Displaying publications 281 - 300 of 8201 in total

Abstract:
Sort:
  1. Siar CH, Nagatsuka H, Han PP, Buery RR, Tsujigiwa H, Nakano K, et al.
    J Oral Pathol Med, 2012 Apr;41(4):332-9.
    PMID: 22077561 DOI: 10.1111/j.1600-0714.2011.01104.x
    Canonical and non-canonical Wnt signaling pathways modulate diverse cellular processes during embryogenesis and post-natally. Their deregulations have been implicated in cancer development and progression. Wnt signaling is essential for odontogenesis. The ameloblastoma is an odontogenic epithelial neoplasm of enamel organ origin. Altered expressions of Wnts-1, -2, -5a, and -10a are detected in this tumor. The activity of other Wnt members remains unclarified.
    Matched MeSH terms: Ameloblastoma/genetics*; Glycoproteins/genetics; Nerve Tissue Proteins/genetics; Proto-Oncogene Proteins/genetics; Gene Expression Regulation, Neoplastic/genetics*; Wnt Proteins/genetics*; Wnt2 Protein/genetics; Wnt1 Protein/genetics; Wnt Signaling Pathway/genetics; Wnt3 Protein/genetics; Wnt4 Protein/genetics
  2. Chee SY, Devakie MN, Siti Azizah MN
    Genet. Mol. Res., 2011;10(2):1237-44.
    PMID: 21732288 DOI: 10.4238/vol10-2gmr1104
    Blood cockles are among the most economically important brackish water invertebrates found in Malaysia. However, our knowledge of blood cockle phylogeny and systematics is rudimentary, especially for the species Tegillarca granosa. It is unclear, for instance, whether the cockles occurring on the west coast of peninsular Malaysia constitute a single species, or multiple, phylogenetically distinct species. We performed the first DNA molecular phylogenetic analysis of T. granosa to distinguish it from other related species found in other parts of the world and to create a DNA database for the species. An approximately 585-nucleotide fragment of the mitochondrial DNA (cytochrome oxidase I, COI) was sequenced for 150 individual cockles, representing 10 populations: three from the north, four from the central part and three from the southern part of peninsular Malaysia. Phylogenetic analyses of the resulting dataset yielded tree topologies that not only showed the relationship between T. granosa and its closest relatives but its position in the evolutionary tree. Three mitochondrial clades were evident, each containing an individual genus. Using the mutation rate of the COI gene, the divergence time between T. granosa and its closest related species was estimated to be 460 thousand years ago. This study provides a phylogenetic framework for this ecologically prominent and commercially important cockle species.
    Matched MeSH terms: DNA/genetics; Cardiidae/genetics*
  3. Mokhtar MA, Normah MN, Kumar SV, Baharum SN
    Genet. Mol. Res., 2011;10(2):885-8.
    PMID: 21644205 DOI: 10.4238/vol10-2gmr1117
    Epinephelus fuscoguttatus is a commercially important marine fish species in southeast Asia. Due to overfishing and water pollution, this species has been declared as near-threatened. Thus, to provide information to help maintain and preserve the species, microsatellites were developed, using an enriched genomic library method. Thirty individuals were collected from the hatchery of the Fishery Research Institute, Terengganu, Malaysia. These individuals, from four to six years old, originated from Sabah and are maintained in captive culture as broodstock. Genomic DNA was extracted from the fins of selected individuals that weighed 3-8 kg. Ten microsatellite loci were found to be polymorphic in this population, with 5 to 21 alleles per locus. Observed and expected heterozygosities ranged from 0.53 to 0.97 and 0.59 to 0.95, respectively. Only one locus deviated significantly from Hardy-Weinberg equilibrium and no significant linkage disequilibrium was found among the pairs of loci. These polymorphic microsatellite loci will be used by the Malaysian Fishery Research Institute for investigating genetic diversity and for developing breeding strategies.
    Matched MeSH terms: Fishes/genetics*; Microsatellite Repeats/genetics*
  4. Rosli MK, Zakaria SS, Syed-Shabthar SM, Zainal ZZ, Shukor MN, Mahani MC, et al.
    Genet. Mol. Res., 2011;10(1):482-93.
    PMID: 21476194 DOI: 10.4238/vol10-1gmr1002
    The Malayan gaur (Bos gaurus hubbacki) is one of the three subspecies of gaurs that can be found in Malaysia. We examined the phylogenetic relationships of this subspecies with other species of the genus Bos (B. javanicus, B. indicus, B. taurus, and B. grunniens). The sequence of a key gene, cytochrome b, was compared among 20 Bos species and the bongo antelope, used as an outgroup. Phylogenetic reconstruction was employed using neighbor joining and maximum parsimony in PAUP and Bayesian inference in MrBayes 3.1. All tree topologies indicated that the Malayan gaur is in its own monophyletic clade, distinct from other species of the genus Bos. We also found significant branching differences in the tree topologies between wild and domestic cattle.
    Matched MeSH terms: Cattle/genetics*; Cytochromes b/genetics*
  5. Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, et al.
    PLoS One, 2009;4(7):e6367.
    PMID: 19636378 DOI: 10.1371/journal.pone.0006367
    Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat.
    Matched MeSH terms: RNA, Viral/genetics*; Henipavirus/genetics*
  6. Zhu ZY, Wang CM, Lo LC, Lin G, Feng F, Tan J, et al.
    Anim. Genet., 2010 Apr;41(2):208-12.
    PMID: 19793264 DOI: 10.1111/j.1365-2052.2009.01973.x
    Microsatellites are the most popular markers for parentage assignment and population genetic studies. To meet the demand for international comparability for genetic studies of Asian seabass, a standard panel of 28 microsatellites has been selected and characterized using the DNA of 24 individuals from Thailand, Malaysia, Indonesia and Australia. The average allele number of these markers was 10.82 +/- 0.71 (range: 6-19), and the expected heterozygosity averaged 0.76 +/- 0.02 (range: 0.63-1.00). All microsatellites showed Mendelian inheritance. In addition, eight standard size controls have been developed by cloning a set of microsatellite alleles into a pGEM-T vector to calibrate allele sizes determined by different laboratories, and are available upon request. Seven multiplex PCRs, each amplifying 3-5 markers, were optimized to accurately and rapidly genotype microsatellites. Parentage assignment using 10 microsatellites in two crosses (10 x 10 and 20 x 20) demonstrated a high power of these markers for revealing parent-sibling connections. This standard set of microsatellites will standardize genetic diversity studies of Asian seabass, and the multiplex PCR sets will facilitate parentage assignment.
    Matched MeSH terms: Bass/genetics*; Genetics, Population
  7. Ong CC, Teh CH, Tan SG, Yusoff K, Yap CK
    Genetika, 2008 Apr;44(4):574-6.
    PMID: 18666563
    We report on the characterization of 11 polymorphic microsatellite loci in P. viridis, the first set of such markers developed and characterized for this species. The number of alleles per locus ranged from 2 to 7, whereas the observed heterozygosity ranged from 0.0447 to 0.4837. These markers should prove useful as powerful genetic markers for this species.
    Matched MeSH terms: Microsatellite Repeats/genetics*; Perna/genetics*
  8. Azad MA, Rabbani MG, Amin L
    Int J Mol Sci, 2012;13(12):17065-76.
    PMID: 23235330 DOI: 10.3390/ijms131217065
    Plant regeneration and somatic embryogenesis through interspecific hybridization among different Carica species were studied for the development of a papaya ringspot virus-resistant variety. The maximum fruit sets were recorded from the cross of the native variety C. papaya cv. Shahi with the wild species C. cauliflora. The highest hybrid embryos were recorded at 90 days after pollination and the embryos were aborted at 150 days after pollination. The immature hybrid embryos were used for plant regeneration and somatic embryogenesis. The 90-day-old hybrid embryos from the cross of C. papaya cv. Shahi × C. cauliflora showed the highest percentage of germination, as well as plant regeneration on growth regulators free culture medium after 7 days pre-incubation on half-strength MS medium supplemented with 0.2 mg/L BAP, 0.5 mg/L NAA and 60 g/L sucrose. The 90-day-old hybrid embryos from the cross of C. papaya cv. Shahi × C. cauliflora produced maximum callus, as well as somatic embryos when cultured on half-strength MS medium containing 5 mg/L 2,4-D, 100 mg/L glutamine, 100 mg/L casein hydrolysate and 60 g/L sucrose. The somatic embryos were transferred into half-strength MS medium containing 0.5 mg/L BAP and 0.2 mg/L NAA and 60 g/L sucrose for maturation. The highest number of regenerated plants per hybrid embryo (10.33) was recorded from the cross of C. papaya cv. Shahi × C. cauliflora. Isoenzyme and dendrogram cluster analysis using UPGMA of the regenerated F(1) plantlets confirmed the presence of the hybrid plantlets.
    Matched MeSH terms: Chimera/genetics; Carica/genetics
  9. Hoh BP, Siraj SS, Tan SG, Yusoff K
    Genet. Mol. Res., 2013;12(3):2578-93.
    PMID: 23479146 DOI: 10.4238/2013.February.28.1
    The river catfish Mystus nemurus is an important fresh water species for aquaculture in Malaysia. We report the first genetic linkage map of M. nemurus based on segregation analysis and a linkage map using newly developed microsatellite markers of M. nemurus. A total of 70 of the newly developed polymorphic DNA microsatellite markers were analyzed on pedigrees generated using a pseudo-testcross strategy from 2 mapping families. In the first mapping family, 100 offspring were produced from randomly selected dams of the same populations; dams of the second family were selected from 2 different populations, and this family had 50 offspring. Thirty-one of the 70 markers segregated according to the Mendelian segregation ratio. Linkage analysis revealed that 17 microsatellite markers belonging to 7 linkage groups were obtained at a logarithm of the odds score of 1.2 spanning 584 cM by the Kosambi mapping function, whereas the other 14 remained unlinked. The results from this study will act as primer to a more extensive genetic mapping study aimed towards identifying genetic loci involved in determining economically important traits.
    Matched MeSH terms: Catfishes/genetics*; Population/genetics
  10. Chen X, Li J, Xiao S, Liu X
    Gene, 2016 Jan 15;576(1 Pt 3):537-43.
    PMID: 26546834 DOI: 10.1016/j.gene.2015.11.001
    Paphia textile is an important, aquaculture bivalve clam species distributed mainly in China, Philippines, and Malaysia. Recent studies of P. textile have focused mainly on artificial breeding and nutrition analysis, and the transcriptome and genome of P. textile have rarely been reported. In this work, the transcriptome of P. textile foot tissue was sequenced on an Illumina HiSeq™ 2000 platform. A total of 20,219,795 reads were generated, resulting in 4.08 Gb of raw data. The raw reads were cleaned and assembled into 54,852 unigenes with an N50 length of 829 bp. Of these unigenes, 38.92% were successfully annotated based on their matches to sequences in seven public databases. Among the annotated unigenes, 14,571 were assigned Gene Ontology terms, 5448 were classified to Clusters of Orthologous Groups categories, and 6738 were mapped to 228 pathways in the Kyoto Encyclopedia of Genes and Genomes database. For functional marker development, 5605 candidate simple sequence repeats were identified in the transcriptome and 80 primer pairs were selected randomly and amplified in a wild population of P. textile. A total of 36 loci that exhibited obvious repeat length polymorphisms were detected. The transcriptomic data and microsatellite markers will provide valuable resources for future functional gene analyses, genetic map construction, and quantitative trait loci mapping in P. textile.
    Matched MeSH terms: Microsatellite Repeats/genetics*; Bivalvia/genetics*
  11. Acquah C, Danquah MK, Agyei D, Moy CK, Sidhu A, Ongkudon CM
    Crit Rev Biotechnol, 2016 Dec;36(6):1010-1022.
    PMID: 26381238
    The genome of virulent strains may possess the ability to mutate by means of antigenic shift and/or antigenic drift as well as being resistant to antibiotics with time. The outbreak and spread of these virulent diseases including avian influenza (H1N1), severe acute respiratory syndrome (SARS-Corona virus), cholera (Vibrio cholera), tuberculosis (Mycobacterium tuberculosis), Ebola hemorrhagic fever (Ebola Virus) and AIDS (HIV-1) necessitate urgent attention to develop diagnostic protocols and assays for rapid detection and screening. Rapid and accurate detection of first cases with certainty will contribute significantly in preventing disease transmission and escalation to pandemic levels. As a result, there is a need to develop technologies that can meet the heavy demand of an all-embedded, inexpensive, specific and fast biosensing for the detection and screening of pathogens in active or latent forms to offer quick diagnosis and early treatments in order to avoid disease aggravation and unnecessary late treatment costs. Nucleic acid aptamers are short, single-stranded RNA or DNA sequences that can selectively bind to specific cellular and biomolecular targets. Aptamers, as new-age bioaffinity probes, have the necessary biophysical characteristics for improved pathogen detection. This article seeks to review global pandemic situations in relation to advances in pathogen detection systems. It particularly discusses aptameric biosensing and establishes application opportunities for effective pandemic monitoring. Insights into the application of continuous polymeric supports as the synthetic base for aptamer coupling to provide the needed convective mass transport for rapid screening is also presented.
    Matched MeSH terms: Bacteria/genetics; Viruses/genetics
  12. King BC, Vavitsas K, Ikram NK, Schrøder J, Scharff LB, Bassard JÉ, et al.
    Sci Rep, 2016 04 29;6:25030.
    PMID: 27126800 DOI: 10.1038/srep25030
    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology.
    Matched MeSH terms: DNA, Plant/genetics*; Bryopsida/genetics*
  13. Ahmad M, Jung LT, Bhuiyan MA
    Comput Biol Med, 2016 Feb 1;69:144-51.
    PMID: 26773936 DOI: 10.1016/j.compbiomed.2015.12.017
    A coding measure scheme numerically translates the DNA sequence to a time domain signal for protein coding regions identification. A number of coding measure schemes based on numerology, geometry, fixed mapping, statistical characteristics and chemical attributes of nucleotides have been proposed in recent decades. Such coding measure schemes lack the biologically meaningful aspects of nucleotide data and hence do not significantly discriminate coding regions from non-coding regions. This paper presents a novel fuzzy semantic similarity measure (FSSM) coding scheme centering on FSSM codons׳ clustering and genetic code context of nucleotides. Certain natural characteristics of nucleotides i.e. appearance as a unique combination of triplets, preserving special structure and occurrence, and ability to own and share density distributions in codons have been exploited in FSSM. The nucleotides׳ fuzzy behaviors, semantic similarities and defuzzification based on the center of gravity of nucleotides revealed a strong correlation between nucleotides in codons. The proposed FSSM coding scheme attains a significant enhancement in coding regions identification i.e. 36-133% as compared to other existing coding measure schemes tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms.
    Matched MeSH terms: Codon/genetics*; DNA/genetics*
  14. Yaakop AS, Chan KG, Gan HM, Goh KM
    Mar Genomics, 2015 Oct;23:59-60.
    PMID: 25999308 DOI: 10.1016/j.margen.2015.05.004
    Jeotgalibacillus campisalis SF-57(T) (=KCCM 41644(T), JCM 11810(T)) is a moderate halophilic bacterium isolated from a Korean marine saltern. In this study, we describe the high-quality draft genome of strain SF-57(T), which was assembled into 24 contigs containing 3,650,490bp with a G+C content of 41.06%. Availability of the genome sequence of J. campisalis SF-57(T) will contribute to a better understanding of the genus Jeotgalibacillus.
    Matched MeSH terms: DNA, Bacterial/genetics; Planococcaceae/genetics*
  15. Tan GC, Dibb N
    Malays J Pathol, 2015 Aug;37(2):73-81.
    PMID: 26277662 MyJurnal
    Since the inception of deep sequencing, isomiRs are consistently observed to be produced by most miRNA genes in a variety of cell types. IsomiRs appear as a variation in length from the canonical sequence annotated in miRBase, due to an addition or deletion of one or more nucleotides at the 5(') or 3(') ends or both. As the seed sequence is located at the 5(') end of the microRNA, the target mRNA will be theoretically different. Therefore, 5(')isomiRs might potentially target a new set mRNA compared to their canonical counterpart. This article gives an overview of investigations that explored the functional potential of isomiRs such as their ability to incorporate into Argonaute protein, the differential expression of isomiRs in various tissue types and cell lines, and the differences of mRNA targets between isomiR and its canonical microRNA. In addition, this article provides a brief introduction of RNA sponges as a potential way to inhibit isomiRs.
    Matched MeSH terms: MicroRNAs/genetics*; RNA Cleavage/genetics*
  16. Tan BS, Tiong KH, Choo HL, Chung FF, Hii LW, Tan SH, et al.
    Cell Death Dis, 2015;6:e1826.
    PMID: 26181206 DOI: 10.1038/cddis.2015.191
    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.
    Matched MeSH terms: Cell Survival/genetics; Neoplasms/genetics*; Tumor Suppressor Protein p53/genetics*; Apoptosis/genetics; Drug Resistance, Neoplasm/genetics; Proto-Oncogene Proteins c-bcl-2/genetics; Phosphatidylinositol 3-Kinases/genetics; Anoikis/genetics*; Adaptor Proteins, Signal Transducing/genetics; Oncogene Protein v-akt/genetics; Carcinogenesis/genetics*
  17. Walton C, Chang MS, Handley JM, Harbach RE, Collins FH, Baimai V, et al.
    Mol Ecol, 2000 Oct;9(10):1665-7.
    PMID: 11050564
    Matched MeSH terms: Anopheles/genetics*; Genetics, Population
  18. Dhaliwal JS, Too CL, Lisut M, Lee YY, Murad S
    Tissue Antigens, 2003 Oct;62(4):330-2.
    PMID: 12974801
    The frequency of HLA-B27 and its subtypes was determined in 878 Malay subjects. Thirty-five of the subjects typed for HLA-A, -B and -DR were found to be positive for HLA-B27. The frequency of this allele in the Malay population was found to be 3.99%. The subtypes observed and their frequencies are: HLA-B*2704 (19.4%), HLA-B*2705 (5.6%), HLA-B*2706 (72.2%) and HLA-B*2707 (2.8%).
    Matched MeSH terms: Polymorphism, Genetic/genetics*; HLA-B27 Antigen/genetics*
  19. Chin IY, Koh CL, Bosco JJ
    Acta Haematol., 1992;87(1-2):107-8.
    PMID: 1585764
    Matched MeSH terms: Leukemia/genetics*; Genes, ras/genetics*
  20. Lim PK, Tan SK, Khoo AS, Noor Rain A, Nagappan S, Mak JW
    PMID: 9740263
    Matched MeSH terms: Plasmodium falciparum/genetics*; Tetrahydrofolate Dehydrogenase/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links