Displaying publications 241 - 260 of 328 in total

Abstract:
Sort:
  1. Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, et al.
    Bioresour Technol, 2018 Oct;266:1-10.
    PMID: 29936405 DOI: 10.1016/j.biortech.2018.06.051
    A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m2/g) and pore volume (≤0.80 cm3/g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption.
    Matched MeSH terms: Charcoal*
  2. Ghani ZA, Yusoff MS, Zaman NQ, Zamri MFMA, Andas J
    Waste Manag, 2017 Apr;62:177-187.
    PMID: 28274782 DOI: 10.1016/j.wasman.2017.02.026
    This study determined the optimum conditions for preparation and adsorptive treatment of landfill leachate from banana pseudo-stem based activated carbon. Response surface methodology (RSM) based on Box-Behnken was applied to optimize the combination effect of three important reaction variables, i.e. activation temperature (°C), activation time and impregnation ratio (IR). The reaction was performed via a single step activation with ZnCl2 in a closed activation system. A series of 17 individual experiments were conducted and the results showed that the RSM based on BBD is very applicable for adsorptive removal of pollutants from landfill leachate treatment. The optimum conditions obtained by Design of Experiments (DOE) was at 761°C activation temperature, 87min activation time and 4.5g/g impregnation ratio with product yield (27%), iodine number (1101mg/g), color removal (91.2%) and COD removal (83.0%).
    Matched MeSH terms: Charcoal/chemistry*
  3. Abdulsalam M, Che Man H, Isma Idris A, Zainal Abidin Z, Faezah Yunos K
    PMID: 30304814 DOI: 10.3390/ijerph15102200
    Palm oil mill effluent contains carcinogenic coloured compounds that are difficult to separate due to their aromatic structure. Though colour treatment using adsorption processes at lower pH (<4) have been reported effectual, due to its acidity the remediated effluent poses an environmental hazard as a result. Thus, the current study focused on achieving decolourization at neutral pH by enhancing the morphology of the coconut shell activated carbon (CSAC) using N₂ as activating-agent with microwave irradiation heating. The microwave pretreated and non-pretreated CSAC were characterized using scanned electron microscopy (SEM), energy dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) analysis. A significant modification in the porous structure with a 66.62% increase in the specific surface area was achieved after the pretreatment. The adsorption experimental matrix was developed using the central composite design to investigate the colour adsorption performance under varied pH (6⁻7), dosage (2⁻6 g) and contact time (10⁻100 min). At optimum conditions of neutral pH (7), 3.208 g dosage and contact time of 35 min, the percentage of colour removal was 96.29% with negligible differences compared with the predicted value, 95.855%. The adsorption equilibrium capacity of 1430.1 ADMI × mL/g was attained at the initial colour concentration of 2025 ADMI at 27 °C. The experimental data fitted better with the Freundlich isotherm model with R² 0.9851.
    Matched MeSH terms: Charcoal/chemistry
  4. Tariq FS, Samsuri AW, Karam DS, Aris AZ, Jamilu G
    Environ Monit Assess, 2019 Mar 21;191(4):232.
    PMID: 30900076 DOI: 10.1007/s10661-019-7359-6
    This study was conducted to determine the effects of rice husk ash (RHA) and Fe-coated rice husk ash (Fe-RHA) on the bioavailability and mobility of As, Cd, and Mn in mine tailings. The amendments were added to the tailings at 0, 5, 10, or 20% (w/w) and the mixtures were incubated for 0, 7, 15, 30, 45, and 60 days. The CaCl2 extractable As, Cd, and Mn in the amended tailings were determined at each interval of incubation period. In addition, the tailings mixture was leached with simulated rain water (SRW) every week from 0 day (D 0) until day 60 (D 60). The results showed that both RHA and Fe-RHA application significantly decreased the CaCl2-extractable Cd and Mn but increased that of As in the tailings throughout the incubation period. Consequently, addition of both RHA and Fe-RHA leached out higher amount of As from the tailings but decreased Cd and Mn concentration compared to the controls. The amount of As leached from the Fe-RHA-amended tailings was less than that from RHA-amended tailings. Application of both RHA and Fe-RHA could be an effective way in decreasing the availability of cationic heavy metals (Cd and Mn) in the tailings but these amendments could result in increasing the availability of anionic metalloid (As). Therefore, selection of organic amendments to remediate metal-contaminated tailings must be done with great care because the outcomes might be different among the elements.
    Matched MeSH terms: Charcoal/chemistry
  5. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Charcoal/chemistry*
  6. Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH
    Int J Biol Macromol, 2017 May;98:233-239.
    PMID: 28147233 DOI: 10.1016/j.ijbiomac.2017.01.119
    In this work, mesoporous-activated carbon (CSAC) was prepared from chitosan flakes (CS) via single-step sodium hydroxide activation for the adsorption of methylene blue (MB). CSAC was prepared using different impregnation ratios of NaOH:CS (1:1, 2:1, 3:1, and 4:1) at 800°C for 90min. The adsorption performance of CSAC was evaluated for MB at different adsorption variables, such MB initial concentrations (25-400mg/L), solution pH (3-11), and temperature (30-50°C). The adsorption isotherm data of CSAC-MB were well fitted to Langmuir model with a maximum adsorption capacity 143.53mg/g at 50°C. Best representation of kinetic data was obtained by the pseudo-second order model. CSAC exhibited excellent adsorption uptake for MB and can potentially be used for other cationic dyes.
    Matched MeSH terms: Charcoal/chemistry*
  7. Danish M, Khanday WA, Hashim R, Sulaiman NS, Akhtar MN, Nizami M
    Ecotoxicol Environ Saf, 2017 May;139:280-290.
    PMID: 28167440 DOI: 10.1016/j.ecoenv.2017.02.001
    Box-Behnken model of response surface methodology was used to study the effect of adsorption process parameters for Rhodamine B (RhB) removal from aqueous solution through optimized large surface area date stone activated carbon. The set experiments with three input parameters such as time (10-600min), adsorbent dosage (0.5-10g/L) and temperature (25-50°C) were considered for statistical significance. The adequate relation was found between the input variables and response (removal percentage of RhB) and Fisher values (F- values) along with P-values suggesting the significance of various term coefficients. At an optimum adsorbent dose of 0.53g/L, time 593min and temperature 46.20°C, the adsorption capacity of 210mg/g was attained with maximum desirability. The negative values of Gibb(')s free energy (ΔG) predicted spontaneity and feasibility of adsorption; whereas, positive Enthalpy change (ΔH) confirmed endothermic adsorption of RhB onto optimized large surface area date stone activated carbons (OLSADS-AC). The adsorption data were found to be the best fit on the Langmuir model supporting monolayer type of adsorption of RhB with maximum monolayer layer adsorption capacity of 196.08mg/g.
    Matched MeSH terms: Charcoal/chemistry*
  8. García JR, Sedran U, Zaini MAA, Zakaria ZA
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5076-5085.
    PMID: 28391459 DOI: 10.1007/s11356-017-8975-8
    Palm oil mill wastes (palm kernel shell (PKS)) were used to prepare activated carbons, which were tested in the removal of colorants from water. The adsorbents were prepared by 1-h impregnation of PKS with ZnCl2 as the activating agent (PKS:ZnCl2 mass ratios of 1:1 and 2:1), followed by carbonization in autogenous atmosphere at 500 and 550 °C during 1 h. The characterization of the activated carbons included textural properties (porosity), surface chemistry (functional groups), and surface morphology. The dye removal performance of the different activated carbons was investigated by means of the uptake of methylene blue (MB) in solutions with various initial concentrations (25-400 mg/L of MB) at 30 °C, using a 0.05-g carbon/50-mL solution relationship. The sample prepared with 1:1 PKS:ZnCl2 and carbonized at 550 °C showed the highest MB adsorption capacity (maximum uptake at the equilibrium, q max = 225.3 mg MB / g adsorbent), resulting from its elevated specific surface area (BET, 1058 m2/g) and microporosity (micropore surface area, 721 m2/g). The kinetic experiments showed that removals over 90% of the equilibrium adsorptions were achieved after 4-h contact time in all the cases. The study showed that palm oil mill waste biomass could be used in the preparation of adsorbents efficient in the removal of colorants in wastewaters.
    Matched MeSH terms: Charcoal/chemistry*
  9. Anyika C, Abdul Majid Z, Ibrahim Z, Zakaria MP, Yahya A
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3314-41.
    PMID: 25345923 DOI: 10.1007/s11356-014-3719-5
    Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.
    Matched MeSH terms: Charcoal/chemistry*
  10. Hairuddin MN, Mubarak NM, Khalid M, Abdullah EC, Walvekar R, Karri RR
    Environ Sci Pollut Res Int, 2019 Dec;26(34):35183-35197.
    PMID: 31691169 DOI: 10.1007/s11356-019-06524-w
    The pollution of water resources due to the disposal of industrial wastes that have organic material like phenol is causing worldwide concern because of their toxicity towards aquatic life, human beings and the environment. Phenol causes nervous system damage, renal kidney disease, mental retardation, cancer and anaemia. In this study, magnetic palm kernel biochar is used for removal of phenol from wastewater. The effect of parameters such as pH, agitation speed, contact time and magnetic biochar dosage are validated using design of experiments. The statistical analysis reveals that the optimum conditions for the highest removal (93.39%) of phenol are obtained at pH of 8, magnetic biochar dosage of 0.6 g, agitation speed at 180 rpm and time of 60 min with the initial concentration of 10 mg/L. The maximum adsorption capacities of phenol were found to be 10.84 mg/g and Langmuir and Freundlich isotherm models match the experimental data very well and adsorption kinetic obeys a pseudo-second order. Hence, magnetic palm kernel can be a potential candidate for phenol removal from wastewater.
    Matched MeSH terms: Charcoal/chemistry
  11. Hapiz A, Jawad AH, Wilson LD, ALOthman ZA
    Int J Phytoremediation, 2024 Feb;26(3):324-338.
    PMID: 37545130 DOI: 10.1080/15226514.2023.2241912
    In this investigation, microwave irradiation assisted by ZnCl2 was used to transform pineapple crown (PN) waste into mesoporous activated carbon (PNAC). Complementary techniques were employed to examine the physicochemical characteristics of PNAC, including BET, FTIR, SEM-EDX, XRD, and pH at the point-of-zero-charge (pHpzc). PNAC is mesoporous adsorbent with a surface area of 1070 m2/g. The statistical optimization for the adsorption process of two model cationic dyes (methylene blue: MB and, crystal violet: CV) was conducted using the response surface methodology-Box-Behnken design (RSM-BBD). The parameters include solution pH (4-10), contact time (2-12) min, and PNAC dosage (0.02-0.1 g/100 mL). The Freundlich and Langmuir models adequately described the dye adsorption isotherm results for the MB and CV systems, whereas the pseudo-second order kinetic model accounted for the time dependent adsorption results. The maximum adsorption capacity (qmax) for PNAC with the two tested dyes are listed: 263.9 mg/g for CV and 274.8 mg/g for MB. The unique adsorption mechanism of MB and CV dyes by PNAC implicates multiple contributions to the adsorption process such as pore filling, electrostatic forces, H-bonding, and π-π interactions. This study illustrates the possibility of transforming PN into activated carbon (PNAC) with the potential to remove two cationic dyes from aqueous media.
    Matched MeSH terms: Charcoal/chemistry
  12. Wong KT, Yoon Y, Snyder SA, Jang M
    Chemosphere, 2016 Jun;152:71-80.
    PMID: 26963238 DOI: 10.1016/j.chemosphere.2016.02.090
    Triethoxyphenylsilane (TEPS)-functionalized magnetic palm-based powdered activated carbon (MPPAC-TEPS) was prepared and characterized using various spectroscopic methods, and then tested for the removal of bisphenol A, carbamazepine, ibuprofen and clofibric acid. Magnetite film on MPPAC-TEPS was homogeneously coated on the outer surface of palm-based powdered activated carbon (PPAC) through a hydrothermal co-precipitation technique. Followed by silanization of phenyl-functionalized organosilane on MPPAC's magnetic film. As results, micro/mesopore surface area and volume increased without significant pore clogging and iron (Fe) dissolution under the acidic conditions was greatly decreased. The unique structural and chemical features of MPPAC-TEPS were found to be the main reasons for the enhanced adsorption rates and removal capacities of POPs. The presence of electrolytes and different pH values greatly affected the sorption efficiencies. The dominant sorption mechanism of POPs by MPPAC-TEPS was determined to be π-π interaction (physisorption), based on thermodynamic (ΔG°) and differential scanning calorimetry (DSC). Thermal regeneration at a low temperature (350 °C) was an effective method to desorb the retained POPs and enabled to reactivate MPPAC-TEPS with sustained sorption rates and capacities, whereas PPAC was largely exhausted. As a new type of sorbent for POPs, MPPAC-TEPS has operational advantages, such as magnetic separation and stable regeneration.
    Matched MeSH terms: Charcoal
  13. Tee PF, Abdullah MO, Tan IA, Mohamed Amin MA, Nolasco-Hipolito C, Bujang K
    Bioresour Technol, 2016 May 28;216:478-485.
    PMID: 27268432 DOI: 10.1016/j.biortech.2016.05.112
    An air-cathode MFC-adsorption hybrid system, made from earthen pot was designed and tested for simultaneous wastewater treatment and energy recovery. Such design had demonstrated superior characteristics of low internal resistance (29.3Ω) and favor to low-cost, efficient wastewater treatment and power generation (55mW/m(3)) with average current of 2.13±0.4mA. The performance between MFC-adsorption hybrid system was compared to the standalone adsorption system and results had demonstrated great pollutants removals of the integrated system especially for chemical oxygen demand (COD), biochemical oxygen demand (BOD3), total organic carbon (TOC), total volatile solids (TVS), ammoniacal nitrogen (NH3-N) and total nitrogen (TN) because such system combines the advantages of each individual unit. Besides the typical biological and electrochemical processes that happened in an MFC system, an additional physicochemical process from the activated carbon took place simultaneously in the MFC-adsorption hybrid system which would further improved on the wastewater quality.
    Matched MeSH terms: Charcoal
  14. Dannoun EMA, Aziz SB, Brza MA, M Nofal M, Asnawi ASFM, Yusof YM, et al.
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33138114 DOI: 10.3390/polym12112531
    In this work, plasticized magnesium ion-conducting polymer blend electrolytes based on chitosan:methylcellulose (CS:MC) were prepared using a solution cast technique. Magnesium acetate [Mg(CH3COO)2] was used as a source of the ions. Nickel metal-complex [Ni(II)-complex)] was employed to expand the amorphous phase. For the ions dissociation enhancement, glycerol plasticizer was also engaged. Incorporating 42 wt% of the glycerol into the electrolyte system has been shown to improve the conductivity to 1.02 × 10-4 S cm-1. X-ray diffraction (XRD) analysis showed that the electrolyte with the highest conductivity has a minimum crystallinity degree. The ionic transference number was estimated to be more than the electronic transference number. It is concluded that in CS:MC:Mg(CH3COO)2:Ni(II)-complex:glycerol, ions are the primary charge carriers. Results from linear sweep voltammetry (LSV) showed electrochemical stability to be 2.48 V. An electric double-layer capacitor (EDLC) based on activated carbon electrode and a prepared solid polymer electrolyte was constructed. The EDLC cell was then analyzed by cyclic voltammetry (CV) and galvanostatic charge-discharge methods. The CV test disclosed rectangular shapes with slight distortion, and there was no appearance of any redox currents on both anodic and cathodic parts, signifying a typical behavior of EDLC. The EDLC cell indicated a good cyclability of about (95%) for throughout of 200 cycles with a specific capacitance of 47.4 F/g.
    Matched MeSH terms: Charcoal
  15. Iqbal J, Numan A, Omaish Ansari M, Jafer R, Jagadish PR, Bashir S, et al.
    Polymers (Basel), 2020 Nov 27;12(12).
    PMID: 33261072 DOI: 10.3390/polym12122816
    In this study, silver (Ag) and cobalt oxide (Co3O4) decorated polyaniline (PANI) fibers were prepared by the combination of in-situ aniline oxidative polymerization and the hydrothermal methodology. The morphology of the prepared Ag/Co3O4@PANI ternary nanocomposite was studied by scanning electron microscopy and transmission electron microscopy, while the structural studies were carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The morphological characterization revealed fibrous shaped PANI, coated with Ag and Co3O4 nanograins, while the structural studies revealed high purity, good crystallinity, and slight interactions among the constituents of the Ag/Co3O4@PANI ternary nanocomposite. The electrochemical performance studies revealed the enhanced performance of the Ag/Co3O4@PANI nanocomposite due to the synergistic/additional effect of Ag, Co3O4 and PANI compared to pure PANI and Co3O4@PANI. The addition of the Ag and Co3O4 provided an extended site for faradaic reactions leading to the high specific capacity. The Ag/Co3O4@PANI ternary nanocomposite exhibited an excellent specific capacity of 262.62 C g-1 at a scan rate of 3 mV s-1. The maximum energy and power density were found to be 14.01 Wh kg-1 and 165.00 W kg-1, respectively. The cyclic stability of supercapattery (Ag/Co3O4@PANI//activated carbon) consisting of a battery type electrode demonstrated a gradual increase in specific capacity with a continuous charge-discharge cycle until ~1000 cycles, then remained stable until 2500 cycles and later started decreasing, thereby showing the cyclic stability of 121.03% of its initial value after 3500 cycles.
    Matched MeSH terms: Charcoal
  16. Mohammad Mu'az Hashim, Mohd Khanif Yusop, Radziah Othman, Samsuri Abd. Wahid
    Sains Malaysiana, 2017;46:925-932.
    Implementation of sound fertilizer management in rice cultivation is essential in optimizing productivity and profitability. The use of controlled release fertilizer (CRF) to improve crop production in various cropping systems has been widely explored, with new approaches and materials continually being studied to produce new CRF. A field study was carried out to determine the efficiency of local CRFs on rice production and N uptake using MR220 CL1 rice variety. Ten different types of CRFs consisting of two groups namely biochar impregnated urea (BIU 300-5, BIU 300-10, BIU 700-5 and BIU 700-10) and palm stearin (PS) coated urea with nitrification inhibitors (PS, PS+DMPP-100, PS+DMPP-50, PS+DMPP-150, PS+Cu and PS+Zn) were used as treatments. Plant height, SPAD reading, 1000-grain weight and harvest index (HI) showed significant improvement in rice treated with both biochar impregnated and palm stearin coated urea. With respect to grain yield, BIU 300-10, BIU 700-5, BIU 700-10, PS+DMPP-100, PS+DMPP-50, PS+DMPP-150 and PS+Cu treatments significantly increased rice yield. The CRFs mostly showed significantly higher N uptake in rice, especially in rice grains, however, there was no significant difference among treatments in soil residual ammonium (NH4+-N). The newly-developed CRFs showed huge potential as an alternative for common urea, especially BIU 700-5, BIU 700-10, PS+DMPP-100 and PS+DMPP-50, in increasing rice grain yield. With proper approaches, these CRFs can contribute in improving rice production to provide sufficient food for ever increasing population.
    Matched MeSH terms: Charcoal
  17. Anjum H, Johari K, Appusamy A, Gnanasundaram N, Thanabalan M
    J Hazard Mater, 2019 11 05;379:120673.
    PMID: 31254791 DOI: 10.1016/j.jhazmat.2019.05.066
    In this study, the impact of different oxidizing agents on the structural integrity of activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) was studied for the removal of BTX from aqueous solution. Seven different combinations of green oxidizing agents (mild organic acids) in conjugation with NaOCl (basic oxidizing agent) were used. The modified adsorbents were analyzed by Brunauer, Emmett, and Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR), Boehm titration, Raman spectroscopy, thermal gravimetric analysis (TGA), x-ray diffraction (XRD), zeta potential, and variable pressure field emission scanning electron microscope (VPFESEM). The results suggested that the carbonaceous sorbents modified with combination of citric acid tartaric acid, malic acid and salicylic acid (CTMS-I) showed increased surface area (O-AC: 871.67 m2/g, O-MWCNTs: 336.37 m2/g) and total pore volume (O-AC: 0.59 cm3/g, O-MWCNTs: 0.04 cm3/g), with the significantly improved thermal stability. Preliminary batch adsorption experiments conducted using the present prepared O-AC and O-MWCNTs, showed an improved performance towards the adsorption of BTX, compared with other available reported adsorbents in the literature.
    Matched MeSH terms: Charcoal
  18. Ikumapayi OM, Akinlabi ET
    Data Brief, 2019 Feb;22:537-545.
    PMID: 30627604 DOI: 10.1016/j.dib.2018.12.067
    Coconut Shell (CS) as agricultural lignocellulosic biomaterial and agro-waste is predominantly available in India, Malaysia, Nigeria, Thailand, Sri Lanka, and Indonesia. It has proven to have effective durability characteristic, good abstractive resistance, high toughness, and good adsorption properties, and is most suitable for long standing use in many applications such as reinforcement, source of energy, fillers as well as activated carbon and its performance, efficiency and effectiveness depend wholly on whether is in form of nano-, micro-, and macro- particles. In this data, effects of milling time on morphological characteristics was experimented using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and X-Ray Fluorescence (XRF) analyses. The SEM images were taken at magnifications of 1.00kx, 2.00kx and 5.00kx which gives respective 50 µm, 20 µm and 10 µm in different milling time of 0, 20, 40 and 60 mins. Digital Vibratory Disc Milling Machine (VDMM) rated 380 V/50 Hz at 940 rpm was employed for the grinding and the morphology of the milled nanoparticles were characterised. It was revealed from the data collected that 0 min (i.e. 75 µm sieved) has the highest mean area value of 16.105 µm2 and area standard deviation of 200.738 µm2 with least value of a number of particle size distribution of 809 µm. In contrast, 60 mins milled has the lowest values for mean area and area standard deviation of 8.945 µm2 and 115.851 µm2 respectively with the highest number of particle size distribution of 2032 µm. It was observed that milling time increases the number of particle sizes distributions and reduces the area of particle size.
    Matched MeSH terms: Charcoal
  19. Yue X, Ma NL, Sonne C, Guan R, Lam SS, Van Le Q, et al.
    J Hazard Mater, 2021 03 05;405:124138.
    PMID: 33092884 DOI: 10.1016/j.jhazmat.2020.124138
    Indoor air pollution with toxic volatile organic compounds (VOCs) and fine particulate matter (PM2.5) is a threat to human health, causing cancer, leukemia, fetal malformation, and abortion. Therefore, the development of technologies to mitigate indoor air pollution is important to avoid adverse effects. Adsorption and photocatalytic oxidation are the current approaches for the removal of VOCs and PM2.5 with high efficiency. In this review we focus on the recent development of indoor air pollution mitigation materials based on adsorption and photocatalytic decomposition. First, we review on the primary indoor air pollutants including formaldehyde, benzene compounds, PM2.5, flame retardants, and plasticizer: Next, the recent advances in the use of adsorption materials including traditional biochar and MOF (metal-organic frameworks) as the new emerging porous materials for VOCs absorption is reviewed. We review the mechanism for mitigation of VOCs using biochar (noncarbonized organic matter partition and adsorption) and MOF together with parameters that affect indoor air pollution removal efficiency based on current mitigation approaches including the mitigation of VOCs using photocatalytic oxidation. Finally, we bring forward perspectives and directions for the development of indoor air mitigation technologies.
    Matched MeSH terms: Charcoal
  20. Hossain N, Nizamuddin S, Griffin G, Selvakannan P, Mubarak NM, Mahlia TMI
    Sci Rep, 2020 Nov 02;10(1):18851.
    PMID: 33139793 DOI: 10.1038/s41598-020-75936-3
    The recent implication of circular economy in Australia spurred the demand for waste material utilization for value-added product generations on a commercial scale. Therefore, this experimental study emphasized on agricultural waste biomass, rice husk (RH) as potential feedstock to produce valuable products. Rice husk biochar (RB) was obtained at temperature: 180 °C, pressure: 70 bar, reaction time: 20 min with water via hydrothermal carbonization (HTC), and the obtained biochar yield was 57.9%. Enhancement of zeta potential value from - 30.1 to - 10.6 mV in RB presented the higher suspension stability, and improvement of surface area and porosity in RB demonstrated the wastewater adsorption capacity. Along with that, an increase of crystallinity in RB, 60.5%, also indicates the enhancement of the catalytic performance of the material significantly more favorable to improve the adsorption efficiency of transitional compounds. In contrast, an increase of the atomic O/C ratio in RB, 0.51 delineated high breakdown of the cellulosic component, which is favorable for biofuel purpose. 13.98% SiO2 reduction in RB confirmed ash content minimization and better quality of fuel properties. Therefore, the rice husk biochar through HTC can be considered a suitable material for further application to treat wastewater and generate bioenergy.
    Matched MeSH terms: Charcoal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links