OBJECTIVE: To examine the effects of metformin on parameters involved in testicular lactate production, transport/utilisation, and sexual behaviour in diabetic state.
METHODS: Male Sprague-Dawley rats were assigned into normal control (NC), diabetic control (DC), and metformin-treated diabetic group (n = 6/group). Metformin (300 mg/kg b.w./day) was administrated orally for 4 weeks.
RESULTS: Intra-testicular glucose and lactate levels, and lactate dehydrogenase (LDH) activity increased, while the mRNA transcript levels of genes responsible for testicular glucose and lactate transport/utilisation (glucose transporter 3, monocarboxylate transporter 4 (MCT4), MCT2, and LDH type C) decreased in DC group. Furthermore, penile nitric oxide increased, while cyclic guanosine monophosphate decreased, with impaired sexual behaviour in DC group. Treatment with metformin improved these parameters.
CONCLUSIONS: Metformin increases testicular lactate transport/utilisation and improves sexual behaviour in diabetic state.
MATERIALS AND METHODS: In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group.
KEY FINDINGS: DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3.
SIGNIFICANCE: Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.
METHODS: In this study, the effect of xanthone-enriched fraction of Garcinia mangostana (XEFGM) and α-mangostin (α-MG) were investigated on cognitive functions of the chronic cerebral hypoperfusion (CCH) rats.
KEY FINDINGS: HPLC analysis revealed that XEFGM contained 55.84% of α-MG. Acute oral administration of XEFGM (25, 50 and 100 mg/kg) and α-MG (25 and 50 mg/kg) before locomotor activity and Morris water maze (MWM) tests showed no significant difference between the groups for locomotor activity.
CONCLUSIONS: However, α-MG (50 mg/kg) and XEFGM (100 mg/kg) reversed the cognitive impairment induced by CCH in MWM test. α-MG (50 mg/kg) was further tested upon sub-acute 14-day treatment in CCH rats. Cognitive improvement was shown in MWM test but not in long-term potentiation (LTP). BDNF but not CaMKII was found to be down-regulated in CCH rats; however, both parameters were not affected by α-MG. In conclusion, α-MG ameliorated learning and memory deficits in both acute and sub-acute treatments in CCH rats by improving the spatial learning but not hippocampal LTP. Hence, α-MG may be a promising lead compound for CCH-associated neurodegenerative diseases, including vascular dementia and Alzheimer's disease.
METHODS: Thirty-two Sprague-Dawley male rats were randomly allocated into four groups (n=8): control, diabetes mellitus (DM) rats and diabetic rats treated with ifenprodil at a lower dose (0.5 μg/day) (I 0.5) or higher dose (1.0 μg/day) (I 1.0). DM was induced by a single injection of streptozotocin at 60 mg/kg on day 0 of experimentation. Diabetic status was assessed on day 3 of the experimentation. The responses on both tactile and thermal stimuli were assessed on day 0 (baseline), day 14 (pre-intervention), and day 22 (post-intervention). Ifenprodil was given intrathecally for 7 days from day 15 until day 21. On day 23, 5% formalin was injected into the rats' hind paw and the nociceptive responses were recorded for 1 hour. The rats were sacrificed 72 hours post-formalin injection and an analysis of the spinal NR2B expression was performed.
RESULTS: DM rats showed a significant reduction in pain threshold in response to the tactile and thermal stimuli and higher nociceptive response during the formalin test accompanied by the higher expression of phosphorylated spinal NR2B in both sides of the spinal cord. Ifenprodil treatment for both doses showed anti-allodynic and anti-nociceptive effects with lower expression of phosphorylated and total spinal NR2B.
CONCLUSION: We suggest that the pain process in the streptozotocin-induced diabetic rat that has been modulated is associated with the higher phosphorylation of the spinal NR2B expression in the development of PDN, which is similar to other models of neuropathic rats.
AIM: This study aims to evaluate the anti-inflammation an analgesic activity of the aqueous extract of Launaea arborescens (AqELA) and its pathway of action.
METHODS: the investigation of anti-inflammatory and analgesic effects were done using formalin test, acetic acid test. For mechanism investigation, it was used hot plate test to induce opioid receptors, a histamine and serotonin test to induce edema paw, finally, for the TRPV1 receptor, it was used the capsaicin test.
RESULTS: The aqueous extract of Launaea arborescens showed a significant inhibition of abdominal writhing test 95% and 100% inhibition of licking paw using acid acetic test and formalin test respectively (EC: 47 mg/kg and 104 mg/kg). The analgesic effect of the aqueous extract of Launaea arborescens showed inhibition of sensation of pain after 120 min compared to morphine effect. The aqueous extract of Launaea arborescens reduced paw volume after 180 min and 120 min for histamine and serotonin respectively with dose-dependent. Concerning of TRPV1 receptors, the inhibition was showed at doses 100 mg and 300 mg.
CONCLUSION: Our results contribute towards validation of the traditional use of Launaea arborescens for inflammation ailment.
RESULTS: An RNAi construct targeting the RNA recognition motif of the Aedes aegypti transformer-2 (tra-2) gene does not trigger female-to-male sex conversion as commonly observed among dipterous insects. Instead, homozygous insects show greater mortality among m-chromosome-bearing sperm and mm zygotes, yielding up to 100% males in the subsequent generations. The performance of transgenic males was not significantly different to wild-type males in narrow-cage competitive mating experiments.
CONCLUSION: Our data provide preliminary evidence that the knockdown of Ae. aegypti tra-2 gene expression causes segregation distortion acting at the level of gametic function, which is reinforced by sex-specific zygotic lethality. This finding could promote the development of new synthetic sex distorter systems for the production of genetic sexing mosquito strains.