SETTING: Departments of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia, and Tan Tock Seng Hospital, Singapore.
METHODS: In a randomized, double-blind study performed at two centers, 51 patients received an HSM PMMA lens and 48, an unmodified PMMA IOL. Cell and pigment deposits were evaluated by slitlamp at 1 to 6 days, 2 to 3 weeks, and 3 to 6 months postoperatively.
RESULTS: Significantly more eyes with unmodified IOLs had inflammatory cell deposits than those with HSM IOLs at 3 to 6 months (P < .001) and 12 to 14 months (P = .018) postoperatively. The HSM group also had significantly fewer cell deposits per patient at these two follow-ups. Significantly more eyes in the non-HSM group had pigment deposits 3 to 6 months after surgery (P = .049). One year postoperatively, about 85% of patients in both groups had a best corrected visual acuity of 0.5 or better.
CONCLUSION: Heparin surface modification significantly reduced the inflammatory response to PMMA IOLs in an Asian population for at least 12 to 14 months.
OBJECTIVE: With distinct optical attributes (e.g., robust photostability, restricted emission spectra, tunable broad excitation, and high quantum output), fluorescent quantum dots (QDs) have been feasibly functionalized with manageable interfaces and considerably utilized as a new class of optical probe in biological investigations.
METHODS: In this review article, we structured the current advancements in the preparation methods and attributes of QDs. Furthermore, we extend an overview of the outstanding potential of QDs for biomedical research and radical approaches to drug delivery.
CONCLUSION: Notably, the applications of QDs as smart next-generation nanosystems for neuroscience and pharmacokinetic studies have been explained. Moreover, recent interests in the potential toxicity of QDs are also apprised, ranging from cell investigations to animal studies.
METHODS AND RESULTS: Ag-NPs were synthesized using a chemical reduction method and characterized with respect to their surface plasmon resonance, surface morphology via transmission electron microscopy (TEM) and dynamic light scattering (DLS). The bacterial surface was targeted using 20 nm Ag-NPs conjugated with an anti-protein A antibody. Labelled bacteria were irradiated with blue visible laser at 2·04 W/cm2 . The antibacterial activity of functionalized Ag-NPs was investigated by fluorescence microscopy after irradiation, and morphological changes in S. aureus after laser treatment were assessed using scanning electron microscopy (SEM). The laser-irradiated, functionalized Ag-NPs exhibited significant bactericidal activity, and laser-induced bacterial damage was observed after 10 min of laser irradiation against S. aureus. The fluorescence microscopic analysis results supported that bacterial cell death occurred in the presence of the functionalized Ag-NPs.
CONCLUSIONS: The results of this study suggest that a novel method for the preparation of functionalized nanoparticles has potential as a potent antibacterial agent for the selective killing of resistant disease-causing bacteria.
SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that Ag-NPs functionalized with a specific antibody, could be used in combination with laser radiation as a novel treatment to target resistant bacterial and fungal pathogens with minimal impact on normal microflora.