Displaying publications 2101 - 2120 of 10379 in total

Abstract:
Sort:
  1. Kong H, Saman N, Tee PN, Cheu SC, Song ST, Johari K, et al.
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11140-11152.
    PMID: 30796666 DOI: 10.1007/s11356-019-04248-5
    The aim of this work is to convert agroforestry residue to a novel adsorbent (M-1CTA-SDS-BT) used for adsorptive benzene sequestration from aqueous solution. In this study, the anionic surfactant-coated-cationized banana trunk was synthesized and characterized for batch adsorption of benzene from aqueous solution. The surface morphology, surface chemistry, surface area, and pore properties of the synthesized adsorbents were examined. It was proven that surface cationization successfully increased the benzene adsorption capacity of sodium dodecyl sulfate-coated adsorbents. The Langmuir isotherm model satisfactorily described the equilibrium adsorption data. The maximum benzene adsorption capacity (qmax) of 468.19 μmol/g was attained. The kinetic data followed the pseudo-second-order kinetic model in which the rate-limiting step was proven to be the film diffusion. The batch-adsorbent regeneration results indicated that the M-1CTA-SDS-BT could withstand at least five adsorption/desorption cycles without drastic adsorption capacity reduction. The findings demonstrated the adsorptive potential of agroforestry-based adsorbent as a natural and cheap material for benzene removal from contaminated water.
    Matched MeSH terms: Benzene/chemistry*; Sodium Dodecyl Sulfate/chemistry*; Surface-Active Agents/chemistry; Water Pollutants, Chemical/chemistry*; Agrochemicals/chemistry*
  2. Ng YS, Sen Gupta B, Hashim MA
    Environ Sci Pollut Res Int, 2016 Jan;23(1):546-55.
    PMID: 26330317 DOI: 10.1007/s11356-015-5290-0
    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.
    Matched MeSH terms: Chromium/chemistry*; Lead/chemistry*; Soil/chemistry; Soil Pollutants/chemistry*; Citric Acid/chemistry
  3. Ong SA, Min OM, Ho LN, Wong YS
    Environ Sci Pollut Res Int, 2013 May;20(5):3405-13.
    PMID: 23114839 DOI: 10.1007/s11356-012-1286-1
    The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO₂ was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir-Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO₂ than MO indicating greater photocatalytic degradation rate.
    Matched MeSH terms: Azo Compounds/chemistry*; Diazonium Compounds/chemistry*; Coloring Agents/chemistry*; Titanium/chemistry; Water Pollutants, Chemical/chemistry*
  4. Yap CL, Gan S, Ng HK
    Environ Sci Pollut Res Int, 2015 Jan;22(1):329-42.
    PMID: 25065478 DOI: 10.1007/s11356-014-3199-7
    This study focuses on the feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate (EL)-based Fenton treatment via a combination of parametric and kinetic studies. An optimised operating condition was observed at 66.7 M H2O2 with H2O2/Fe(2+) of 40:1 for low soil organic carbon (SOC) content and mildly acidic soil (pH 6.2), and 10:1 for high SOC and very acidic soil (pH 4.4) with no soil pH adjustment. The desorption kinetic was only mildly shifted from single equilibrium to dual equilibrium of the first-order kinetic model upon ageing. Pretreatment with EL fc = 0.60 greatly reduced the mass transfer coefficient especially for the slow desorbed fraction (kslow) of high molecular weight (HMW) PAHs, largely contributed by the concentration gradient created by EL-enhanced solubility. As the major desorption obstacle was almost fully overcome by the pretreatment, the pseudo-first-order kinetic reaction rate constant of PAHs degradation of aged soils was statistically discernible from that of freshly contaminated soils but slightly reduced in high SOC and high acidity soil. Stabilisation of H2O2 by EL addition in combination with reduced Fe(2+) catalyst were able to slow the decomposition rate of H2O2 even at higher soil pH.
    Matched MeSH terms: Hydrogen Peroxide/chemistry; Lactates/chemistry*; Polycyclic Hydrocarbons, Aromatic/chemistry*; Soil/chemistry; Soil Pollutants/chemistry*
  5. Altowayti WAH, Allozy HGA, Shahir S, Goh PS, Yunus MAM
    Environ Sci Pollut Res Int, 2019 Oct;26(28):28737-28748.
    PMID: 31376124 DOI: 10.1007/s11356-019-06059-0
    Several parts of the world have been facing the problem of nitrite and nitrate contamination in ground and surface water. The acute toxicity of nitrite has been shown to be 10-fold higher than that of nitrate. In the present study, aminated silica carbon nanotube (ASCNT) was synthesised and tested for nitrite removal. The synergistic effects rendered by both amine and silica in ASCNT have significantly improved the nitrite removal efficiency. The IEP increased from 2.91 for pristine carbon nanotube (CNT) to 8.15 for ASCNT, and the surface area also increased from 178.86 to 548.21 m2 g-1. These properties have promoted ASCNT a novel adsorbent to remove nitrite. At optimum conditions of 700 ppm of nitrite concentration at pH 7 and 5 h of contact with 15 mg of adsorbent, the ASCNT achieved the maximal loading capacity of 396 mg/g (85% nitrite removal). The removal data of nitrite onto ASCNT fitted the Langmuir isotherm model better than the Freundlich isotherm model with the highest regression value of 0.98415, and also, the nonlinear analysis of kinetics data showed that the removal of nitrite followed pseudo-second-order kinetic. The positive values of both ΔS° and ΔH° suggested an endothermic reaction and an increase in randomness at the solid-liquid interface. The negative ΔG° values indicated a spontaneous adsorption process. The ASCNT was characterised using FESEM-EDX and FTIR, and the results obtained confirmed the removal of nitrite. Based on the findings, ASCNT can be considered as a novel and promising candidate for the removal of nitrite ions from wastewater.
    Matched MeSH terms: Nitrites/chemistry*; Water/chemistry; Water Pollutants, Chemical/chemistry*; Nanotubes, Carbon/chemistry*; Nanocomposites/chemistry
  6. Isa N, Lockman Z
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11482-11495.
    PMID: 30806934 DOI: 10.1007/s11356-019-04583-7
    Silver nanoparticles (AgNPs) were prepared by reacting Kyllinga brevifolia extract (KBE) with AgNO3 aqueous solution at room temperature (22 ± 3 °C). The phytochemical constituents in KBE responsible for the reduction process were identified as carbohydrate, protein, and plant sterols (stigmasterol and campesterol). KBE was also found to function as a capping agent for stabilization of AgNPs. The AgNPs were stable at room temperature and had a quasi-spherical shape with an average particle size 22.3 nm. The use of KBE offers not only eco-friendly and non-pathogenic path for AgNPs formation, it also induced rapid formation of the AgNPs. Methylene blue (MB) removal was then done on the AgNPs in the presence of either KBE or NaBH4. Ninety-three percent removal of MB was achieved with a rate of reaction 0.2663 min-1 in the solution with KBE+AgNPs (pH 2). However, in NaBH4+AgNPs system, 100% MB removal was achieved at pH 8-10. The reaction rate was 2.5715 min-1 indicating a fast removal rate of MB dye. The process of reduction occurs via electron relay effect whereas in KBE+AgNPs system, sedimentation occurred along with the reduction process. Nevertheless, the use of KBE+AgNPs system is preferred as the reducing agent is more benign to the environment.
    Matched MeSH terms: Plant Extracts/chemistry; Silver/chemistry*; Silver Nitrate/chemistry; Angiosperms/chemistry*; Metal Nanoparticles/chemistry*
  7. Eliaser EM, Ho JH, Hashim NM, Rukayadi Y, Ee GCL, Razis AFA
    Molecules, 2018 Oct 20;23(10).
    PMID: 30347850 DOI: 10.3390/molecules23102708
    Natural products, either pure compounds or standardized plant extracts, have provided opportunities for the discovery of new drugs. Nowadays, most of the world's population still relies on traditional medicines for healthcare purposes. Plants, in particular, are always used as traditional medicine, as they contain a diverse number of phytochemicals that can be used for the treatment of diseases. The multicomponent feature in the plants is considered a positive phytotherapeutic hallmark. Hence, ethnopharmacognosy has been the focus for finding alternative treatments for diseases. Melicopelunu-ankenda, also known as Euodialunu-ankenda, is widely distributed in tropical regions of Asia. Different parts of M.lunu-ankenda have been used for treatment of hypertension, menstrual disorder, diabetes, and fever, and as an emmenagogue and tonic. It has also been consumed as salad and as a condiment for food flavorings. The justification of use of M.lunu-ankenda in folk medicines is supported by its reported biological activities, including its cytotoxic, antibacterial, antioxidant, analgesic, antidiabetic, and anti-inflammatory activities. This review summarizes the phytochemical compounds isolated from various parts of M.lunu-ankenda, such as root and leaves, and also its biological activities, which could make the species a new therapeutic agent for some diseases, including diabetes, in the future.
    Matched MeSH terms: Antioxidants/chemistry; Plant Extracts/chemistry; Rutaceae/chemistry*; Evodia/chemistry; Phytochemicals/chemistry
  8. Ahmad N, Colak B, Zhang DW, Gibbs MJ, Watkinson M, Becer CR, et al.
    Sensors (Basel), 2019 Apr 08;19(7).
    PMID: 30965649 DOI: 10.3390/s19071677
    Peptide cross-linked poly(ethylene glycol) hydrogel has been widely used for drug delivery and tissue engineering. However, the use of this material as a biosensor for the detection of collagenase has not been explored. Proteases play a key role in the pathology of diseases such as rheumatoid arthritis and osteoarthritis. The detection of this class of enzyme using the degradable hydrogel film format is promising as a point-of-care device for disease monitoring. In this study, a protease biosensor was developed based on the degradation of a peptide cross-linked poly(ethylene glycol) hydrogel film and demonstrated for the detection of collagenase. The hydrogel was deposited on gold-coated quartz crystals, and their degradation in the presence of collagenase was monitored using a quartz crystal microbalance (QCM). The biosensor was shown to respond to concentrations between 2 and 2000 nM in less than 10 min with a lower detection limit of 2 nM.
    Matched MeSH terms: Cross-Linking Reagents/chemistry; Peptides/chemistry*; Polyethylene Glycols/chemistry; Collagenases/chemistry; Hydrogel/chemistry*
  9. Wan-Nadilah WA, Akhtar MT, Shaari K, Khatib A, Hamid AA, Hamid M
    BMC Complement Altern Med, 2019 Sep 05;19(1):245.
    PMID: 31488132 DOI: 10.1186/s12906-019-2655-9
    BACKGROUND: Cosmos caudatus is an annual plant known for its medicinal value in treating several health conditions, such as high blood pressure, arthritis, and diabetes mellitus. The α-glucosidase inhibitory activity and total phenolic content of the leaf aqueous ethanolic extracts of the plant at different growth stages (6, 8. 10, 12 and 14 weeks) were determined in an effort to ascertain the best time to harvest the plant for maximum medicinal quality with respect to its glucose-lowering effects.

    METHODS: The aqueous ethanolic leaf extracts of C. caudatus were characterized by NMR and LC-MS/MS. The total phenolic content and α-glucosidase inhibitory activity were evaluated by the Folin-Ciocalteu method and α-glucosidase inhibitory assay, respectively. The statistical significance of the results was evaluated using one-way ANOVA with Duncan's post hoc test, and correlation among the different activities was performed by Pearson's correlation test. NMR spectroscopy along with multivariate data analysis was used to identify the metabolites correlated with total phenolic content and α-glucosidase inhibitory activity of the C. caudatus leaf extracts.

    RESULTS: It was found that the α-glucosidase inhibitory activity and total phenolic content of the optimized ethanol:water (80:20) leaf extract of the plant increased significantly as the plant matured, reaching a maximum at the 10th week. The IC50 value for α-glucosidase inhibitory activity (39.18 μg mL- 1) at the 10th week showed greater potency than the positive standard, quercetin (110.50 μg mL- 1). Through an 1H NMR-based metabolomics approach, the 10-week-old samples were shown to be correlated with a high total phenolic content and α-glucosidase inhibitory activity. From the partial least squares biplot, rutin and flavonoid glycosides, consisting of quercetin 3-O-arabinofuranoside, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, and quercetin 3-O-xyloside, were identified as the major bioactive metabolites. The metabolites were identified by NMR spectroscopy (J-resolve, HSQC and HMBC experiments) and further supported by dereplication via LC-MS/MS.

    CONCLUSION: For high phytomedicinal quality, the 10th week is recommended as the best time to harvest C. caudatus leaves with respect to its glucose lowering potential.

    Matched MeSH terms: alpha-Glucosidases/chemistry; Plant Extracts/chemistry*; Plant Leaves/chemistry; Asteraceae/chemistry*; Glycoside Hydrolase Inhibitors/chemistry*
  10. Zheng S, Zhang H, Lakshmipriya T, Gopinath SCB, Yang N
    Biomed Res Int, 2019;2019:9726967.
    PMID: 31380444 DOI: 10.1155/2019/9726967
    Gestational diabetes (hyperglycaemia) is an elevated blood sugar level diagnosed during the period of pregnancy and affects the baby's health. Hyperglycaemia has been found within the gestational weeks between 24 and 28, and the foetus has also the possibility of getting out prior to this test frame; it causes excessive birth weight, early birth, low-blood sugar level, respiratory distress syndrome, and type-2 diabetes to the mother. It creates a mandatory situation to identify the hyperglycaemia at least during the pregnancy weeks from 18 to 20. Further, a continuous monitoring of the level of glucose is necessary for the proper delivery. In this work, a method is introduced for glucose detection at 0.06 mg/mL, assisted by gold nanorod (GNR)-conjugated glucose oxidase (GOx) on interdigitated electrode sensor. In the absence of GNR, GOx shows the limit of glucose detection to be 0.25 mg/mL. Moreover, with GOx-GNR the reactions of all the glucose concentrations have recorded higher levels of the current from the baseline. With the specificity analysis, it was found that the glucose only reacts with GOx-GNR and discriminates other sugars efficiently. This method of detection is useful to diagnose and continuously monitor the glucose level during the pregnancy period.
    Matched MeSH terms: Blood Glucose/chemistry; Enzymes, Immobilized/chemistry; Glucose Oxidase/chemistry; Gold/chemistry; Nanotubes/chemistry*
  11. Abdulwanis Mohamed Z, Mohamed Eliaser E, Mazzon E, Rollin P, Cheng Lian Ee G, Abdull Razis AF
    Molecules, 2019 Aug 27;24(17).
    PMID: 31461914 DOI: 10.3390/molecules24173109
    Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases.
    Matched MeSH terms: Anti-Inflammatory Agents/chemistry; Antioxidants/chemistry; Neuroprotective Agents/chemistry; Rutaceae/chemistry*; Phytochemicals/chemistry
  12. Teh CH, Nazni WA, Lee HL, Fairuz A, Tan SB, Sofian-Azirun M
    Med Vet Entomol, 2013 Dec;27(4):414-20.
    PMID: 23650928 DOI: 10.1111/mve.12012
    The emergence of multidrug-resistant bacterial strains has prompted the reintroduction of maggot therapy in the treatment of chronic, infected wounds. Many previous studies have demonstrated the potent antibacterial activity of larval excretions/secretions of the blowfly Lucilia sericata (Meigen) (Diptera:Calliphoridae) against bacteria. However, the antibacterial activity of its sibling species, Lucilia cuprina (Wiedemann) (Diptera:Calliphoridae) against a wide range of pathogenic bacteria has never been determined. The aim of this study was to develop a new procedure to produce whole body extract of larvae of L. cuprina via methanol extraction as well as to demonstrate the in vitro antibacterial activity of this extract against seven selected wound pathogens (Staphylococcus aureus, methicillin-resistant S. aureus, S. epidermidis, Streptococcus pyogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli). The turbidimetric assay demonstrated that L. cuprina larval extract was significantly potent against all bacteria tested (P 
    Matched MeSH terms: Methanol/chemistry*; Anti-Bacterial Agents/chemistry; Cell Extracts/chemistry; Diptera/chemistry*; Larva/chemistry
  13. Salleh WMNHW
    Z Naturforsch C J Biosci, 2021 Mar 26;76(3-4):93-102.
    PMID: 32960783 DOI: 10.1515/znc-2020-0116
    Hoja santa (Piper auritum) refers to an important presence in Mexican cuisine. The information of this review article was gathered from several electronic sources such as Scopus, Medline, Scielo, ScienceDirect, SciFinder, Web of Science, Google Scholar and Lilacs. Phytochemical studies have revealed the presence of benzoic acid derivatives, phenylpropanoids and triterpenoids, while the essential oils have shown its richness in safrole, hence it has several activities, such as antioxidant, toxicity, insecticidal, anti-diabetic and cytotoxic properties. This review is expected to draw the attention of medical professionals and the general public towards P. auritum as well as to open the door for detailed research in the future.
    Matched MeSH terms: Antioxidants/chemistry; Plant Extracts/chemistry; Benzoic Acid/chemistry; Piper/chemistry; Phytochemicals/chemistry*
  14. Dalle Vacche S, Karunakaran V, Patrucco A, Zoccola M, Douard L, Ronchetti S, et al.
    Molecules, 2021 Aug 04;26(16).
    PMID: 34443315 DOI: 10.3390/molecules26164723
    Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5-12 nm, stacks of nanofibrils with widths of 20-200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils.
    Matched MeSH terms: Cannabis/chemistry*; Cellulose/chemistry*; Solvents/chemistry; Crops, Agricultural/chemistry*; Nanoparticles/chemistry*
  15. Rouhi J, Mamat MH, Ooi CH, Mahmud S, Mahmood MR
    PLoS One, 2015;10(4):e0123433.
    PMID: 25875377 DOI: 10.1371/journal.pone.0123433
    High-density and well-aligned ZnO-ZnS core-shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshift in the UV region, which can be associated with the strain caused by the lattice mismatch between ZnO and ZnS. The obtained diffuse reflectance spectra show that the nanocone-based heterostructure reduces the light reflection in a broad spectral range and is much more effective than the bare ZnO nanocone and nanorod structures. Dye-sensitized solar cells based on the heterostructure ZnO-ZnS nanocones are assembled, and high conversion efficiency (η) of approximately 4.07% is obtained. The η improvement can be attributed primarily to the morphology effect of ZnO nanocones on light-trapping and effectively passivating the interface surface recombination sites of ZnO nanocones by coating with a ZnS shell layer.
    Matched MeSH terms: Sulfides/chemistry*; Zinc Oxide/chemistry*; Zinc Compounds/chemistry*; Nanotubes/chemistry*; Nanostructures/chemistry
  16. Rajan DS, Rajkumar M, Srinivasan R, Harikumar RP, Suresh S, Kumar S
    Pak J Biol Sci, 2013 Nov 01;16(21):1336-41.
    PMID: 24511743
    Seaweeds have been used by mankind as medicine and food for more than 13,000 years. Marine algae are considered to produce a valuable phytoconstituents characterized by a broad spectrum of antitumor activities. The aim of the present study was to explore the effect of different solvent extracts of Sargassum wightii, Greville against Dalton's Ascitic Lymphoma (DAL) in Swiss male albino mice. DAL cells were injected intraperitoneally 1 x10(6) cell to the mice. Two days after cells injection the animals were treated with different solvent extracts of Sargassum wightii at dose of 200 mg kg(-1) for 14 days. 5-fluorouracil (20 mg kg(-1)) was used as reference drug. On day 11, cancer cell number, packed cell volume, decrease in tumour weight of the mice, increase in life span and hematological parameters were evaluated and compared with the same parameters in control. A significant increase in the life span and a decrease in the cancer cell number and tumour weight were noted in the tumour-induced mice after treatment with the extract. The haematological parameters were also normalized by the ethanolic and chloroform extracts in tumour-induced mice. These observations are suggestive of the protective effect of ethanolic extract of Sargassum wightii is comparatively better than other two tested extracts against Dalton's Ascitic Lymphoma (DAL).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry*; Plant Extracts/chemistry*; Seaweed/chemistry*; Solvents/chemistry; Sargassum/chemistry*
  17. Chia SR, Show PL, Phang SM, Ling TC, Ong HC
    J Biosci Bioeng, 2018 Aug;126(2):220-225.
    PMID: 29673988 DOI: 10.1016/j.jbiosc.2018.02.015
    In this present study, alcohol/salt liquid biphasic system was used to extract phlorotannin from brown macroalgae. Liquid biphasic system is a new green technology that integrated with various processes into one-step, by concentrating, separating and purifying the bioproduct in a unit operation. The solvent used is non-toxic and there is potential for solvent recovery which is beneficial to the environment. Phlorotannin is a bioactive compound that has gained much attention due to its health beneficial effect. Therefore, the isolation of phlorotannin is lucrative as it contains various biological activities that are capable to be utilised into food and pharmaceutical application. By using 2-propanol/ammonium sulphate system, the highest recovery of phlorotannin was 76.1% and 91.67% with purification factor of 2.49 and 1.59 from Padina australis and Sargassum binderi, respectively. A recycling study was performed and the salt phase of system was recycled where maximum salt recovery of 41.04% and 72.39% could be obtained from systems containing P. australis and S. binderi, respectively. Similar recovery of phlorotannin was observed after performing two cycles of the system, this concludes that the system has good recyclability and eco-friendly.
    Matched MeSH terms: Phaeophyta/chemistry*; Seaweed/chemistry; Sargassum/chemistry; Green Chemistry Technology/methods*
  18. Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Alias NH
    Molecules, 2020 Jun 07;25(11).
    PMID: 32517324 DOI: 10.3390/molecules25112650
    Proper remediation of aquatic environments contaminated by toxic organic dyes has become a research focus globally for environmental and chemical engineers. This study evaluates the adsorption potential of a polymer-based adsorbent, thiourea-modified poly(acrylonitrile-co-acrylic acid) (T-PAA) adsorbent, for the simultaneous uptake of malachite green (MG) and methylene blue (MB) dye ions from binary system in a continuous flow adsorption column. The influence of inlet dye concentrations, pH, flow rate, and adsorbent bed depth on adsorption process were investigated, and the breakthrough curves obtained experimentally. Results revealed that the sorption capacity of the T-PAA for MG and MB increase at high pH, concentration and bed-depth. Thomas, Bohart-Adams, and Yoon-Nelson models constants were calculated to describe MG and MB adsorption. It was found that the three dynamic models perfectly simulate the adsorption rate and behavior of cationic dyes entrapment. Finally, T-PAA adsorbent demonstrated good cyclic stability. It can be regenerated seven times (or cycles) with no significant loss in adsorption potential. Overall, the excellent sorption capacity and multiple usage make T-PAA polymer an attractive adsorbent materials for treatment of multicomponent dye bearing effluent in a fixed-bed column system.
    Matched MeSH terms: Acrylamides/chemistry*; Coloring Agents/chemistry; Methylene Blue/chemistry*; Rosaniline Dyes/chemistry*; Thiourea/chemistry*
  19. Wibawa PJ, Nur M, Asy'ari M, Wijanarka W, Susanto H, Sutanto H, et al.
    Molecules, 2021 Jun 22;26(13).
    PMID: 34206375 DOI: 10.3390/molecules26133790
    This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs-ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis's spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).
    Matched MeSH terms: Aloe/chemistry; Plant Extracts/chemistry; Metal Nanoparticles/chemistry*; Green Chemistry Technology*
  20. Hussein AS, Abdullah N, Ahmadun FR
    IET Nanobiotechnol, 2013 Jun;7(2):33-41.
    PMID: 24046903
    Linamarin-loaded poly (lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared by the double emulsion solvent evaporation technique. The formulated PLGA (50:50) and PLGA (85:15) NPs were spherically shaped, having an average particle size < 190 nm, drug entrapment efficiency (50-52%) and zeta potentials ranging from -25 to -30 mV. Interestingly, all formulated PLGA NPs exhibited a controlled biphasic release profile. Polymer degradation was investigated in the current research to determine the major degradation products and then the polymer biocompatibility as well as safety. The PLGA NPs degradation behaviour was investigated by measuring water uptake, mass loss, change of pH of the degradation medium, morphological changes, and lactic and glycolic acid concentrations. Gravimetrical methods, pH meter, scanning electron microscope and high-performance liquid chromatography were employed, respectively. PLGA (50:50) NPs were found to degrade faster than PLGA (85:15) NPs. With regard to water uptake, mass loss and pH change, the degradation behaviour of PLGA (50:50) NPs was significantly (rho < 0.05) different from that of PLGA (85:15) NPs. A complete degradation of PLGA (50:50) NPs was achieved after 102 days, whereas, only about 60% of PLGA (85:15) NPs were degraded within the same period. Complete degradation and release of the degradation products naturally by the body ensures safety of the delivery carrier.
    Matched MeSH terms: Drug Carriers/chemistry; Nitriles/chemistry*; Polyglycolic Acid/chemistry*; Lactic Acid/chemistry*; Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links