Displaying publications 2121 - 2140 of 3987 in total

Abstract:
Sort:
  1. Mulyati S, Muchtar S, Arahman N, Syamsuddin Y, Mat Nawi NI, Yub Harun N, et al.
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916778 DOI: 10.3390/polym12092051
    Polydopamine has been widely used as an additive to enhance membrane fouling resistance. This study reports the effects of two-step dopamine-to-polydopamine modification on the permeation, antifouling, and potential anti-UV properties of polyethersulfone (PES)-based ultrafiltration membranes. The modification was performed through a two-step mechanism: adding the dopamine additive followed by immersion into Tris-HCl solution to allow polymerization of dopamine into polydopamine (PDA). The results reveal that the step of treatment, the concentration of dopamine in the first step, and the duration of dipping in the Tris solution in the second step affect the properties of the resulting membranes. Higher dopamine loadings improve the pure water flux (PWF) by more than threefold (15 vs. 50 L/m2·h). The extended dipping period in the Tris alkaline buffer leads to an overgrowth of the PDA layer that partly covers the surface pores which lowers the PWF. The presence of dopamine or polydopamine enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties which leads to better anti-fouling. Moreover, the polydopamine film also improves the membrane resistance to UV irradiation by minimizing photodegradation's occurrence.
    Matched MeSH terms: Water
  2. Azlin Suhaida Azmi, Mohamed Anwar Awan, Azura Amid, Noor Illi Mohamad Puad, Fathilah Binti Ali
    MyJurnal
    Carbon capture and storage (CCS) involves capturing, transporting and storing CO2 geologically underground permanently. Carbon capture using solvent such as amine and aqueous ammonia has been extensively studied by many researchers. However, this capture technology for CCS scheme is costly. As an alternative, CO2 emission can be cost-effectively captured and stored by utilizing the well-understood natural photosynthetic process of marine cyanobacteria. In contrast, the capturing process using cyanobacteria is very slow compared to the chemical absorption mentioned prior. Hence, this study aimed to investigate carbon capturing and storing process using integrated aqueous ammonia and mutated marine cyanobacteria (Synechococcus PCC 7002 IIUM01). The conditions that can maximize CO2 reduction under various conditions; CO2 flow rate (Lpm), absorption temperature (C) and aqueous ammonia concentrations (% (w/v)) were to be identified. The effectiveness of the mutant cyanobacteria was quantified by measuring the cell concentration, percentage reduction in CO2 concentration and lipid content. Synechococcus PCC 7002 IIUM01 showed it robustness by growing in aqueous ammonia solution at the concentration of 0.5 to 1% (w/v) at which the parent strain was not able to tolerate. The best conditions in maximizing CO2 capture and storage while sustaining growth optimally and being a potential biofuel source was observed at 0.5 Lpm of 15% CO2 gas flow rate, 0.75% (w/v) of ammonia concentration and 33C of absorption temperature. At this specified condition, around 68% of CO2 removal was achieved with 9% (w/w) yield of lipid and more than 13% (w/v) of cell concentration obtained.
    Matched MeSH terms: Water
  3. Khosravi V, Mahmood SM, Zivar D, Sharifigaliuk H
    ACS Omega, 2020 Sep 15;5(36):22852-22860.
    PMID: 32954134 DOI: 10.1021/acsomega.0c02133
    One of the techniques to increase oil recovery from hydrocarbon reservoirs is the injection of low salinity water. It is shown that the injection of low salinity water changes the wettability of the rock. However, there are argumentative debates concerning low salinity water effect on changing the wettability of the oil/brine/rock system in the oil reservoirs. In this regard, molecular dynamics simulation (MDS) as a tool to simulate the phenomena at the molecular level has been used for more than a decade. In this study, the Zisman plot (presented by KRUSS Company) was simulated through MDS, and then, contact angle experiments for n-decane interactions on the Bentheimer substrate in the presence of different concentrations of sodium ions were conducted. MDS was then used to simulate experiments and understand the wettability trend based on free-energy calculations. Hereafter, a new model was developed in this study to correlate free energies with contact angles. The developed model predicted the experimental results with high accuracy (R2 ∼ 0.98). A direct relation was observed between free energy and water contact angle. In contrast, an inverse relation was noticed between the ion concentration and the contact angle such that an increase in the ion concentration resulted in a decrease in the contact angle and vice versa. In other terms, increasing brine ionic concentrations in the presence of n-decane is linked to a decrease in free energies and an increase in the wetting state of a sandstone. The comparison between the developed model's predicted contact angles and experimental observations showed a maximum deviation of 14.32%, which is in satisfactory agreement to conclude that MDS can be used as a valuable and economical tool to understand the wettability alteration process.
    Matched MeSH terms: Water
  4. Shehab ZN, Jamil NR, Aris AZ
    Sci Rep, 2020 11 23;10(1):20360.
    PMID: 33230250 DOI: 10.1038/s41598-020-77454-8
    Phase distribution of emerging organic contaminants is highly influential in their presence, fate and transport in surface water. Therefore, it is crucial to determine their state, partitioning behaviour and tendencies in water environments. In this study, Bisphenol A was investigated in both colloidal and soluble phases in water. BPA concentrations ranged between 1.13 and 5.52 ng L-1 in the soluble phase and n.d-2.06 ng L-1 in the colloidal phase, respectively. BPA was dominant in the soluble phase, however, the colloidal contribution ranged between 0 and 24% which implied that colloids can play a significant role in controlling BPA's transportation in water. Urban and industrial areas were the main sources of BPA while forest areas displayed lower levels outside the populated domains. pH levels were between 6.3 and 7.4 which might have affected BPA's solubility in water to some extent. The particle size distribution showed that the majority of the particles in river samples were smaller than 1.8 µm in diameter with a small presence of nanoparticles. Zeta potential varied between - 25 and - 18 mV, and these negative values suggested instability of particles. Furthermore, BPA was positively correlated with BOD, COD and NH3-N which might indicate that these organic compounds were released concurrently with BPA. RQ assessment showed low levels of risk towards algae and fish in the study area.
    Matched MeSH terms: Water
  5. Quah HJ, Ahmad FH, Lim WF, Hassan Z
    ACS Omega, 2020 Oct 20;5(41):26347-26356.
    PMID: 33110962 DOI: 10.1021/acsomega.0c02120
    Nitrogen-infused wet oxidation at different temperatures (400-1000 °C) was employed to transform tantalum-hafnia to hafnium-doped tantalum oxide films. High-temperature wet oxidation at 1000 °C marked an onset of crystallization occurring in the film, accompanied with the formation of an interfacial oxide due to a reaction between the inward-diffusing hydroxide ions, which were dissociated from the water molecules during wet oxidation. The existence of nitrogen has assisted in controlling the interfacial oxide formation. However, high-temperature oxidation caused a tendency for the nitrogen to desorb and form N-H complex after reacting with the hydroxide ions. Besides, the presence of N-H complex implied a decrease in the passivation at the oxide-Si interface by hydrogen. As a consequence, defect formation would happen at the interface and influence the metal-oxide-semiconductor characteristics of the samples. In comparison, tantalum-hafnia subjected to nitrogen-infused wet oxidation at 600 °C has obtained the highest dielectric constant, the largest band gap, and the lowest slow trap density.
    Matched MeSH terms: Water
  6. Rahman ML, Fui CJ, Ting TX, Sarjadi MS, Arshad SE, Musta B
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33137923 DOI: 10.3390/polym12112521
    Industrial operations, domestic and agricultural activities worldwide have had major problems with various contaminants caused by environmental pollution. Heavy metal pollution in wastewater also a prominent issue; therefore, a well built and economical treatment technology is demanded for pollution-free wastewater. The present work emphasized pure cellulose extracted from jute fiber and further modification was performed by a free radical grafting reaction, which resulted in poly(methyl acrylate) (PMA)-grafted cellulose and poly(acrylonitrile)-grafted cellulose. Subsequently, poly(hydroxamic acid) and poly(amidoxime) ligands were prepared from the PMA-grafted cellulose and PAN-grafted cellulose, respectively. An adsorption study was performed using the desired ligands with heavy metals such as copper, cobalt, chromium and nickel ions. The binding capacity (qe) with copper ions for poly(hydroxamic acid) is 352 mg g-1 whereas qe for poly(amidoxime) ligand it was exhibited as 310 mg g-1. Other metal ions (chromium, cobalt and nickel) show significance binding properties at pH 6. The Langmuir and Freundlich isotherm study was also performed. The Freundlich isotherm model showed good correlation coefficients for all metal ions, indicating that multiple-layers adsorption was occurred by the polymer ligands. The reusability was evaluated and the adsorbents can be reused for 7 cycles without significant loss of removal performance. Both ligands showed outstanding metals removal capacity from the industrial wastewater as such 98% of copper can be removed from electroplating wastewater and other metals (cobalt, chromium, nickel and lead) can also be removed up to 90%.
    Matched MeSH terms: Waste Water
  7. Aziz FFA, Jalil AA, Hassan NS, Hitam CNC, Rahman AFA, Fauzi AA
    J Hazard Mater, 2021 Jan 05;401:123277.
    PMID: 33113710 DOI: 10.1016/j.jhazmat.2020.123277
    Multiple contaminants including heavy metals and phenolic compounds are normally co-exist in wastewater, which caused the treatment process is rather complicated. Herein, the synergistic photoredox of Cr(VI) and p-cresol (pC) by innovative fibrous silica zirconia (FSZr) photocatalyst was reported. The high surface area of FSZr comprised of microspheres with a bicontinuous concentric lamella structure morphology consisted of silica, while its core consisted of ZrO2 structure. The rearrangement of FSZr framework increased the crystallinity, formed Si-O-Zr bonds and narrowed the band gap of ZrO2 for enhanced of photoredox of Cr(VI) and pC. Compared to the reaction, the photoredox efficiency of FSZr for removing Cr(VI) and pC in simultaneous system was found to be 96 % and 59 %, respectively which are higher than that in its single system owing to the efficient electron-hole charge separation. Phenolic compound with high degree of electron donating group gave beneficial effect to photoreduction of Cr(VI). Consequently, a proposed mechanism involving multi-photoredox pathway were proposed based on photoredox reaction and scavengers studies. FSZr sustained the simultaneous photoredox activities after five runs demonstrating its possibility to be use in the wastewater treatment of various pollutants.
    Matched MeSH terms: Waste Water
  8. Zaini HBM, Sintang MDB, Pindi W
    Food Sci Nutr, 2020 Oct;8(10):5497-5507.
    PMID: 33133552 DOI: 10.1002/fsn3.1847
    Chicken sausages included with three different quantities of banana (Musa balbisiana) peel powder. The technological properties (cooking yield, texture, water-holding capacity, color, rheology, and texture), composition, and sensory acceptability were assessed. In storage study, lipid oxidation of the best formulation from the sensory score was evaluated. The inclusion of banana peel powder (BPP) raises the nutritional value with regard to an increase in dietary fiber and a reduction in the sausage fat content. The addition of BPP also causes a significant increase in the cooking yield and water-holding capacity. Additionally, storage modulus values increase with the increase in the BPP's concentration. However, with BPP incorporation, a hard texture and darkening of the sausage were observed. Interestingly, our findings exhibit the compromise in microstructural of chicken sausage with high percentage of BPP manifested by the high storage modulus and hardness but with low resistance toward stress, short linear viscoelastic region. This aspect also caused a significant change in the sensory score. The TBA value in the sausage containing 2% BPP exhibited a delay in lipid oxidation up to 55%, prompting its antioxidant potential. Generally, the incorporation of BPP to chicken sausage changes its properties. BPP has been a potential candidate as a value-adding ingredient that may be used during meat preparation since it positively influences the nutritional value and specific technological properties of the food.
    Matched MeSH terms: Water
  9. Muhammad Arif Bin Harun, Prem A/L Gunnasegaran, Nor Azwadi Che Sidik
    MyJurnal
    Heat pipes are widely used in various industries such as automotive, electronics, and many more. Heat pipes are used as cooling devices for electronic parts in machines that emit a large amount of heat, which can damage the devices. The heat pipes used in this investigation are loop heat pipes. These pipes can transport heat over a long distance and operate against gravity. The working fluid used in this investigation is nanofluid. Nanofluid is one of the types of working fluid that is considered to have better thermal performance than conventional fluids. Nanofluid is made of nanoparticles with base-fluid. This investigation studies the thermal performance of loop heat pipes using different types of nanofluids. Nanofluid fluids used in this study are diamond nanofluid, aluminium oxide nanofluid and silica oxide nanofluid. The effect of mass concentration of nanoparticles in the base-fluid is also studied. The results showed that as the mass concentration of nanofluids increased, the thermal resistance for diamond nanofluid and aluminium oxide nanofluid decreased, but the opposite occurred for silica oxide nanofluid but still better resultsthan pure water. This shows that diamond and aluminium oxide nanofluids shows better thermal conductivity as it has lower total thermal resistance and thermal enhancement rate compared to other nanofluids. Diamond nanofluid also had higher heat capacity than aluminium oxide nanofluid as it had a lower vapour line temperature reading.
    Matched MeSH terms: Water
  10. Yang J, Ching YC, Chuah CH, Liou NS
    Polymers (Basel), 2020 Dec 29;13(1).
    PMID: 33383626 DOI: 10.3390/polym13010094
    This study examined the development of starch/oil palm empty fruit bunch-based bioplastic composites reinforced with either epoxidized palm oil (EPO) or epoxidized soybean oil (ESO), at various concentrations, in order to improve the mechanical and water-resistance properties of the bio-composites. The SEM micrographs showed that low content (0.75 wt%) of epoxidized oils (EOs), especially ESO, improved the compatibility of the composites, while high content (3 wt%) of EO induced many voids. The melting temperature of the composites was increased by the incorporation of both EOs. Thermal stability of the bioplastics was increased by the introduction of ESO. Low contents of EO led to a huge enhancement of tensile strength, while higher contents of EO showed a negative effect, due to the phase separation. The tensile strength increased from 0.83 MPa of the control sample to 3.92 and 5.42 MPa for the composites with 1.5 wt% EPO and 0.75 wt% ESO, respectively. EOs reduced the composites' water uptake and solubility but increased the water vapor permeability. Overall, the reinforcing effect of ESO was better than EPO. These results suggested that both EOs can be utilized as modifiers to prepare starch/empty-fruit-bunch-based bioplastic composites with enhanced properties.
    Matched MeSH terms: Water
  11. Sajab MS, Mohan D, Santanaraj J, Chia CH, Kaco H, Harun S, et al.
    Sci Rep, 2019 08 12;9(1):11703.
    PMID: 31406228 DOI: 10.1038/s41598-019-48274-2
    The recognition of cellulose nanofibrils (CNF) in the past years as a high prospect material has been prominent, but the impractical cellulose extraction method from biomass remained as a technological barrier for industrial practice. In this study, the telescopic approach on the fractionation of lignin and cellulose was performed by organosolv extraction and catalytic oxidation from oil palm empty fruit bunch fibers. The integration of these techniques managed to synthesize CNF in a short time. Aside from the size, the zeta potential of CNF was measured at -41.9 mV, which allow higher stability of the cellulose in water suspension. The stability of CNF facilitated a better dispersion of Fe(0) nanoparticles with the average diameter size of 52.3-73.24 nm through the formulation of CNF/Fe(0). The total uptake capacity of CNF towards 5-fluorouracil was calculated at 0.123 mg/g. While the synergistic reactions of adsorption-oxidation were significantly improved the removal efficacy three to four times greater even at a high concentration of 5-fluorouracil. Alternatively, the sludge generation after the oxidation reaction was completely managed by the encapsulation of Fe(0) nanoparticles in regenerated cellulose.
    Matched MeSH terms: Water
  12. Waldron S, Vihermaa L, Evers S, Garnett MH, Newton J, Henderson ACG
    Sci Rep, 2019 08 07;9(1):11429.
    PMID: 31391485 DOI: 10.1038/s41598-019-46534-9
    Southeast-Asian peat swamp forests have been significantly logged and converted to plantation. Recently, to mitigate land degradation and C losses, some areas have been left to regenerate. Understanding how such complex land use change affects greenhouse gas emissions is essential for modelling climate feedbacks and supporting land management decisions. We carried out field research in a Malaysian swamp forest and an oil palm plantation to understand how clear-felling, drainage, and illegal and authorized conversion to oil palm impacted the C cycle, and how the C cycle may change if such logging and conversion stopped. We found that both the swamp forest and the plantation emit centuries-old CO2 from their drainage systems in the managed areas, releasing sequestered C to the atmosphere. Oil palm plantations are an iconic symbol of tropical peatland degradation, but CO2 efflux from the recently-burnt, cleared swamp forest was as old as from the oil palm plantation. However, in the swamp forest site, where logging had ceased approximately 30 years ago, the age of the CO2 efflux was modern, indicating recovery of the system can occur. 14C dating of the C pool acted as a tracer of recovery as well as degradation and offers a new tool to assess efficacy of restoration management. Methane was present in many sites, and in higher concentrations in slow-flowing anoxic systems as degassing mechanisms are not strong. Methane loading in freshwaters is rarely considered, but this may be an important C pool in restored drainage channels and should be considered in C budgets and losses.
    Matched MeSH terms: Fresh Water
  13. Abdulbari HA, Basheer EAM
    Sci Rep, 2019 08 29;9(1):12576.
    PMID: 31467344 DOI: 10.1038/s41598-019-49071-7
    Directional solvent extraction is one of the promising membrane-less seawater desalination method. This technique was not extensively investigated due the poor mixing and separation performances of its bench-scale system. It is believed that, overcoming these drawbacks is possible now with the rapid development of microfluidics technology that enabled high-precession micro mixing and separation. This work presents microfluidics chip for extracting and separating salt from seawater. The chip was designed with two sections for extraction and separation. In both sections, the liquids were separated using capillary channels perpendicular to the main stream. The main channels were designed to be 400 µm in width and 100 µm in height. Two streams inlets were introduced through a Y-junction containing octanoic acid as the organic phase and saltwater as the aqueous phase. The desalination performance was investigated at four different temperatures and five different solvent flow rates. Water product salinity was recorded to be as low as 0.056% (w/w) at 60 °C and 40 mL/h. A maximum water yield of 5.2% was achieved at 65 °C and 40 mL/h with a very low solvent residual (70 ppm). The chip mass transfer efficiency was recorded to be as high as 68% under similar conditions. The fabricated microfluidic desalination system showed a significant improvement in terms of water yield and separation efficiency over the conventional macroscale. The high performance of this microsystem resulted from its ability to achieve a high mixing efficiency and separate phases selectively and that will provide a good platform in the near future to develop small desalination kits for personal use.
    Matched MeSH terms: Saline Waters; Seawater; Water
  14. Selvarajah J, Mh Busra MF, Bin Saim A, Bt Hj Idrus R, Lokanathan Y
    J Biomater Sci Polym Ed, 2020 09;31(13):1722-1740.
    PMID: 32458725 DOI: 10.1080/09205063.2020.1774841
    Nasal injury following nasal surgery is an adverse consequence, and prompt treatment should be initiated. Nasal packing, either non-absorbable or absorbable, are commonly used after nasal surgery to prevent bleeding and promote wound healing. In the current study, a novel gelatine sponge crosslinked with genipin was evaluated for suitability to be used as nasal packing and compared to one of the frequently used commercial nasal packing made up of polyurethane. Gelatine at 7% and 10% (w/v) concentration were crosslinked with varying concentrations of genipin, 0.5%, 0.25%, and 0.2% (v/v). The gelatine sponges were further characterised by its water uptake ability, biodegradation, water vapour transmission rate, porosity, contact angle, chemical composition, crosslinking degree, and mechanical properties. The gelatine sponges absorbed five times more water than their dry weight and were degraded within five days. The water vapour transmission rate of the gelatine sponges was 1187.7 ± 430.2 g/(m-2 day) for 7% gelatine and 779.4 ± 375.5 g/(m-2 day) for 10% gelatine. Crosslinking of gelatine with genipin resulted in lower porosity and did not affect the wettability of gelatine sponge (contact angle: 95.3 ± 12.1° for 7% gelatine and 88.4 ± 7.2° for 10% gelatine). In terms of biodegradability, the gelatine sponges took 24-48 h to degrade completely. Genipin crosslinking improved the degradation resistance and mechanical strength of gelatine sponge. The physical and chemical properties of the gelatine sponge, i.e. biodegradability and mechanical durability, support its potential as nasal packing.
    Matched MeSH terms: Water
  15. Yusof MSM, Othman MHD, Wahab RA, Jumbri K, Razak FIA, Kurniawan TA, et al.
    J Hazard Mater, 2020 02 05;383:121214.
    PMID: 31546216 DOI: 10.1016/j.jhazmat.2019.121214
    The contribution of palm oil fuel ash (POFA), an agricultural waste as a low cost adsorbent for the removal of arsenite (As(III)) and arsenate (As(V)) was explored. Investigation on the adsorbency characteristics of POFA suspension revealed that the surface area, particle size, composition, and crystallinity of the SiO2 rich mullite structure were the crucial factors in ensuring a high adsorption capacity of the ions. Maximum adsorption capacities of As(III) and As(V) at 91.2 and 99.4 mg g-1, respectively, were obtained when POFA of 30 μm particle size was employed at pH 3 with the highest calcination temperature at 1150 °C. An optimum dosage of 1.0 g of dried POFA powder successfully removed 48.7% and 50.2% of As(III) and As(V), respectively. Molecular modeling using the density functional theory consequently identified the energy for the proposed reaction routes between the SiO- and As+ species. The high stability of the POFA suspension in water in conjunction with good adsorption capacity of As(III) and As(V) seen in this study, thus envisages its feasibility as a potential alternative absorbent for the remediation of water polluted with heavy metals.
    Matched MeSH terms: Water
  16. Nicodemus Ujih, M.B., Mohammad Isa Mohamadin, Millaa Armila Asli, Bebe Norlita Mohamed
    Scientific Research Journal, 2017;14(1):15-27.
    MyJurnal
    Heavy metal ions contamination has become more serious which is caused
    by the releasing of toxic waterfrom industrial area and landfill that are very
    harmful to all living organism especially human and can even cause death
    if contaminated in small amount of heavy metal concentration. Currently,
    peoples are using classic method namely electrochemical treatment,
    chemical oxidation/reduction, chemical precipitation and reverse osmosis
    to eliminate the metal ions from toxic water. Unfortunately, these methods
    are costly and not environmentally friendly as compared to bioadsorption
    method, where agricultural waste is used as biosorbent to remove heavy
    metals. Two types of agricultural waste used in this research namely oil
    palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark
    (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment,
    the removal efficiency was found to improve. The removal efficiency is
    examined based on four specification namely dosage, of biosorbent to
    adsorb fourtypes of metalsion explicitly nickel, lead, copper, and chromium.
    The research has found that the removal efficiency of MB was lower than
    OPMF; whereas, the multiple metals ions removal efficiency decreased in
    the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.
    Matched MeSH terms: Water
  17. M R S, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A
    Carbohydr Polym, 2019 Mar 01;207:108-121.
    PMID: 30599990 DOI: 10.1016/j.carbpol.2018.11.083
    Designing environmentally friendly materials from natural resources represents a great challenge in the last decade. However, the lack of fundamental knowledge in the processing of the raw materials to fabricate the composites structure is still a major challenge for potential applications. Natural fibers extracted from plants are receiving more attention from researchers, scientists and academics due to their use in polymer composites and also their environmentally friendly nature and sustainability. The natural fiber features depend on the preparation and processing of the fibers. Natural plant fibers are extracted either by mechanical retting, dew retting and/or water retting processes. The natural fibers characteristics could be improved by suitable chemicals and surface treatments. This survey proposes a detailed review of the different types of retting processes, chemical and surface treatments and characterization techniques for natural fibers. We summarize major findings from the literature and the treatment effects on the properties of the natural fibers are being highlighted.
    Matched MeSH terms: Water
  18. Jaddi NS, Abdullah S
    PLoS One, 2019;14(1):e0208308.
    PMID: 30608936 DOI: 10.1371/journal.pone.0208308
    Optimization of an artificial neural network model through the use of optimization algorithms is the common method employed to search for an optimum solution for a broad variety of real-world problems. One such optimization algorithm is the kidney-inspired algorithm (KA) which has recently been proposed in the literature. The algorithm mimics the four processes performed by the kidneys: filtration, reabsorption, secretion, and excretion. However, a human with reduced kidney function needs to undergo additional treatment to improve kidney performance. In the medical field, the glomerular filtration rate (GFR) test is used to check the health of kidneys. The test estimates the amount of blood that passes through the glomeruli each minute. In this paper, we mimic this kidney function test and the GFR result is used to select a suitable step to add to the basic KA process. This novel imitation is designed for both minimization and maximization problems. In the proposed method, depends on GFR test result which is less than 15 or falls between 15 and 60 or is more than 60 a particular action is performed. These additional processes are applied as required with the aim of improving exploration of the search space and increasing the likelihood of the KA finding the optimum solution. The proposed method is tested on test functions and its results are compared with those of the basic KA. Its performance on benchmark classification and time series prediction problems is also examined and compared with that of other available methods in the literature. In addition, the proposed method is applied to a real-world water quality prediction problem. The statistical analysis of all these applications showed that the proposed method had a ability to improve the optimization outcome.
    Matched MeSH terms: Water Quality
  19. Tang WL, Lee HS, Vimonsatit V, Htut T, Singh JK, Wan Hassan WNF, et al.
    Materials (Basel), 2019 Jan 03;12(1).
    PMID: 30609786 DOI: 10.3390/ma12010130
    The carbonation rate of reinforced concrete is influenced by three parameters, namely temperature, relative humidity, and concentration of carbon dioxide (CO₂) in the surroundings. As knowledge of the service lifespan of reinforced concrete is crucial in terms of corrosion, the carbonation process is important to study, and high-performance durable reinforced concretes can be produced to prolong the effects of corrosion. To examine carbonation resistance, accelerated carbonation testing was conducted in accordance with the standards of BS 1881-210:2013. In this study, 10⁻30% of micro palm oil fuel ash (mPOFA) and 0.5⁻1.5% of nano-POFA (nPOFA) were incorporated into concrete mixtures to determine the optimum amount for achieving the highest carbonation resistance after 28 days water curing and accelerated CO₂ conditions up to 70 days of exposure. The effect of carbonation on concrete specimens with the inclusion of mPOFA and nPOFA was investigated. The carbonation depth was identified by phenolphthalein solution. The highest carbonation resistance of concrete was found after the inclusion of 10% mPOFA and 0.5% nPOFA, while the lowest carbonation resistance was found after the inclusion of 30% mPOFA and 1.5% nPOFA.
    Matched MeSH terms: Water
  20. Hessami MJ, Cheng SF, Ambati RR, Yin YH, Phang SM
    3 Biotech, 2019 Jan;9(1):25.
    PMID: 30622863 DOI: 10.1007/s13205-018-1549-8
    In this study, Gelidium elegans is investigated for ethanol production. A combination of factors including different temperatures, acid concentration and incubation time was evaluated to determine the suitable saccharification conditions. The combination of 2.5% (w/v) H2SO4 at 120 °C for 40 min was selected for hydrolysis of the seaweed biomass, followed by purification, and fermentation to yield ethanol. The galactose and glucose were dominant reducing sugars in the G. elegans hydrolysate and under optimum condition of dilute acid hydrolysis, 39.42% of reducing sugars was produced and fermentation resulted in ethanol concentration of 13.27 ± 0.47 g/L. A modified method was evaluated for sample preparation for gas chromatography (GC) analysis of the ethanol content. A solvent mixture of acetonitrile and iso-butanol precipitated dissolved organic residues and reduced water content in GC samples at least by 90%. Results showed that this method could be successfully used for bioethanol production from seaweed.
    Matched MeSH terms: Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links