METHODS: We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes.
RESULTS: Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton.
CONCLUSIONS: The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.
MATERIALS AND METHODS: This is a cross-sectional study conducted at the Universiti Kebangsaan Malaysia Medical Centre (UKMMC), from January 2018 to July 2018. Women with RA aged between 15 and 49 years who were on MTX therapy for at least six months, were consecutively recruited. All subjects were interviewed to gather information on their menstrual history and menopausal symptoms. The medical records were reviewed to obtain further data on the disease characteristics and RA treatment. The RA disease activity was determined using the DAS 28 scoring system. All subjects were tested for their serum FSH and LH levels.
RESULTS: A total of 40 patients were included in this study. The median dose of MTX used by the subjects was 12.5 mg weekly. The mean cumulative MTX dose was 1664.92 ± 738.61 mg. More than half (53.1%) of the subjects reported menopausal symptoms especially hot flushes. We found that FSH levels had a significant positive correlation with cumulative MTX dose [(r = 0.86), p < 0.001] and the duration of MTX therapy [(r = 0.84), p < 0.001]. Besides, there was a significant relationship between disease activity based on DAS 28 and FSH levels (p < 0.01). Age, body mass index, disease duration, and weekly MTX dose showed no associations with the FSH levels. On multivariate analysis, DAS 28 was found to be the only parameter that remained significant [β = 1.74 (95% CI 1.17-2.31), p < 0.001]. The LH levels, on the other hand, were not associated with MTX therapy or disease activity.
CONCLUSION: Higher levels of FSH, which is an indicator of diminished ovarian reserve, have a significant positive relationship with disease activity, cumulative dose, and duration of MTX therapy in RA.
METHODS: They have also been used for antibacterial, antifungal, anticancer, antitubercular activities. Novel synthesised Schiff's base 2-methoxy-4-((3-methylpyridin-2-ylimino)methyl)phenol (SB) and its metal complexes (Zn[II], Cu[II], Co[II] and Ni[II]) were characterised by UV, IR and NMR spectroscopy. Formation of the Schiff base and the metal (Zn[II], Cu[II], Co[II] and Ni[II]) chelates was supported by spectral and analytical data. The ligand and metal complexes have been screened for their antibacterial activity against Staphylococcus aureus, Salmonella typhi, Escherichia coli, Klebsiella pneumoniae and antifungal activity against the fungi Candida albicans and Aspergillus niger. Further, the synthesised compounds were also screened for antiproliferative activity against the human colorectal carcinoma (HCT116) cell line using the Sulforhodamine B assay.
RESULT: Metal complexes formed were found to enhance the potency of the Schiff base due to coordination with a copper complex, showing better activity than others.
CONCLUSION: Copper complex was observed to be more potent than other complexes against all the pathogenic microbes and cancer cell line (HCT116).
RESULTS: CTNNB1 gene of HEK 293T cells was knocked out by CRISPR-Cas9. This was confirmed by sequencing and western blotting. Methylthiazolyl-tetrazolium bromide assays indicated that deletion of β-catenin significantly weakened adhesion ability and inhibited proliferation rate (P
METHODS: Initially, MTT proliferation assay was used to test the cell viability with various doses of MNQ (5-100 µM). As the half maximal inhibitory concentration (IC50) was obtained, glucose uptake and lactate assays of the cells were tested with IC50 dose of MNQ. The treated cells were also subjected to gene and protein analysis of glycolysis-related molecules (GLUT1 and Akt).
RESULTS: The results showed that MNQ decreased the percentage of MDA-MB-231 cell viability in a dose-dependent manner with the IC50 value of 29 µM. The percentage of glucose uptake into the cells and lactate production decreased significantly after treatment with MNQ as compared to untreated cells. Remarkably, the expressions of GLUT1 and Akt molecules decreased in MNQ-treated cells, suggesting that the inhibition of glycolysis by MNQ is GLUT1-dependent and possibly mediated by the Akt signaling pathway.
CONCLUSION: Our findings indicate the ability of MNQ to inhibit the glycolytic activities as well as glycolysis-related molecules in MDA-MB-231 cells, suggesting the potential of MNQ to be further developed as an effective anticancer agent against TNBC cells.