Displaying publications 2261 - 2280 of 8211 in total

Abstract:
Sort:
  1. Lee W, Syed A A, Leow CY, Tan SC, Leow CH
    Anal Biochem, 2018 08 15;555:81-93.
    PMID: 29775561 DOI: 10.1016/j.ab.2018.05.009
    Anti-salbutamol antibodies remain as important tools for the detection of salbutamol abuse in athletic doping. This study evaluated the feasibility and efficiency of the chicken (Gallus gallus domesticus) as an immunization host to generate anti-salbutamol scFv antibodies by phage display. A phage display antibody library was constructed from a single chicken immunized against salbutamol-KLH conjugate. After a stringent biopanning strategy, a novel scFv clone which was inhibited by free salbutamol recorded the highest affinity. This scFv was expressed as soluble and functional protein in Escherichia coli T7 SHuffle Express B (DE3) strain. Cross-reactivity studies of the scFv towards other relevant β2-agonists revealed that the scFv cross-reacted significantly towards clenbuterol. The determined IC50 of the scFv towards the two β2-agonists were; IC50 salbutamol = ∼0.310 μg/ml, IC50 clenbuterol = ∼0.076 μg/ml. The generated scFv demonstrated poor stability based on accelerated stability studies. The scFv was used to develop an competitive indirect ELISA (LOD = 0.125 μg/ml) for detection of parent salbutamol in spiked human urine (n = 18) with ∼83.4% reliability at the cut-off of 1 μg/ml currently implemented by WADA and may be of potential use in human doping urinalysis.
    Matched MeSH terms: Antibody Specificity/genetics; Avian Proteins/genetics; Single-Chain Antibodies/genetics
  2. Elias MH, Azlan H, Baba AA, Ankathil R
    PMID: 29669505 DOI: 10.2174/1871529X18666180419101416
    BACKGROUND: In exploring the cause of Imatinib Mesylate (IM) resistance among Chronic Myeloid Leukemia (CML) patients who do not harbor BCR-ABL dependent mechanism, BCR-ABL independent pathways are the most probable pathways that should be explored. In BCR-ABL independent pathway, SOCS1 plays an important role as it helps in regulating optimal JAK/STAT activity.

    OBJECTIVE: To identify the association of SOCS1 gene hypermethylation in mediating IM Resistance.

    METHOD: The SOCS1 promoter methylation level of 92 BCR-ABL non mutated IM resistant CML patients, 83 IM good response CML patients and 5 normal samples from healthy individuals were measured using Methylation Specific-High Resolution Melt (MS-HRM) analysis.

    RESULTS: Both primers used to amplify promoter region from -333 to -223 and from -332 to -188 showed less than 10% methylation in all CML and normal samples. Consequently, there was no significant difference in SOCS1 promoter methylation level between IM resistant and IM good response patients.

    CONCLUSION: SOCS1 promoter methylation level is not suitable to be used as one of the biomarkers for predicting the possibility of acquiring resistance among CML patients treated with IM.

    Matched MeSH terms: Leukemia, Myeloid/genetics*; Drug Resistance, Neoplasm/genetics; Suppressor of Cytokine Signaling 1 Protein/genetics*
  3. Rosli R, Amiruddin N, Ab Halim MA, Chan PL, Chan KL, Azizi N, et al.
    PLoS One, 2018;13(4):e0194792.
    PMID: 29672525 DOI: 10.1371/journal.pone.0194792
    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.
    Matched MeSH terms: Plant Diseases/genetics*; Arecaceae/genetics*; Disease Resistance/genetics*
  4. Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, et al.
    BMC Evol. Biol., 2018 04 24;18(1):58.
    PMID: 29699483 DOI: 10.1186/s12862-018-1175-4
    BACKGROUND: Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally.

    RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.

    CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.

    Matched MeSH terms: Dengue Virus/genetics*; Open Reading Frames/genetics; Amino Acid Substitution/genetics
  5. Yap NJ, Goh XT, Koehler AV, William T, Yeo TW, Vythilingam I, et al.
    Infect Genet Evol, 2017 10;54:39-46.
    PMID: 28634105 DOI: 10.1016/j.meegid.2017.06.019
    Plasmodium knowlesi, a malaria parasite of macaques, has emerged as an important parasite of humans. Despite the significance of P. knowlesi malaria in parts of Southeast Asia, very little is known about the genetic variation in this parasite. Our aim here was to explore sequence variation in a molecule called the 42kDa merozoite surface protein-1 (MSP-1), which is found on the surface of blood stages of Plasmodium spp. and plays a key role in erythrocyte invasion. Several studies of P. falciparum have reported that the C-terminus (a 42kDa fragment) of merozoite surface protein-1 (MSP-142; consisting of MSP-119 and MSP-133) is a potential candidate for a malaria vaccine. However, to date, no study has yet investigated the sequence diversity of the gene encoding P. knowlesi MSP-142 (comprising Pk-msp-119 and Pk-msp-133) among isolates in Malaysia. The present study explored this aspect. Twelve P. knowlesi isolates were collected from patients from hospitals in Selangor and Sabah Borneo, Malaysia, between 2012 and 2014. The Pk-msp-142 gene was amplified by PCR and directly sequenced. Haplotype diversity (Hd) and nucleotide diversity (л) were studied among the isolates. There was relatively high genetic variation among P. knowlesi isolates; overall Hd and л were 1±0.034 and 0.01132±0.00124, respectively. A total of nine different haplotypes related to amino acid alterations at 13 positions, and the Pk-MSP-119 sequence was found to be more conserved than Pk-msp-133. We have found evidence for negative selection in Pk-msp-42 as well as the 33kDa and 19kDa fragments by comparing the rate of non-synonymous versus synonymous substitutions. Future investigations should study large numbers of samples from disparate geographical locations to critically assess whether this molecule might be a potential vaccine target for P. knowlesi.
    Matched MeSH terms: DNA, Protozoan/genetics; Plasmodium knowlesi/genetics*; Merozoite Surface Protein 1/genetics*
  6. Beck SV, Carvalho GR, Barlow A, Rüber L, Hui Tan H, Nugroho E, et al.
    PLoS One, 2017;12(7):e0179557.
    PMID: 28742862 DOI: 10.1371/journal.pone.0179557
    The complex climatic and geological history of Southeast Asia has shaped this region's high biodiversity. In particular, sea level fluctuations associated with repeated glacial cycles during the Pleistocene both facilitated, and limited, connectivity between populations. In this study, we used data from two mitochondrial and three anonymous nuclear markers to determine whether a fresh/brackish water killifish, Aplocheilus panchax, Hamilton, 1822, could be used to further understand how climatic oscillations and associated sea level fluctuations have shaped the distribution of biota within this region, and whether such patterns show evidence of isolation within palaeodrainage basins. Our analyses revealed three major mitochondrial clades within A. panchax. The basal divergence of A. panchax mitochondrial lineages was approximately 3.5 Ma, whilst the subsequent divergence timings of these clades occurred early Pleistocene (~2.6 Ma), proceeding through the Pleistocene. Continuous phylogeographic analysis showed a clear west-east dispersal followed by rapid radiation across Southeast Asia. Individuals from Krabi, just north of the Isthmus of Kra, were more closely related to the Indian lineages, providing further evidence for a freshwater faunal disjunction at the Isthmus of Kra biogeographic barrier. Our results suggest that Sulawesi, across the Wallace Line, was colonised relatively recently (~30 ka). Nuclear DNA is less geographically structured, although Mantel tests indicated that nuclear genetic distances were correlated with geographic proximity. Overall, these results imply that recent gene flow, as opposed to historical isolation, has been the key factor determining patterns of nuclear genetic variation in A. panchax, however, some evidence of historical isolation is retained within the mitochondrial genome. Our study further validates the existence of a major biogeographic boundary at the Kra Isthmus, and also demonstrates the use of widely distributed fresh/brackishwater species in phylogeographic studies, and their ability to disperse across major marine barriers in relatively recent time periods.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Genetics, Population; Fundulidae/genetics*
  7. Mehde AA, Mehdi WA, Yusof F, Raus RA, Abidin ZAZ, Ghazali H, et al.
    Int J Biol Macromol, 2017 Dec;105(Pt 1):1324-1327.
    PMID: 28760704 DOI: 10.1016/j.ijbiomac.2017.07.167
    BACKGROUND: The intron 5 insertion/deletion polymorphism of Alpha-2-macroglobulin receptor-associated protein gene (Alpha-2-MRAP) has been implicated in numerous diseases. The current study was designed to analyze the association of intron 5 insertion/deletion polymorphism of Alpha-2-MRAP with nephrolithiasis patients.

    METHODS: PCR was conducted on genomic DNA of patients and control to look for Alpha-2-MRAP insertion/deletion polymorphism. Besides that, serum level of Alpha-2-MRAP, oxidative stress marker myeloperoxidase, Malondialdehyde (MDA), Advanced oxidation protein products (AOPP), and uric acid were determined.

    RESULTS: The D and I allele frequencies were 57.50% and 42.50% in patients, 77.50% and 22.50% in control, individually. The result showed that II genotype was associated with nephrolithiasis patients group. A significant decrease was observed in serum Alpha-2-MRAP,myeloperoxidase and TAS,while TOS,OSI,MDA,AOPP and uric acid were substantially increased in II and ID when compared to DD genotype in patients with nephrolithiasis.

    CONCLUSION: Our results demonstrate for the first time that patients with II genotype had an increased risk of stones. Also, the results demonstrate that I allele of the 5 insertion/deletion polymorphism in the Alpha-2-MRAP gene is related with an increase of oxidative stress in nephrolithiasis patients and may possibly impose a risk for cardiovascular diseases in patients with II genotype of Alpha-2-MRAP.

    Matched MeSH terms: Oxidative Stress/genetics; LDL-Receptor Related Protein-Associated Protein/genetics*; Nephrolithiasis/genetics*
  8. Lithanatudom SK, Chaowasku T, Nantarat N, Jaroenkit T, Smith DR, Lithanatudom P
    Sci Rep, 2017 07 27;7(1):6716.
    PMID: 28751754 DOI: 10.1038/s41598-017-07045-7
    Dimocarpus longan, commonly known as the longan, belongs to the family Sapindaceae, and is one of the most economically important fruits commonly cultivated in several regions in Asia. There are various cultivars of longan throughout the Thai-Malay peninsula region, but until now no phylogenetic analysis has been undertaken to determine the genetic relatedness of these cultivars. To address this issue, 6 loci, namely ITS2, matK, rbcL, trnH-psbA, trnL-I and trnL-trnF were amplified and sequenced from 40 individuals consisting of 26 longan cultivars 2 types of lychee and 8 herbarium samples. The sequencing results were used to construct a phylogenetic tree using the neighbor-joining (NJ), maximum likelihood (ML) and Bayesian inference (BI) criteria. The tree showed cryptic groups of D. longan from the Thailand-Malaysia region (Dimocarpus longan spp.). This is the first report of the genetic relationship of Dimocarpus based on multi-locus molecular markers and morphological characteristics. Multiple sequence alignments, phylogenetic trees and species delimitation support that Dimocarpus longan spp. longan var. obtusus and Dimocarpus longan spp. malesianus var. malesianus should be placed into a higher order and are two additional species in the genus Dimocarpus. Therefore these two species require nomenclatural changes as Dimocarpus malesianus and Dimocarpus obtusus, respectively.
    Matched MeSH terms: Fruit/genetics*; Sapindaceae/genetics*; Litchi/genetics*
  9. Sultana S, Hossain MAM, Naquiah NNA, Ali ME
    PMID: 30028648 DOI: 10.1080/19440049.2018.1500719
    Gelatin is widely used in pharmaceuticals as a protective coating, such as soft and hard capsule shells. However, the animal source of gelatin is a sensitive issue because certain gelatins such as porcine and bovine gelatins are not welcome in Halal, Kosher and Hindus' consumer goods. Recently, we have documented DNA barcoding and multiplex PCR platforms for discriminating porcine, bovine and fish gelatins in various fish and confectionary products; but those assays were not self-authenticating and also not tested in highly refined pharmaceutical products. To address this knowledge gap, here we report a self-authenticating multiplex PCR-restriction fragment length polymorphism (RFLP) assay to identify animal sources of various gelatin in pharmaceutical capsules. Three different restriction enzymes, BsaAI, Hpy188I and BcoDI were used to yield distinctive RFLP patterns for gelatin-based bovine (26, 94 bp), fish (97, 198 bp) and porcine (17, 70 bp) DNA in control experiments. The specificity was cross-tested against 16 non-target species and the optimised assay was used to screen gelatin sources in 30 halal-branded pharmaceuticals capsule shells. Bovine and porcine DNA was found in 27 and 3 of the 30 different capsules products. The assay was suitable for detecting 0.1 to 0.01 ng total DNA extracted from pure and mixed gelatins. The study might be useful to authenticate and monitor halal, kosher, vegetarian and Hindu compliant pharmaceuticals, foods and cosmetics.
    Matched MeSH terms: DNA/genetics*; Gelatin/genetics*; Polymorphism, Restriction Fragment Length/genetics*
  10. Chan SK, Kuzuya A, Choong YS, Lim TS
    SLAS Discov, 2019 01;24(1):68-76.
    PMID: 30063871 DOI: 10.1177/2472555218791743
    The inherent ability of nucleic acids to recognize a complementary pair has gained wide popularity in DNA sensor applications. DNA molecules can be produced in bulk and easily incorporated with various nanomaterials for sensing applications. More complex designs and sophisticated DNA sensors have been reported over the years to allow DNA detection in a faster, cheaper, and more convenient manner. Here, we report a DNA sensor designed to function like a switch to turn "on" silver nanocluster (AgNC) generation in the presence of a specific DNA target. By defining the probe region sequence, we are able to tune the color of the AgNC generated in direct relation to the different targets. As a proof of concept, we used dengue RNA-dependent RNA polymerase conserved sequences from all four serotypes as targets. This method was able to distinguish each dengue serotype by generating the serotype-respective AgNCs. The DNA switch was also able to identify and amplify the correct target in a mixture of targets with good specificity. This strategy has a detection limit of between 1.5 and 2.0 µM depending on the sequence of AgNC. The DNA switch approach provides an attractive alternative for single-target or multiplex DNA detection.
    Matched MeSH terms: Dengue/genetics*; DNA/genetics*; RNA Replicase/genetics
  11. Wong HC, Ooi Y, Pulikkotil SJ, Naing C
    BMC Oral Health, 2018 10 22;18(1):171.
    PMID: 30348144 DOI: 10.1186/s12903-018-0637-9
    BACKGROUND: Periodontitis is a major oral health problem and it is considered as one of the reasons for tooth loss in developing and developed nations. The objective of the current review was to investigate the association between IL10 polymorphisms - 1082 A > G (rs1800896), -819C > T (rs1800871), - 592 A > C (rs1800872) and the risk of either chronic periodontitis or aggressive periodontitis.

    METHODS: This is a meta- analysis study, following the preferred reporting items for systematic reviews and meta- analyses (PRISMA). Relevant studies were searched in the health related electronic databases. Methodological quality of the included studies were assessed using the Newcastle-Ottawa Scale. For individual studies, odds ratio (OR) and its 95%confidence interval (CI) were calculated to assess the strength of association between IL10 polymorphisms (- 1082 A > G, -819C > T, - 592 A > C) and the risk of periodontitis. For pooling of the estimates across studies included, the summary OR and its 95% CIs were calculated with random-effects model. The pooled estimates were done under four genetic models such as the allelic contrast model, the recessive model, the dominant model and the additive model. Trial sequential analysis (TSA) was done for estimation of the required information size for this meta-analysis study.

    RESULTS: Sixteen studies were identified for this review. The included studies were assessed to be of moderate to good methodological quality. A significant association between polymorphism of IL10-1082 A > G polymorphism and the risk of chronic periodontitis in the non-Asian populations was observed only in the recessive model (OR,1.42; 95% CI:1.11, 1.8,I2: 43%). The significant associations between - 592 A > C polymorphism and the risk of aggressive periodontitis in the non-Asian populations were observed in particular genetic models such as allele contrast (OR, 4.34; 95%CI:1.87,10.07,I2: 65%) and recessive models (OR, 2.1; 95% CI:1.16, 3.82,I2: 0%). The TSA plot revealed that the required information size for evidence of effect was sufficient to draw a conclusion.

    CONCLUSIONS: This meta-analysis suggested that the IL10-1082 A > G polymorphism was associated with chronic periodontitis CP risk in non-Asians. Thus, in order to further establish the associations between IL10 (- 819 C > T, - 592 A > C) in Asian populations, future studies should include larger sample sizes with multi-ethnic groups.

    Matched MeSH terms: Aggressive Periodontitis/genetics*; Interleukin-10/genetics*; Chronic Periodontitis/genetics*
  12. Rosli R, Chan PL, Chan KL, Amiruddin N, Low EL, Singh R, et al.
    Plant Sci, 2018 Oct;275:84-96.
    PMID: 30107884 DOI: 10.1016/j.plantsci.2018.07.011
    The diacylglycerol acyltransferases (DGAT) (diacylglycerol:acyl-CoA acyltransferase, EC 2.3.1.20) are a key group of enzymes that catalyse the final and usually the most important rate-limiting step of triacylglycerol biosynthesis in plants and other organisms. Genes encoding four distinct functional families of DGAT enzymes have been characterised in the genome of the African oil palm, Elaeis guineensis. The contrasting features of the various isoforms within the four families of DGAT genes, namely DGAT1, DGAT2, DGAT3 and WS/DGAT are presented both in the oil palm itself and, for comparative purposes, in 12 other oil crop or model/related plants, namely Arabidopsis thaliana, Brachypodium distachyon, Brassica napus, Elaeis oleifera, Glycine max, Gossypium hirsutum, Helianthus annuus, Musa acuminata, Oryza sativa, Phoenix dactylifera, Sorghum bicolor, and Zea mays. The oil palm genome contains respectively three, two, two and two distinctly expressed functional copies of the DGAT1, DGAT2, DGAT3 and WS/DGAT genes. Phylogenetic analyses of the four DGAT families showed that the E. guineensis genes tend to cluster with sequences from P. dactylifera and M. acuminata rather than with other members of the Commelinid monocots group, such as the Poales which include the major cereal crops such as rice and maize. Comparison of the predicted DGAT protein sequences with other animal and plant DGATs was consistent with the E. guineensis DGAT1 being ER located with its active site facing the lumen while DGAT2, although also ER located, had a predicted cytosol-facing active site. In contrast, DGAT3 and some (but not all) WS/DGAT in E. guineensis are predicted to be soluble, cytosolic enzymes. Evaluation of E. guineensis DGAT gene expression in different tissues and developmental stages suggests that the four DGAT groups have distinctive physiological roles and are particularly prominent in developmental processes relating to reproduction, such as flowering, and in fruit/seed formation especially in the mesocarp and endosperm tissues.
    Matched MeSH terms: Genes, Plant/genetics; Arecaceae/genetics; Diacylglycerol O-Acyltransferase/genetics
  13. Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F
    Int J Biol Macromol, 2018 Dec;120(Pt A):1294-1305.
    PMID: 30189278 DOI: 10.1016/j.ijbiomac.2018.09.002
    PHAs (polyhydroxyalkanoates) have emerged as biodegradable plastics more strongly in the 20th century. A wide range of bacterial species along with fungi, plants, oilseed crops and carbon sources have been used extensively to synthesize PHA on large scales. Alteration of PHA monomers in their structures and composition has led to the development of biodegradable and biocompatible polymers with highly specific mechanical properties. This leads to the incorporation of PHA in numerous biomedical applications within the previous decade. PHAs have been fabricated in various forms to perform tissue engineering to repair liver, bone, cartilage, heart tissues, cardiovascular tissues, bone marrow, and to act as drug delivery system and nerve conduits. A large number of animal trials have been carried out to assess the biomedical properties of PHA monomers, which also confirms the high compatibility of PHA family for this field. This review summarizes the synthesis of PHA from different sources, and biosynthetic pathways and biomedical applications of biosynthesized polyhydroxyalkanoates.
    Matched MeSH terms: Bacteria/genetics; Plants/genetics; Biosynthetic Pathways/genetics*
  14. de Verdal H, Vandeputte M, Mekkawy W, Chatain B, Benzie JAH
    BMC Genet, 2018 11 16;19(1):105.
    PMID: 30445908 DOI: 10.1186/s12863-018-0691-y
    BACKGROUND: Improving feed efficiency in fish is crucial at the economic, social and environmental levels with respect to developing a more sustainable aquaculture. The important contribution of genetic improvement to achieve this goal has been hampered by the lack of accurate basic information on the genetic parameters of feed efficiency in fish. We used video assessment of feed intake on individual fish reared in groups to estimate the genetic parameters of six growth traits, feed intake, feed conversion ratio (FCR) and residual feed intake in 40 pedigreed families of the GIFT strain of Nile tilapia, Oreochromis niloticus. Feed intake and growth were measured on juvenile fish (22.4 g mean body weight) during 13 consecutive meals, representing 7 days of measurements. We used these data to estimate the FCR response to different selection criteria to assess the potential of genetics as a means of increasing FCR in tilapia.

    RESULTS: Our results demonstrate genetic control for FCR in tilapia, with a heritability estimate of 0.32 ± 0.11. Response to selection estimates showed FCR could be efficiently improved by selective breeding. Due to low genetic correlations, selection for growth traits would not improve FCR. However, weight loss at fasting has a high genetic correlation with FCR (0.80 ± 0.25) and a moderate heritability (0.23), and could be an easy to measure and efficient criterion to improve FCR by selective breeding in tilapia.

    CONCLUSION: At this age, FCR is genetically determined in Nile tilapia. A selective breeding program could be possible and could help enabling the development of a more sustainable aquaculture production.

    Matched MeSH terms: Selective Breeding/genetics; Body Weight/genetics; Cichlids/genetics*
  15. Kee BP, Ng JG, Ng CC, Hilmi I, Goh KL, Chua KH
    J Dig Dis, 2020 Jan;21(1):29-37.
    PMID: 31654602 DOI: 10.1111/1751-2980.12829
    OBJECTIVE: To investigate the association between genetic polymorphisms in ATG16L1 and IRGM genes and the development of Crohn's disease (CD) in Malaysian patients.

    METHODS: Altogether 335 participants were recruited, including 85 patients with CD and 250 unrelated healthy controls, and their informed consent was obtained. Genomic DNA was extracted via a conventional phenol-chloroform extraction method. Six single nucleotide polymorphisms (SNPs) in ATG16L1 and IRGM genes were genotyped using TaqMan SNP genotyping assays. Associations between SNP and CD were determined using Fisher's exact test, odds ratio, and 95% confidence interval. Statistical power and the Hardy-Weinberg equilibrium were also calculated.

    RESULTS: Two SNPs (rs2241880 and rs6754677) in the ATG16L1 gene were significantly associated with the onset of CD in the Malaysian population. The A allele and homozygous A/A genotype of the rs2241880 A/G polymorphism were protective against CD in the overall Malaysian and Malay population. The G allele and homozygous G/G genotype of the rs6754677 G/A polymorphism were protective in the Indian population, whereas the homozygous A/A genotype showed a risk of developing CD. The homozygous G/G genotype of IRGM rs11747270 was significantly present in the controls. However, this significance was not observed in a race-stratified analysis. All three ATG16L1 SNPs were associated with inflamed terminal ileum. IRGM rs4958847 and rs11747270 increased the risk of developing arthritis in patients with CD.

    CONCLUSION: We found a significant association between SNP, which are located in autophagy-related genes, and CD in a Malaysian population.

    Matched MeSH terms: Crohn Disease/genetics*; GTP-Binding Proteins/genetics*; Autophagy-Related Proteins/genetics*
  16. Lee KW, Ching SM, Ramachandran V, Tusimin M, Mohd Nordin N, Chong SC, et al.
    Genes (Basel), 2019 11 30;10(12).
    PMID: 31801286 DOI: 10.3390/genes10120988
    The association of candidate genes and psychological symptoms of depression, anxiety, and stress among women with gestational diabetes mellitus (GDM) in Malaysia was determined in this study, followed by the determination of their odds of getting psychological symptoms, adjusted for socio-demographical background, maternal, and clinical characteristics. Single nucleotide polymorphisms (SNPs) recorded a significant association between SNP of EPHX2 (rs17466684) and depression symptoms (AOR = 7.854, 95% CI = 1.330-46.360) and stress symptoms (AOR = 7.664, 95% CI = 1.579-37.197). Associations were also observed between stress symptoms and SNP of OXTR (rs53576) and (AOR = 2.981, 95% CI = 1.058-8.402) and SNP of NRG1 (rs2919375) (AOR = 9.894, 95% CI = 1.159-84.427). The SNP of EPHX2 (rs17466684) gene polymorphism is associated with depression symptoms among Malaysian women with GDM. SNP of EPHX2 (rs17466684), OXTR (rs53576) and NRG1 (rs2919375) are also associated with stress symptoms.
    Matched MeSH terms: Anxiety/genetics; Depressive Disorder/genetics*; Diabetes, Gestational/genetics*
  17. Mohamad N, Amal MNA, Saad MZ, Yasin ISM, Zulkiply NA, Mustafa M, et al.
    BMC Vet Res, 2019 May 28;15(1):176.
    PMID: 31138199 DOI: 10.1186/s12917-019-1907-8
    BACKGROUND: Vibriosis is an important bacterial disease of cultured marine fishes worldwide. However, information on the virulence and antibiotic resistance of Vibrio spp. isolated from fish are scarce. This study investigates the distribution of virulence associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cage-cultured marine fishes in Malaysia.

    RESULTS: A total of 63 Vibrio spp. isolated from 62 cultured marine fishes in various geographical regions in Peninsular Malaysia were analysed. Forty-two of the isolates (66.7%) were positive for all chiA, luxR and vhpA, the virulence genes produced by pathogenic V. harveyi. A total of 62 Vibrio isolates (98%) had tlh gene of V. parahaemolyticus, while flaC gene of V. anguillarum was detected in 43 of isolates (68%). Other virulence genes, including tdh, trh, hlyA and toxRvc were absent from any of the isolates. Multiple antibiotic resistance (MAR) was exhibited in all strains of Harveyi clade, particularly against ampicillin, penicillin, polypeptides, cephems and streptomycin. The MAR index ranged between 0.06 and 0.56, and 75% of the isolates have MAR index of higher than 0.20. Host species and geographical origin showed no correlation with the presence of virulence genes and the antibiotic resistance patterns of Vibrio spp.

    CONCLUSIONS: The study indicates that majority of Vibrio spp. isolated from cultured marine fishes possess virulence genes, but were not associated with human pathogen. However, the antibiotics resistance is a real concern and warrants ongoing surveillance. These findings represent an updated knowledge on the risk of Vibrio spp. to human health, and also provides valuable insight on alternative approaches to combat vibriosis in cultured fish.

    Matched MeSH terms: Vibrio/genetics*; Virulence/genetics; Drug Resistance, Multiple, Bacterial/genetics*
  18. Jiao L, Chi H, Lu Z, Zhang C, Chia SR, Show PL, et al.
    J Biosci Bioeng, 2020 Jun;129(6):672-678.
    PMID: 32088137 DOI: 10.1016/j.jbiosc.2020.01.007
    l-Asparaginases have the potential to inhibit the formation of acrylamide, a harmful toxin formed during high temperature processing of food. A novel bacterium which produces l-asparaginase was screened. Type I l-asparaginase gene from Acinetobacter soli was cloned and expressed in Escherichia coli. The recombinant l-asparaginase had an activity of 42.0 IU mL-1 and showed no activity toward l-glutamine and d-asparagine. The recombinant l-asparaginase exhibited maximum catalytic activity at pH 8.0 and 40°C. The enzyme was stable in the pH ranging from 6.0 to 9.0. The activity of the recombinant enzyme was substantially enhanced by Ba2+, dithiothreitol, and β-mercaptoethanol. The Km and Vmax values of the l-asparaginase for the l-asparagine were 3.22 mmol L-1 and 1.55 IU μg-1, respectively. Moreover, the recombinant l-asparaginase had the ability to mitigate acrylamide formation in potato chips. Compared with the untreated group, the content of acrylamide in samples treated with the enzyme was effectively decreased by 55.9%. These results indicate that the novel type I l-asparaginase has the potential for application in the food processing industry.
    Matched MeSH terms: Acinetobacter/genetics; Asparaginase/genetics; Escherichia coli/genetics
  19. Mohamed ZI, Tee SF, Chow TJ, Loh SY, Yong HS, Bakar AKA, et al.
    Asian J Psychiatr, 2019 Feb;40:76-81.
    PMID: 30771755 DOI: 10.1016/j.ajp.2019.02.001
    Transcription factor 4 (TCF4) gene plays an important role in nervous system development and it always associated with the risk of schizophrenia. Since miRNAs regulate targetgenes by binding to 3'UTRs of target mRNAs, the functional variants located in 3'UTR of TCF4 are highly suggested to affect the gene expressions in schizophrenia. To test the hypothesis regarding the effects of the variants located in 3'UTR of TCF4, we conducted an in silico analysis to identify the functional variants and their predicted functions. In this study, we sequenced the 3'UTR of TCF4 in 13 multiplex schizophrenia families and 14 control families. We found two functional variants carried by three unrelated patients. We determined that the C allele of rs1272363 and the TC insert of rs373174214 might suppress post- transcriptional expression. Secondly, we cloned the region that flanked these two variants into a dual luciferase reporter system and compared the luciferase activities between the pmirGLO-TCF4 (control), pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263. Both pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263 caused lower reporter gene activities, as compared to the control. However, only the C allele of rs1272363 reduced the luciferase activity significantly (p = 0.0231). Our results suggested that rs1273263 is a potential regulator of TCF4 expression, and might be associated with schizophrenia.
    Matched MeSH terms: Gene Expression Regulation/genetics*; Schizophrenia/genetics*; 3' Untranslated Regions/genetics*
  20. Noor NM, Defoirdt T, Alipiah N, Karim M, Daud H, Natrah I
    J Fish Dis, 2019 Apr;42(4):489-495.
    PMID: 30742313 DOI: 10.1111/jfd.12946
    The link between quorum sensing in Vibrio campbellii and its virulence towards tiger grouper (Epinephelus fuscoguttatus) was investigated using V. campbellii wild type and quorum-sensing mutants with inactive quorum sensing or constitutively maximal quorum-sensing activity, and signal molecule synthase mutants. The results showed that wild-type V. campbellii is pathogenic to grouper larvae, causing more than 50% mortality after 4 days of challenge. Furthermore, the mortality of larvae challenged with the mutant with maximally active quorum sensing was significantly higher than that of larvae challenged with the wild type, whereas a higher survival was observed in the larvae challenged to the mutant with a completely inactive quorum-sensing system. Grouper larvae challenged with either the signal molecule synthase triple mutant, the harveyi autoinducer-1 (HAI-1) synthase mutant and the autoinducer-2 (AI-2) synthase mutant showed higher survival than larvae challenged with the wild type. In contrast, larvae challenged with the cholerae autoinducer-1 (CAI-1) synthase mutant showed high mortality. This indicates that HAI-1 and AI-2, but not CAI-1, are required for full virulence of V. campbellii towards grouper larvae. Our data suggest that quorum-sensing inhibition could be an effective strategy to control V. campbellii infections in tiger grouper.
    Matched MeSH terms: Homoserine/genetics; Vibrio/genetics; 4-Butyrolactone/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links