Displaying publications 1 - 20 of 72 in total

Abstract:
Sort:
  1. Ng BH, Mohd Aminudin NH, Nasaruddin MZ, Abdul Rahaman JA
    BMJ Case Rep, 2021 Feb 05;14(2).
    PMID: 33547099 DOI: 10.1136/bcr-2020-239702
    Patients with symptomatic complex malignant pleural effusion (MPE) are frequently unfit for decortication and have a poorer prognosis. Septations can develop in MPE, which may lead to failure of complete drainage and pleural infection. Intrapleural fibrinolytic therapy (IPFT) is an alternative treatment. The use of IPFT in patients with anaemia and high risk for intrapleural bleeding is not well established. We report a successful drainage of complex haemoserous MPE with a single modified low-dose of intrapleural 5 mg of alteplase and 5 mg of dornase alfa in a patient with pre-existing anaemia with no significant risk of intrapleural bleeding.
    Matched MeSH terms: Lung Neoplasms/drug therapy
  2. Kamal NAMA, Abdulmalek E, Fakurazi S, Cordova KE, Abdul Rahman MB
    Dalton Trans, 2021 Feb 23;50(7):2375-2386.
    PMID: 33555001 DOI: 10.1039/d1dt00116g
    Chemotherapeutic agents used in treating certain cancer types operate in a non-selective manner tending to accumulate in normal, healthy tissue when high doses are used. To mitigate the toxicity effect resulting from this, there is an urgent need to develop active nano delivery systems capable of regulating optimal doses specifically to cancer cells without harming adjacent normal cells. Herein, we report a versatile nanoparticle - zeolitic imidazolate framework-8 (nZIF-8) - that is loaded with a chemotherapeutic agent (gemcitabine; GEM) and surface-functionalized with an autonomous homing system (Arg-Gly-Asp peptide ligand; RGD) via a straightforward, one-pot solvothermal reaction. Successful functionalization of the surface of nZIF-8 loaded GEM (GEM⊂nZIF-8) with RGD was proven by spectroscopic and electron microscopy techniques. This surface-functionalized nanoparticle (GEM⊂RGD@nZIF-8) exhibited enhanced uptake in human lung cancer cells (A549), compared with non-functionalized GEM⊂nZIF-8. The GEM⊂RGD@nZIF-8, experienced not only efficient uptake within A549, but also induced obvious cytotoxicity (75% at a concentration of 10 μg mL-1) and apoptosis (62%) after 48 h treatment when compared to the nanoparticle absent of the RGD homing system (GEM⊂nZIF-8). Most importantly, this surface-functionalized nanoparticle was more selective towards lung cancer cells (A549) than normal human lung fibroblast cells (MRC-5) with a selectivity index (SI) of 3.98. This work demonstrates a new one-pot strategy for realizing a surface-functionalized zeolitic imidazolate framework that actively targets cancer cells via an autonomous homing peptide system to deliver a chemotherapeutic payload effectively.
    Matched MeSH terms: Lung Neoplasms/drug therapy*
  3. Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N
    J Aerosol Med Pulm Drug Deliv, 2018 06;31(3):139-154.
    PMID: 29022837 DOI: 10.1089/jamp.2017.1382
    Targeted delivery of chemotherapeutics through the respiratory system is a potential approach to improve drug accumulation in the lung tumor, while decreasing their negative side effects. However, elimination by the pulmonary clearance mechanisms, including the mucociliary transport system, and ingestion by the alveolar macrophages, rapid absorption into the blood, enzymatic degradation, and low control over the deposition rate and location remain the main complications for achieving an effective pulmonary drug delivery. Therefore, particle-based delivery systems have emerged to minimize pulmonary clearance mechanisms, enhance drug therapeutic efficacy, and control the release behavior. A successful implementation of a particle-based delivery system requires understanding the influential parameters in terms of drug carrier, inhalation technology, and health status of the patient's respiratory system. This review aims at investigating the parameters that significantly drive the clinical outcomes of various particle-based pulmonary delivery systems. This should aid clinicians in appropriate selection of a delivery system according to their clinical setting. It will also guide researchers in addressing the remaining challenges that need to be overcome to enhance the efficiency of current pulmonary delivery systems for aerosols.
    Matched MeSH terms: Lung Neoplasms/drug therapy
  4. Ong CK, Tan WC, Chan LC, Abdul Razak M
    Med J Malaysia, 2012 Apr;67(2):222-3.
    PMID: 22822651 MyJurnal
    Epidermal growth factor receptor (EGFR)--tyrosine kinase inhibitors (TKI) like erlotinib and gefitinib have been approved as monotherapy for the treatment of patients with locally advanced or metastatic non small cell lung cancer (NSCLC) after failure of at least one prior chemotherapy regimen. The use of EGFR-TKI is associated with unique and dramatic dermatologic side effects. We report 2 patients with NSCLC developing a typical acneiform (papulo-pustular) eruption shortly after initiation of EGFR-TKI.
    Matched MeSH terms: Lung Neoplasms/drug therapy*
  5. Jalal TK, Khan AYF, Natto HA, Abdull Rasad MSB, Arifin Kaderi M, Mohammad M, et al.
    Nutr Cancer, 2019;71(5):792-805.
    PMID: 30614285 DOI: 10.1080/01635581.2018.1516790
    Nine phenolic compounds were identified and quantified in Artocarpus altilia fruit. One of the main compounds was quercetin, which is the major class of flavonoids has been identified and quantified in pulp part of A. altilis fruit of methanol extract. The aim of this study was to evaluate in vitro cytotoxic assay. Inhibitory concentration 50% concentration was determined using trypan blue exclusion assay. Apoptosis induction and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell cycle-related regulatory genes were assessed by RT-qPCR study of the methanol extract of pulp part on human lung carcinoma (A549) cell line. A significant increase of cells at G2/M phases was detected (P 
    Matched MeSH terms: Lung Neoplasms/drug therapy*
  6. Wong PF, Cheong WF, Shu MH, Teh CH, Chan KL, AbuBakar S
    Phytomedicine, 2012 Jan 15;19(2):138-44.
    PMID: 21903368 DOI: 10.1016/j.phymed.2011.07.001
    Bioactive compounds from the medicinal plant, Eurycoma longifolia Jack have been shown to promote anti-proliferative effects on various cancer cell lines. Here we examined the effects of purified eurycomanone, a quassinoid found in Eurycoma longifolia Jack extract, on the expression of selected genes of the A549 lung cancer cells. Eurycomanone inhibited A549 lung cancer cell proliferation in a dose-dependent manner at concentrations ranging from 5 to 20 μg/ml. The concentration that inhibited 50% of cell growth (GI(50)) was 5.1 μg/ml. The anti-proliferative effects were not fully reversible following the removal of eurycomanone, in which 30% of cell inhibition still remained (p<0.0001, T-test). At 8 μg/ml (GI(70)), eurycomanone suppressed anchorage-independent growth of A549 cells by >25% (p<0.05, T-test, n=8) as determined using soft agar colony formation assay. Cisplatin, a chemotherapy drug used for the treatment of non small cell lung cancer on the other hand, inhibited A549 cells proliferation at concentrations ranging from 0.2 μg/ml to 15 μg/ml with a GI(50) of 0.58 μg/ml. The treatment with eurycomanone reduced the abundance expression of the lung cancer markers, heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, p53 tumor suppressor protein and other cancer-associated genes including prohibitin (PHB), annexin 1 (ANX1) and endoplasmic reticulum protein 28 (ERp28) but not the house keeping genes. The mRNA expressions of all genes with the exception of PHB were significantly downregulated, 72 h after treatment (p<0.05, T-test, n=9). These findings suggest that eurycomanone at viable therapeutic concentrations of 5-20 μg/ml exhibited significant anti-proliferative and anti-clonogenic cell growth effects on A549 lung cancer cells. The treatment also resulted in suppression of the lung cancer cell tumor markers and several known cancer cell growth-associated genes.
    Matched MeSH terms: Lung Neoplasms/drug therapy*
  7. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Mohamad NE, Abu N, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526880 DOI: 10.3390/molecules25112670
    Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.
    Matched MeSH terms: Lung Neoplasms/drug therapy*
  8. Mohamad NE, Abu N, Yeap SK, Alitheen NB
    Integr Cancer Ther, 2019 11 23;18:1534735419880258.
    PMID: 31752555 DOI: 10.1177/1534735419880258
    Background: This study aimed to evaluate the antitumor enhancing effect of bromelain consumption on 4T1-challenged mice treated with cisplatin. Methods: Mice challenged with 4T1 triple-negative breast cancer cells received water, bromelain, cisplatin, or bromelain + cisplatin treatment for 28 days. Tumor size was measured, and lung metastasis was evaluated by clonogenic assay. Expression of tumor inflammatory genes of the harvested tumor was quantified by polymerase chain reaction array and ELISA (enzyme-linked immunosorbent assay). Results: All treatments significantly reduced the size of tumor and lung metastasis, with combination treatment showing the best effect. Also, bromelain alone and combination treatment showed downregulation of the expression of tumor inflammatory genes (Gremlin [GREM1], interleukin 1β [IL-1β], interleukin-4 [IL-4], nuclear factor κB subunit 1 [NFκB1], and prostaglandin-endoperoxide synthase 2 [PTGS2]), tumor nitric oxide level, and serum IL-1β, and IL-4 levels. On the other hand, cisplatin treatment increased the expression of selected inflammatory markers. Conclusion: This study suggests that bromelain treatment could potentiate the antitumor effect of cisplatin on triple-negative breast cancer 4T1 cells through modulating the tumor environmental inflammation.
    Matched MeSH terms: Lung Neoplasms/drug therapy
  9. Wahgiman NA, Salim N, Abdul Rahman MB, Ashari SE
    Int J Nanomedicine, 2019;14:7323-7338.
    PMID: 31686809 DOI: 10.2147/IJN.S212635
    Background: Gemcitabine (GEM) is a chemotherapeutic agent, which is known to battle cancer but challenging due to its hydrophilic nature. Nanoemulsion is water-in-oil (W/O) nanoemulsion shows potential as a carrier system in delivering gemcitabine to the cancer cell.

    Methods: The behaviour of GEM in MCT/surfactants/NaCl systems was studied in the ternary system at different ratios of Tween 80 and Span 80. The system with surfactant ratio 3:7 of Tween 80 and Span 80 was chosen for further study on the preparation of nanoemulsion formulation due to the highest isotropic region. Based on the selected ternary phase diagram, a composition of F1 was chosen and used for optimization by using the D-optimal mixture design. The interaction variables between medium chain triglyceride (MCT), surfactant mixture Tween 80: Span 80 (ratio 3:7), 0.9 % sodium chloride solution and gemcitabine were evaluated towards particle size as a response.

    Results: The results showed that NaCl solution and GEM gave more effects on particle size, polydispersity index and zeta potential of 141.57±0.05 nm, 0.168 and -37.10 mV, respectively. The optimized nanoemulsion showed good stability (no phase separation) against centrifugation test and storage at three different temperatures. The in vitro release of gemcitabine at different pH buffer solution was evaluated. The results showed the release of GEM in buffer pH 6.5 (45.19%) was higher than GEM in buffer pH 7.4 (13.62%). The cytotoxicity study showed that the optimized nanoemulsion containing GEM induced cytotoxicity towards A549 cell and at the same time reduced cytotoxicity towards MRC5 when compared to the control (GEM solution).

    Matched MeSH terms: Lung Neoplasms/drug therapy*
  10. Satar NA, Fakiruddin KS, Lim MN, Mok PL, Zakaria N, Fakharuzi NA, et al.
    Oncol Rep, 2018 Aug;40(2):669-681.
    PMID: 29845263 DOI: 10.3892/or.2018.6461
    Through the specific identification and direct targeting of cancer stem cells (CSCs), it is believed that a better treatment efficacy of cancer may be achieved. Hence, the present study aimed to identify a CSC subpopulation from adenocarcinoma cells (A549) as a model of non‑small cell lung cancer (NSCLC). Ιnitially, we sorted two subpopulations known as the triple‑positive (EpCAM+/CD166+/CD44+) and triple‑negative (EpCAM-/CD166-/CD44-) subpopulation using fluorescence-activated cell sorting (FACS). Sorted cells were subsequently evaluated for proliferation and chemotherapy-resistance using a viability assay and were further characterized for their clonal heterogeneity, self-renewal characteristics, cellular migration, alkaline dehydrogenase (ALDH) activity and the expression of stemness-related genes. According to our findings the triple‑positive subpopulation revealed significantly higher (P<0.01) proliferation activity, exhibited better clonogenicity, was mostly comprised of holoclones and had markedly bigger (P<0.001) spheroid formation indicating a better self-renewal capacity. A relatively higher resistance to both 5‑fluouracil and cisplatin with 80% expression of ALDH was observed in the triple‑positive subpopulation, compared to only 67% detected in the triple‑negative subpopulation indicated that high ALDH activity contributed to greater chemotherapy-resistance characteristics. Higher percentage of migrated cells was observed in the triple‑positive subpopulation with 56% cellular migration being detected, compared to only 19% in the triple‑negative subpopulation on day 2. This was similarly observed on day 3 in the triple‑positive subpopulation with 36% higher cellular migration compared to the triple‑negative subpopulation. Consistently, elevated levels of the stem cell genes such as REX1 and SSEA4 were also found in the triple‑positive subpopulation indicating that the subpopulation displayed a strong characteristic of pluripotency. In conclusion, our study revealed that the triple‑positive subpopulation demonstrated similar characteristics to CSCs compared to the triple‑negative subpopulation. It also confirmed the feasibility of using the triple‑positive (EpCAM+/CD166+/CD44+) marker as a novel candidate marker that may lead to the development of novel therapies targeting CSCs of NSCLC.
    Matched MeSH terms: Lung Neoplasms/drug therapy
  11. Poh ME, Liam CK, Mun KS, Chai CS, Wong CK, Tan JL, et al.
    Thorac Cancer, 2019 09;10(9):1841-1845.
    PMID: 31350945 DOI: 10.1111/1759-7714.13156
    Adjuvant chemotherapy has long been indicated to extend survival in completely resected stage IB to IIIA non-small cell lung cancer (NSCLC). However, there is accumulating evidence that chemotherapy or chemoradiotherapy can induce epithelial-to-mesenchymal transition (EMT) in disseminated or circulating NSCLC cells. Here, we describe the first case of EMT as the cause of recurrence and metastasis in a patient with resected stage IIB lung adenosquamous carcinoma after adjuvant chemotherapy. We review the literature and explore the possible mechanisms by which EMT occurs in disseminated tumor cells (DTC) or circulating tumor cells (CTC) in response to adjuvant chemotherapy (cisplatin) as a stressor. We also explore the possible therapeutic strategies to reverse EMT in patients with recurrence. In summary, although adjuvant cisplatin-based chemotherapy in resected NSCLC does extend survival, it may lead to the adverse phenomenon of EMT in disseminated tumor cells (DTC) or circulating tumor cells (CTC) causing recurrence and metastasis.
    Matched MeSH terms: Lung Neoplasms/drug therapy*
  12. Jada SR, Lim R, Wong CI, Shu X, Lee SC, Zhou Q, et al.
    Cancer Sci, 2007 Sep;98(9):1461-7.
    PMID: 17627617
    The objectives of the present study were (i) to study the pharmacogenetics of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A in three distinct healthy Asian populations (Chinese, Malays and Indians), and (ii) to investigate the polygenic influence of these polymorphic variants in irinotecan-induced neutropenia in Asian cancer patients. Pharmacokinetic and pharmacogenetic analyses were done after administration of irinotecan as a 90-min intravenous infusion of 375 mg/m(2) once every 3 weeks (n = 45). Genotypic-phenotypic correlates showed a non-significant influence of UGT1A1*28 and ABCG2 c.421C>A polymorphisms on the pharmacokinetics of SN-38 (P > 0.05), as well as severity of neutropenia (P > 0.05). Significantly higher exposure levels to SN-38 (P = 0.018), lower relative extent of glucuronidation (REG; P = 0.006) and higher biliary index (BI; P = 0.003) were found in cancer patients homozygous for the UGT1A1*6 allele compared with patients harboring the reference genotype. The mean absolute neutrophil count (ANC) was 85% lower and the prevalence of grade 4 neutropenia (ANC < or = 500/microL) was 27% in patients homozygous for UGT1A1*6 compared with the reference group. Furthermore, the presence of the UGT1A1*6 allele was associated with an approximately 3-fold increased risk of developing severe grade 4 neutropenia compared with patients harboring the reference genotype. These exploratory findings suggest that homozygosity for UGT1A1*6 allele may be associated with altered SN-38 disposition and may increase the risk of severe neutropenia in Asian cancer patients, particularly in the Chinese cancer patients who comprised 80% (n = 36) of the patient population in the present study.
    Matched MeSH terms: Lung Neoplasms/drug therapy
  13. Anasamy T, Chee CF, Kiew LV, Chung LY
    Eur J Pharm Sci, 2020 Jan 15;142:105140.
    PMID: 31704345 DOI: 10.1016/j.ejps.2019.105140
    This study reports the in vivo performance of two tribenzyltin carboxylate complexes, tri(4-fluorobenzyl)tin[(N,N-diisopropylcarbamothioyl)sulfanyl]acetate (C1) and tribenzyltin isonicotinate (C9), in their native form as well as in a poly(lactic-co-glycolic acid) (PLGA)-based nanoformulation, to assess their potential to be translated into clinically useful agents. In a 4T1 murine metastatic mammary tumour model, single intravenous administration of C1 (2.7 mg/kg) and C9 (2.1 mg/kg; 2.1 mg/kg C9 is equivalent to 2.7 mg/kg C1) induced greater tumour growth delay than cisplatin and doxorubicin at equivalent doses, while a double-dose regimen demonstrated a much greater tumour growth delay than the single-dose treated groups. To improve the efficacy of the complexes in vivo, C1 and C9 were further integrated into PLGA nanoparticles to yield nanosized PLGA-C1 (183.7 ± 0.8 nm) and PLGA-C9 (163.2 ± 1.2 nm), respectively. Single intravenous administration of PLGA-C1 (2.7 mg C1 equivalent/kg) and PLGA-C9 (2.1 mg C9 equivalent/kg) induced greater tumour growth delay (33% reduction in the area under curve compared to that of free C1 and C9). Multiple-dose administration of PLGA-C1 (5.4 mg C1 equivalent/kg) and PLGA-C9 (4.2 mg C9 equivalent/kg) induced tumour growth suppression at the end of the study (21.7 and 34.6% reduction relative to the size on day 1 for the double-dose regimen; 73.5 and 79.0% reduction relative to the size on day 1 for the triple-dose regimen, respectively). Such tumour growth suppression was not observed in mice receiving multiple-dose regimens of free C1 and C9. Histopathological analysis revealed that metastasis to the lung and liver was inhibited in mice receiving PLGA-C1 and PLGA-C9. The current study has demonstrated the improved in vivo antitumour efficacies of C1 and C9 compared with conventional chemotherapy drugs and the enhancement of the efficacies of these agents via a robust PLGA-based nanoformulation and multiple-drug administration approach.
    Matched MeSH terms: Lung Neoplasms/drug therapy
  14. Alhajj N, Chee CF, Wong TW, Rahman NA, Abu Kasim NH, Colombo P
    Expert Opin Drug Deliv, 2018 12;15(12):1223-1247.
    PMID: 30422017 DOI: 10.1080/17425247.2018.1547280
    INTRODUCTION: Pulmonary drug delivery is organ-specific and benefits local drug action for lung cancer. The use of nanotechnology and targeting ligand enables cellular-specific drug action. Combination approaches increase therapeutic efficacy and reduce adverse effects of cancer chemotherapeutics that have narrow therapeutic index window and high cytotoxicity levels. The current progress of inhaled cancer chemotherapeutics has not been examined with respect to targeting strategy and clinical application potential.

    AREAS COVERED: This review examines the state of the art in passive (processing and formulation) and active (targeting ligand and receptor binding) technologies in association with the use of nanocarrier to combat lung cancer. It highlights routes to equip nanocarrier with targeting ligands as a function of the chemistry of participating biomolecules and challenges in inhalational nanoproduct development and clinical applications. Both research and review articles were examined using the Scopus, Elsevier, Web of Science, Chemical Abstracts, Medline, CASREACT, CHEMCATS, and CHEMLIST database with the majority of information retrieved between those of 2000-2018.

    EXPERT COMMENTARY: The therapeutic efficacy of targeting ligand-decorated nanocarriers needs to be demonstrated in vivo in the form of finished inhalational products. Their inhalation efficiency and medical responses require further examination. Clinical application of inhaled nanocancer chemotherapeutics is premature.

    Matched MeSH terms: Lung Neoplasms/drug therapy*
  15. Teoh SL, Das S
    Curr Drug Targets, 2017 Nov 30;18(16):1880-1892.
    PMID: 27628948 DOI: 10.2174/1389450117666160907153338
    BACKGROUND: The incidence of lung cancers has increased globally. Increased exposure to tobacco, passive smoking, less consumption of vegetables and fruits and occupational exposure to asbestos, arsenic and chromium are the main risk factors. The pathophysiology of lung cancer is complex and not well understood. Various microRNAs, genes and pathways are associated with lung cancers. The genes involved in lung cancers produce proteins involved in cell growth, differentiation, different cell cycles, apoptosis, immune modulation, tumor spread and progression. The Hippo pathway (also known as the Salvador-Warts-Hippo pathway) is the latest emerging concept in cancers. The Hippo pathway plays an important role in controlling the size of the tissue and organ by virtue of its action on cell proliferation and apoptosis.

    OBJECTIVE: In the present review, we highlight the mammalian Hippo pathway, role of its core members, its upstream regulators, downstream effectors and the resistance cases in lung cancers.

    RESULTS: Specific interaction of Mer with cell surface hyaluronan receptor CD44 is vital in cell contact inhibition, thereby activating Hippo pathway. Both transcription co-activators YAP and TAZ (also known as WWTR1, being homologs of Drosophila Yki) are important regulators of proliferation and apoptosis, and serve as major downstream effectors of the Hippo pathway. Mutation of NF2, the upstream regulator of Hippo pathway is linked to the cancers.

    CONCLUSION: Targeting YAP and TAZ may be important for future drug delivery and treatment.

    Matched MeSH terms: Lung Neoplasms/drug therapy
  16. Paudel KR, Wadhwa R, Tew XN, Lau NJX, Madheswaran T, Panneerselvam J, et al.
    Life Sci, 2021 Jul 01;276:119436.
    PMID: 33789146 DOI: 10.1016/j.lfs.2021.119436
    Non-small cell lung cancer (NSCLC) is one of the major causes of cancer-related mortality globally. Despite the availability of therapeutic options, the improvement in patient survival is yet to be achieved. Recent advances in natural product (e.g., Rutin) research, therapeutic nanotechnology and especially the combination of both could aid in achieving significant improvements in the treatment or management of NSCLC. In this study, we explore the anti-cancer activity of Rutin-loaded liquid crystalline nanoparticles (LCNs) in an in vitro model where we have employed the A549 human lung epithelial carcinoma cell line. The anti-proliferative activity was determined by MTT and Trypan blue assays, whereas, the anti-migratory activity was evaluated by the scratch wound healing assay and a modified Boyden chamber assay. We also evaluated the anti-apoptotic activity by Annexin V-FITC staining, and the colony formation activity was studied using crystal violet staining. Here, we report that Rutin-LCNs showed promising anti-proliferative and anti-migratory activities. Furthermore, Rutin-LCNs also induced apoptosis in the A549 cells and inhibited colony formation. The findings warrant further detailed and in-depth anti-cancer mechanistic studies of Rutin-LCNs with a focus towards a potential therapeutic option for NSCLC. LCNs may help to enhance the solubility of Rutin used in the treatment of lung cancer and hence enhance the anticancer effect of Rutin.
    Matched MeSH terms: Lung Neoplasms/drug therapy*
  17. Chan Y, Ng SW, Mehta M, Gupta G, Chellappan DK, Dua K
    Future Med Chem, 2020 11;12(21):1887-1890.
    PMID: 33054387 DOI: 10.4155/fmc-2020-0206
    Matched MeSH terms: Lung Neoplasms/drug therapy*
  18. Mehta M, Satija S, Paudel KR, Malyla V, Kannaujiya VK, Chellappan DK, et al.
    Nanomedicine, 2021 01;31:102303.
    PMID: 32980549 DOI: 10.1016/j.nano.2020.102303
    MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.
    Matched MeSH terms: Lung Neoplasms/drug therapy
  19. Wu YL, Lee V, Liam CK, Lu S, Park K, Srimuninnimit V, et al.
    Lung Cancer, 2018 12;126:1-8.
    PMID: 30527172 DOI: 10.1016/j.lungcan.2018.10.004
    OBJECTIVE: Patients with advanced non-small-cell lung cancer (NSCLC) with an adenocarcinoma component are recommended to undergo epidermal growth factor receptor (EGFR) mutation testing when being considered for EGFR targeted therapy. We conducted an exploratory analysis to inform the clinical utility of EGFR mutation testing in blood cell-free DNA using the cobas®EGFR Mutation Test v2.

    MATERIALS AND METHODS: Two EGFR mutation tests, a tissue-based assay (cobas® v1) and a tissue- and blood-based assay (cobas® v2) were used to analyze matched biopsy and blood samples (897 paired samples) from three Asian studies of first-line erlotinib with similar intent-to-treat populations. ENSURE was a phase III comparison of erlotinib and gemcitabine/platinum, FASTACT-2 was a phase III study of gemcitabine/platinum plus erlotinib or placebo, and ASPIRATION was a single-arm phase II study of erlotinib. Agreement statistics were evaluated, based on sensitivity and specificity between the two assays in subgroups of patients with increasing tumor burden.

    RESULTS: Patients with discordant EGFR (tissue+/plasma-) mutation status achieved longer progression-free and overall survival than those with concordant (tissue+/plasma+) mutation status. Tumor burden was significantly greater in patients with concordant versus discordant mutations. Pooled analyses of data from the three studies showed a sensitivity of 72.1% (95% confidence interval [CI] 67.8-76.1) and a specificity of 97.9% (95% CI 96.0-99.0) for blood-based testing; sensitivity was greatest in patients with larger baseline tumors.

    CONCLUSIONS: Blood-based EGFR mutation testing demonstrated high specificity and good sensitivity, and offers a convenient and easily accessible diagnostic method to complement tissue-based tests. Patients with a discordant mutation status in plasma and tissue, had improved survival outcomes compared with those with a concordant mutation status, which may be due to their lower tumor burden. These data help to inform the clinical utility of this blood-based assay for the detection of EGFR mutations.

    Matched MeSH terms: Lung Neoplasms/drug therapy*
  20. Faisham WI, Zulmi W, Halim AS, Biswal BM, Mutum SS, Ezane AM
    Singapore Med J, 2006 Aug;47(8):679-83.
    PMID: 16865207
    The surgical treatment of Stage III or aggressive giant cell tumour of the bone, whether to perform intralesional or en-bloc resection, remains controversial. The aim of this study is to identify the effectiveness of en-bloc resection for local control and final oncological outcome of the disease.
    Matched MeSH terms: Lung Neoplasms/drug therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links