results show that, as a proof of concept, disturbing existing ligand-receptor interactions is possible and could have potential therapeutic value for severe malaria. The variation seen in the degree of reversing existing binding with different parasite isolates and the incomplete nature of reversal, despite the use of high affinity inhibitors, suggest that anti-adhesion approaches as adjunct therapies for severe malaria may not be effective, and the focus may need to be on inhibitory approaches such as vaccines.

    Matched MeSH terms: Intercellular Adhesion Molecule-1/immunology*
  10. Ng WL, Marinov GK, Liau ES, Lam YL, Lim YY, Ea CK
    RNA Biol, 2016 09;13(9):861-71.
    PMID: 27362560 DOI: 10.1080/15476286.2016.1207036
    Circular RNAs (circRNAs) constitute a large class of RNA species formed by the back-splicing of co-linear exons, often within protein-coding transcripts. Despite much progress in the field, it remains elusive whether the majority of circRNAs are merely aberrant splicing by-products with unknown functions, or their production is spatially and temporally regulated to carry out specific biological functions. To date, the majority of circRNAs have been cataloged in resting cells. Here, we identify an LPS-inducible circRNA: mcircRasGEF1B, which is predominantly localized in cytoplasm, shows cell-type specific expression, and has a human homolog with similar properties, hcircRasGEF1B. We show that knockdown of the expression of mcircRasGEF1B reduces LPS-induced ICAM-1 expression. Additionally, we demonstrate that mcircRasGEF1B regulates the stability of mature ICAM-1 mRNAs. These findings expand the inventory of functionally characterized circRNAs with a novel RNA species that may play a critical role in fine-tuning immune responses and protecting cells against microbial infection.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/genetics*
  11. Abu Seman N, Anderstam B, Wan Mohamud WN, Östenson CG, Brismar K, Gu HF
    J Diabetes Complications, 2015 Nov-Dec;29(8):1234-9.
    PMID: 26255081 DOI: 10.1016/j.jdiacomp.2015.07.004
    Recent research has implicated that the inflammation may be a key pathophysiological mechanism in diabetic nephropathy (DN). Intercellular adhesion molecule 1 (ICAM-1) is an acute phase marker of inflammation. In the present study, we carried out genetic, epigenetic and protein analyses of ICAM-1 in a Malaysian population, including normal glucose tolerance (NGT) subjects and type 2 diabetes (T2D) patients with or without DN in order to evaluate its role in DN.
    Matched MeSH terms: Intercellular Adhesion Molecule-1
  12. Zhang X, Seman NA, Falhammar H, Brismar K, Gu HF
    J Diabetes Res, 2020;2020:8305460.
    PMID: 32626783 DOI: 10.1155/2020/8305460
    Diabetic kidney disease (DKD) is a complex disease, in which local inflammatory stress results from both metabolic and hemodynamic derangements. Intercellular adhesion molecule 1 (ICAM-1) is an acute-phase protein marker of inflammation. In the recent years, clinical observations have reported that increased serum/plasma ICAM-1 levels are positively correlated with albuminuria in the patients with type 1 (T1D) and type 2 diabetes (T2D). Genetic association studies have demonstrated that genetic polymorphisms, including SNP rs5498 (E469K, G/A), in the ICAM1 gene is associated with DKD. rs5498 is a nonsynonymous SNP and caused by substitution between E (Glu) and K (Lys) for ICAM-1 protein. In this review, we first summarized the genetic effects of ICAM1 E469K polymorphism in DKD and then demonstrated the possible changes of ICAM-1 protein crystal structures according to the genotypes of this polymorphism. Finally, we discussed the genetic effects of the ICAM1 E469K polymorphism and the biological role of increased circulating ICAM-1 protein and its formation changes in DKD.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/genetics*; Intercellular Adhesion Molecule-1/metabolism
  13. Dong Y, Kang Z, Zhang Z, Zhang Y, Zhou H, Liu Y, et al.
    Sci Bull (Beijing), 2024 Apr 15;69(7):949-967.
    PMID: 38395651 DOI: 10.1016/j.scib.2024.02.003
    Myocardial ischemia-reperfusion injury (MIRI) is a major hindrance to the success of cardiac reperfusion therapy. Although increased neutrophil infiltration is a hallmark of MIRI, the subtypes and alterations of neutrophils in this process remain unclear. Here, we performed single-cell sequencing of cardiac CD45+ cells isolated from the murine myocardium subjected to MIRI at six-time points. We identified diverse types of infiltrating immune cells and their dynamic changes during MIRI. Cardiac neutrophils showed the most immediate response and largest changes and featured with functionally heterogeneous subpopulations, including Ccl3hi Neu and Ym-1hi Neu, which were increased at 6 h and 1 d after reperfusion, respectively. Ym-1hi Neu selectively expressed genes with protective effects and was, therefore, identified as a novel specific type of cardiac cell in the injured heart. Further analysis indicated that neutrophils and their subtypes orchestrated subsequent immune responses in the cardiac tissues, especially instructing the response of macrophages. The abundance of Ym-1hi Neu was closely correlated with the therapeutic efficacy of MIRI when neutrophils were specifically targeted by anti-Lymphocyte antigen 6 complex locus G6D (Ly6G) or anti-Intercellular cell adhesion molecule-1 (ICAM-1) neutralizing antibodies. In addition, a neutrophil subtype with the same phenotype as Ym-1hi Neu was detected in clinical samples and correlated with prognosis. Ym-1 inhibition exacerbated myocardial injury, whereas Ym-1 supplementation significantly ameliorated injury in MIRI mice, which was attributed to the tilt of Ym-1 on the polarization of macrophages toward the repair phenotype in myocardial tissue. Overall, our findings reveal the anti-inflammatory phenotype of Ym-1hi Neu and highlight its critical role in myocardial protection during the early stages of MIRI.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/genetics
  14. Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR, et al.
    Molecules, 2018 Jun 05;23(6).
    PMID: 29874809 DOI: 10.3390/molecules23061355
    Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/metabolism
  15. Das S, Hamsi MA, Kamisah Y, Qodriyah HMS, Othman F, Emran A, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1609-1615.
    PMID: 29084680
    Consumption of corn oil for cooking purpose is gaining popularity. The present study examined the effect of heated corn oil on blood pressure and its possible mechanism in experimental rats. Thirty male Sprague-Dawley rats were randomly divided into 5 groups and were fed with the following diets, Group I was fed with basal diet only; whereas group II,III,IV and V were fed with basal diet fortified with 15% (w/w) either fresh, once-heated, five-times-heated or ten-times-heated corn oil, respectively for 16 weeks. Body weight, blood pressure were measured at baseline and weekly interval for 16 weeks. Inflammatory biomarkers which included soluble intracellular adhesion molecules (sICAM), soluble vascular adhesion molecules (sVCAM) and C reactive protein (CRP), were measured at baseline and the end of 16 weeks. The rats were sacrificed and thoracic aorta was taken for measurement of vascular reactivity. There was significant increase in the blood pressure in the groups fed with heated once, five-times (5HCO) and ten-times-heated corn oil (10-HCO) compared to the control. The increase in the blood pressure was associated with an increase in CRP, sICAM and sVCAM, reduction in vasodilatation response to acetylcholine and greater vasoconstriction response to phenylephrine. The results suggest that repeatedly heated corn oil causes elevation in blood pressure, vascular inflammation which impairs vascular reactivity thereby predisposing to hypertension. There is a need to educate people not to consume corn oil in a heated state.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/blood
  16. Kiew LV, Munavvar AS, Law CH, Azizan AN, Nazarina AR, Sidik K, et al.
    J Physiol, 2004 Jun 15;557(Pt 3):981-9.
    PMID: 15047774
    An antisense oligodeoxynucleotide (As-ODN) to the 3' untranslated region of the mRNA sequence expressing the intracellular adhesion molecule-1 (ICAM-1) was employed to determine ICAM-1's role in renal ischaemia-reperfusion injury in the rat. Wistar-Kyoto rats receiving i.v. either lipofectin-As-ODN (As-ODN group), lipofectin-reverse ODN (Rv-ODN group) or lipofectin (ischaemia control group) 8 h prior to study were anaesthetized and subjected to 30 min of renal artery occlusion. Renal haemodynamic and excretory parameters were monitored before and after renal ischaemia. On termination of the study renal tissue was subjected to histological and Western blot analysis. Renal blood flow decreased in the 3 h post-ischaemia period in the ischaemia control and Rv-ODN groups, but was maintained in the As-ODN group. Glomerular filtration rate was depressed initially but gradually increased to 10% above basal levels in the ischaemia control and Rv-ODN groups, but was below basal levels (20%) in the As-ODN group. There was a three- to fourfold increase in sodium and water excretion following ischaemia in the ischaemia control and reverse-ODN groups but not in the As-ODN treated group. The As-ODN ameliorated the histological evidence of ischaemic damage and reduced ICAM-1 protein levels to a greater extent in the medulla than cortex. These observations suggested that in the post-ischaemic period afferent and efferent arteriolar tone was increased with a loss of reabsorptive capacity which was in part due to ICAM-1. The possibility arises that the action of ICAM-1 at vascular and tubular sites in the deeper regions of the kidney contributes to the ischaemia-reperfusion injury.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/genetics*
  17. Nawawi H, Osman NS, Yusoff K, Khalid BA
    Horm. Metab. Res., 2003 Aug;35(8):479-85.
    PMID: 12953165 DOI: 10.1055/s-2003-41805
    Hypercholesterolemia causes endothelial dysfunction, an early feature of atherosclerosis, leading to increased production of adhesion molecules and cytokines. The aim of this study was to investigate the effects of three months of treatment with low dose atorvastatin on serum levels of adhesion molecules, interleukin-6 (IL-6) and highly sensitive C-reactive protein (hs-CRP) in patients with non-familial hypercholesterolemia. Fifty-five patients with non-familial hypercholesterolemia were randomized to treatment with atorvastatin 10 mg/day or placebo for 3 months. Soluble intercellular adhesion molecules-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, IL-6 and hs-CRP levels were measured to assess the inflammatory activity of the endothelium. There was a significant reduction in ICAM-1 at 2 weeks (p<0.0001) with further reduction at 3 months (p<0.0001). At 3 months, there were significant reductions in VCAM-1 (p<0.02), IL-6 (p<0.0001) and hs-CRP (p<0.01), but an increase in E-selectin levels (p<0.002). Treatment with statin was an independent determinant of change in ICAM-1 (p<0.05) and IL-6 levels (p<0.05) after correcting for anthropometric indices, blood pressure and lipid profile. Low-dose atorvastatin treatment leads to reduction in proinflammatory markers of endothelial function, suggesting an attenuation of endothelial activation and improvement in endothelial function, independent of lipid lowering. This may lead to a reduction in the progression of atherosclerosis.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/blood*
  18. Mohd Ariff A, Abu Bakar NA, Abd Muid S, Omar E, Ismail NH, Ali AM, et al.
    BMC Complement Med Ther, 2020 Feb 17;20(1):56.
    PMID: 32066426 DOI: 10.1186/s12906-020-2844-6
    BACKGROUND: Ficus deltoidea (FD) has been shown to have antidiabetic, anti-inflammatory, antinociceptive and antioxidant properties. However, its effects on key events in the pathogenesis of atherosclerosis are unknown.

    AIM: To investigate the endothelial activation, inflammation, monocyte-endothelial cell binding and oxidative stress effects of four FD varieties.

    METHODS: Human coronary artery endothelial cells (HCAEC) were incubated with different concentrations of aqueous ethanolic extracts of FD var. trengganuensis (FDT), var. kunstleri (FDK), var. deltoidea (FDD) and var. intermedia (FDI), together with LPS. Protein and gene expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), endothelial-leukocyte adhesion molecule-1 (E-selectin), interleukin-6 (IL-6), Nuclear factor-κB (NF-κB) p50 and p65 and endothelial nitric oxide synthase (eNOS) were measured using ELISA and QuantiGene plex, respectively. Adhesion of monocyte to HCAEC and formation of reactive oxygen species (ROS) were detected by Rose Bengal staining and 2'-7'-dichlorofluorescein diacetate (DCFH-DA) assay.

    RESULTS: FDK exhibited the highest inhibition of biomarkers in relation to endothelial activation and inflammation, second in reducing monocyte binding (17.3%) compared to other varieties. FDK (25.6%) was also the most potent at decreasing ROS production.

    CONCLUSION: FD has anti-atherogenic effects, possibly mediated by NF-κB and eNOS pathways; with FDK being the most potent variety. It is potentially beneficial in mitigating atherogenesis.

    Matched MeSH terms: Intercellular Adhesion Molecule-1
  19. Ankathil R, Mustapha MA, Abdul Aziz AA, Mohd Shahpudin SN, Zakaria AD, Abu Hassan MR, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1621-1632.
    PMID: 31244280 DOI: 10.31557/APJCP.2019.20.6.1621
    AIM: To investigate the frequencies and association of polymorphic genotypes of IL-8 -251 T>A, TNF-α -308
    G>A, ICAM-1 K469E, ICAM-1 R241G, IL-6 -174 G>C, and PPAR-γ 34 C>G in modulating susceptibility risk in
    Malaysian colorectal cancer (CRC) patients. Methods: In this case-control study, peripheral blood samples of 560
    study subjects (280 CRC patients and 280 controls) were collected, DNA extracted and genotyped using PCR-RFLP
    and Allele Specific PCR. The association between polymorphic genotype and CRC susceptibility risk was determined
    using Logistic Regression analysis deriving Odds ratio (OR) and 95% CI. Results: On comparing the frequencies of
    genotypes of all single nucleotide polymorphisms ( SNPs ) in patients and controls, the homozygous variant genotypes
    IL-8 -251 AA and TNF-α -308 AA and variant A alleles were significantly higher in CRC patients. Investigation on
    the association of the variant alleles and genotypes singly, with susceptibility risk showed the homozygous variant A
    alleles and genotypes IL-8 -251 AA and TNF-α -308 AA to be at higher risk for CRC predisposition. Analysis based
    on age, gender and smoking habits showed that the polymorphisms IL8 -251 T>A and TNF – α 308 G>A contribute
    to a significantly higher risk among male and female who are more than 50 years and for smokers in this population.
    Conclusion: We observed an association between variant allele and genotypes of IL-8-251 T>A and TNF-α-308
    G>A polymorphisms and CRC susceptibility risk in Malaysian patients. These two SNPs in inflammatory response
    genes which undoubtedly contribute to individual risks to CRC susceptibility may be considered as potential genetic
    predisposition factors for CRC in Malaysian population.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/genetics
  20. Muid S, Froemming GR, Ali AM, Nawawi H
    Malays J Pathol, 2013 Dec;35(2):165-76.
    PMID: 24362480 MyJurnal
    The effects of spaceflight on cardiovascular health are not necessarily seen immediately after astronauts have returned but can be delayed. It is important to investigate the long term effects of spaceflight on protein and gene expression of inflammation and endothelial activation as a predictor for the development of atherosclerosis and potential cardiovascular problems. The objectives of this study were to investigate the (a) protein and gene expression of inflammation and endothelial activation, (b) expression of nuclear factor kappa B (NFκB), signal transducer and activator of transcription-3 (STAT-3) and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC) 3 months post-space flight travel compared to ground controls. HUVEC cultured on microcarriers in fluid processing apparatus were flown to the International Space Station (ISS) by the Soyuz TMA-11 rocket. After landing, the cells were detached from microcarriers and recultured in T-25 cm(2) culture flasks (Revived HUVEC). Soluble protein expression of IL-6, TNF-α, ICAM-1, VCAM-1 and e-selectin were measured by ELISA. Gene expression of these markers and in addition NFκB, STAT-3 and eNOS were measured. Spaceflight induced IL-6 and ICAM-1 remain elevated even after 3 months post spaceflight travel and this is mediated via STAT-3 pathway. The downregulation of eNOS expression in revived HUVEC cells suggests a reduced protection of the cells and the surrounding vessels against future insults that may lead to atherosclerosis. It would be crucial to explore preventive measures, in relation to atherosclerosis and its related complications.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/biosynthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links