Displaying publications 3001 - 3020 of 3312 in total

Abstract:
Sort:
  1. Yakop F, Abd Ghafar SA, Yong YK, Saiful Yazan L, Mohamad Hanafiah R, Lim V, et al.
    Artif Cells Nanomed Biotechnol, 2018;46(sup2):131-139.
    PMID: 29561182 DOI: 10.1080/21691401.2018.1452750
    PURPOSE: The purpose of this study was to investigate apoptotic activity of silver nanoparticle Clinacanthus nutans (AgNps-CN) towards HSC-4 cell lines (oral squamous cell carcinoma cell lines).

    METHODS: Methods involved were MTT assay (cytotoxic activity), morphological cells analysis, flow cytometry and cell cycle analysis and western blot.

    RESULTS: MTT assay revealed IC50 concentration was 1.61 µg/mL, 3T3-L1 cell lines were used to determine whether AgNps-CN is cytotoxic to normal cells. At the highest concentration (3 µg/mL), no cytotoxic activity has been observed. Flow cytometry assay revealed AgNps-CN caused apoptosis effects towards HSC-4 cell lines with significant changes were observed at G1 phase when compared with untreated cells. Morphological cells analysis revealed that most of the cells exhibit apoptosis characteristics rather than necrosis. Protein study revealed that ratio of Bax/Bcl-2 increased mainly due to down-regulation of Bcl-2 expression.

    CONCLUSION: AgNps-CN have shown potential in inhibiting HSC-4 cell lines. IC50 was low compared to few studies involving biosynthesized of silver nanoparticles. Apoptosis effects were shown towards HSC-4 cell lines by the increased in Bax/Bcl-2 protein ratio. Further study such as PCR or in vivo studies are required.

    Matched MeSH terms: 3T3 Cells
  2. Wernsdorfer WH, Ismail S, Chan KL, Congpuong K, Wernsdorfer G
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:23-6.
    PMID: 19915812 DOI: 10.1007/s00508-009-1230-7
    The habitats of Eurycoma longifolia Jack, a slender tree, are jungles in Malaysia and Indonesia. It belongs to the family Simaroubaceae and is a source of quassinoids with anabolic, antimalarial and cytostatic activity. In this study, conducted during 2008 in Mae Sot, Thailand, a standardized extract of E. longifolia containing three major quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (2) and 13alpha(21)-epoxyeurycomanone (3) was evaluated for antiplasmodial activity against Plasmodium falciparum and its activity has been compared with that of artemisinin, using 38 fresh parasite isolates and assessment of inhibition of schizont maturation. The IC(50), IC(90) and IC(99) values for artemisinin were 4.30, 45.48 and 310.97 microg/l, and those for the root extract from E. longifolia 14.72, 139.65 and 874.15 microg/l respectively. The GMCOC for artemisinin was 337.81 mug/l, and for the plant extract it was 807.41 microg/l. The log-concentration probit regressions were parallel. The inhibitory activity of the E. longifolia extract was higher than that expected from the three quassinoids isolated from the plant, suggesting synergism between the quassinoids or the presence of other unidentified compounds.
    Matched MeSH terms: Cells, Cultured
  3. Syahida A, Israf DA, Permana D, Lajis NH, Khozirah S, Afiza AW, et al.
    Immunol Cell Biol, 2006 Jun;84(3):250-8.
    PMID: 16509831
    Many plant-derived natural compounds have been reported previously to inhibit the production of important pro-inflammatory mediators such as nitric oxide, prostaglandin E2, TNF-alpha and reactive oxygen species by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase pathway and nuclear translocation of critical transcription factors. This study evaluates the effects of atrovirinone [2-(1-methoxycarbonyl-4,6-dihydroxyphenoxy)-3-methoxy-5,6-di-(3-methyl-2-butenyl)-1,4-benzoquinone)], a benzoquinone that we have previously isolated from Garcinia atroviridis, on two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds, namely, RAW 264.7 macrophage cells and whole blood. Atrovirinone inhibited the production of both nitric oxide and prostaglandin E2 from LPS-induced and IFN-gamma-induced RAW 264.7 cells and whole blood, with inhibitory concentration (IC)50 values of 4.62 +/- 0.65 and 9.33 +/- 1.47 micromol/L, respectively. Analysis of thromboxane B2 (TXB2) secretion from whole blood stimulated by either the cyclooxygenase (COX)-1 or the COX-2 pathway showed that atrovirinone inhibits the generation of TXB2 by both pathways, with IC50 values of 7.41 +/- 0.92 and 2.10 +/- 0.48 micromol/L, respectively. Analysis of IC50 ratios showed that atrovirinone was more COX-2 selective in its inhibition of TXB2, with a ratio of 0.32. Atrovirinone also inhibited the generation of intracellular reactive oxygen species and the secretion of TNF-alpha from RAW 264.7 cells in a dose-responsive manner, with IC50 values of 5.99 +/- 0.62 and 11.56 +/- 0.04 micromol/L, respectively. Lipoxygenase activity was also moderately inhibited by atrovirinone. Our results suggest that atrovirinone acts on important pro-inflammatory mediators possibly by the inhibition of the nuclear factor-kappaB pathway and also by the inhibition of the COX/lipoxygenase enzyme activity.
    Matched MeSH terms: Cells, Cultured
  4. Lim MN, Lau NS, Chang KM, Leong CF, Zakaria Z
    Singapore Med J, 2007 Oct;48(10):932-8.
    PMID: 17909680
    The multidrug resistance gene, MDR1, is one of the genes responsible for resistance to chemotherapy in the treatment of leukaemia and other cancers. The discovery of RNA interference in mammalian cells has provided a powerful tool to inhibit the expression of this gene. However, very little is known about the transfection of leukaemia cells with short interfering RNA (siRNA) targeted at MDR1. This study aims to evaluate the effectiveness of two chemically-synthesised siRNA in modulating MDR1 gene and inhibiting P-glycoprotein expression in leukaemic cells. We also evaluated two siRNA delivery methods in this study.
    Matched MeSH terms: Tumor Cells, Cultured
  5. Batumalaie K, Qvist R, Yusof KM, Ismail IS, Sekaran SD
    Clin Exp Med, 2014 May;14(2):185-95.
    PMID: 23584372 DOI: 10.1007/s10238-013-0236-7
    Type 2 diabetes consists of progressive hyperglycemia, insulin resistance, and pancreatic β-cell failure which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study, we investigate the effect of pretreatment with Gelam honey (Melaleuca spp.) and the individual flavonoid components chrysin, luteolin, and quercetin, on the production of reactive oxygen species (ROS), cell viability, lipid peroxidation, and insulin content in hamster pancreatic cells (HIT-T15 cells), cultured under normal and hyperglycemic conditions. Phenolic extracts from a local Malaysian species of Gelam honey (Melaleuca spp.) were prepared using the standard extraction methods. HIT-T15 cells were cultured in 5 % CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 μg/ml) as well as some of its flavonoid components chrysin, luteolin, and quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM of glucose. The antioxidative effects were measured in these cultured cells at different concentrations and time point by DCFH-DA assay. Pretreatment of cells with Gelam honey extract or the flavonoid components prior to culturing in 20 or 50 mM glucose showed a significant decrease in the production of ROS, glucose-induced lipid peroxidation, and a significant increase in insulin content and the viability of cells cultured under hyperglycemic condition. Our results show the in vitro antioxidative property of the Gelam honey and the flavonoids on the β-cells from hamsters and its cytoprotective effect against hyperglycemia.
    Matched MeSH terms: Cells, Cultured
  6. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5164-5180.
    PMID: 28361404 DOI: 10.1007/s11356-017-8855-2
    Violacein, violet pigment produced by Chromobacterium violaceum, has attracted much attention recently due to its pharmacological properties including antibacterial activity. The present study investigated possible antibacterial mode of action of violacein from C. violaceum UTM5 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains. Violet fraction was obtained by cultivating C. violaceum UTM5 in liquid pineapple waste medium, extracted, and fractionated using ethyl acetate and vacuum liquid chromatography technique. Violacein was quantified as major compound in violet fraction using HPLC analysis. Violet fraction displayed bacteriostatic activity against S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300 with minimum inhibitory concentration (MIC) of 3.9 μg/mL. Fluorescence dyes for membrane damage and scanning electron microscopic analysis confirmed the inhibitory effect by disruption on membrane integrity, morphological alternations, and rupture of the cell membranes of both strains. Transmission electron microscopic analysis showed membrane damage, mesosome formation, and leakage of intracellular constituents of both bacterial strains. Mode of action of violet fraction on the cell membrane integrity of both strains was shown by release of protein, K+, and extracellular adenosine 5'-triphosphate (ATP) with 110.5 μg/mL, 2.34 μg/mL, and 87.24 ng/μL, respectively, at 48 h of incubation. Violet fraction was toxic to human embryonic kidney (HEK293) and human fetal lung fibroblast (IMR90) cell lines with LC50 value of 0.998 ± 0.058 and 0.387 ± 0.002 μg/mL, respectively. Thus, violet fraction showed a strong antibacterial property by disrupting the membrane integrity of S. aureus and MRSA strains. This is the first report on the possible mode of antibacterial action of violet fraction from C. violaceum UTM5 on S. aureus and MRSA strains.
    Matched MeSH terms: HEK293 Cells
  7. Anwar A, Mungroo MR, Anwar A, Sullivan WJ, Khan NA, Siddiqui R
    ACS Infect Dis, 2019 Dec 13;5(12):2039-2046.
    PMID: 31612700 DOI: 10.1021/acsinfecdis.9b00263
    Brain-eating amoebae cause devastating infections in the central nervous system of humans, resulting in a mortality rate of 95%. There are limited effective therapeutic options available clinically for treating granulomatous amoebic encephalitis and primary amoebic meningoencephalitis caused by Acanthamoeba castellanii (A. castellanii) and Naegleria fowleri (N. fowleri), respectively. Here, we report for the first time that guanabenz conjugated to gold and silver nanoparticles has significant antiamoebic activity against both A. castellanii and N. fowleri. Gold and silver conjugated guanabenz nanoparticles were synthesized by the one-phase reduction method and were characterized by ultraviolet-visible spectrophotometry and atomic force microscopy. Both metals were facilely stabilized by the coating of guanabenz, which was examined by surface plasmon resonance determination. The average size of gold nanoconjugated guanabenz was found to be 60 nm, whereas silver nanoparticles were produced in a larger size distribution with the average diameter of around 100 nm. Guanabenz and its noble metal nanoconjugates exhibited potent antiamoebic effects in the range of 2.5 to 100 μM against both amoebae. Nanoparticle conjugation enhanced the antiamoebic effects of guanabenz, as more potent activity was observed at a lower effective concentration (2.5 and 5 μM) compared to the drug alone. Moreover, encystation and excystation assays revealed that guanabenz inhibits the interconversion between the trophozoite and cyst forms of A. castellanii. Cysticdal effects against N. fowleri were also observed. Notably, pretreatment of A. castellanii with guanabenz and its nanoconjugates exhibited a significant reduction in the host cell cytopathogenicity from 65% to 38% and 2% in case of gold and silver nanoconjugates, respectively. Moreover, the cytotoxic evaluation of guanabenz and its nanoconjugates revealed negligible cytotoxicity against human cells. Guanabenz is already approved for hypertension and crosses the blood-brain barrier; the results of our current study suggest that guanabenz and its conjugated gold and silver nanoparticles can be repurposed as a potential drug for treating brain-eating amoebic infections.
    Matched MeSH terms: HeLa Cells
  8. Shah SA, Sohail M, Minhas MU, Nisar-Ur-Rehman, Khan S, Hussain Z, et al.
    Drug Deliv Transl Res, 2019 Apr;9(2):555-577.
    PMID: 29450805 DOI: 10.1007/s13346-018-0486-8
    Cellulose acetate phthalate-based pH-responsive hydrogel was synthesized for fabrication of polymeric matrix tablets for gastro-protective delivery of loxoprofen sodium. Cellulose acetate phthalate (CAP) was cross-linked with methacrylic acid (MAA) using free radical polymerization technique. Fourier transform infrared (FTIR) spectra confirmed the formation of cross-linked structure of CAP-co-poly(methacrylic acid). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed the thermal stability of polymeric networks, and scanning electron microscopy (SEM) and energy-dispersive X-ray spectrum (EDS) images unveiled that the prepared formulations were porous in nature and thus the developed formulations had shown better diffusibility. Swelling and in vitro drug release was performed at various pHs and maximum swelling and release was obtained at pH 7.4, while swelling and release rate was very low at pH 1.2 which confirmed the pH-responsive behavior of CAP-co-poly(MAA). CAP-co-poly(MAA) copolymer prevents the release of loxoprofen sodium into the stomach due to reduced swelling at gastric pH while showing significant swelling and drug release in the colon. Cytotoxicity studies revealed higher biocompatibility of fabricated hydrogel. Acute oral toxicity studies were performed for the evaluation and preliminary screening of safety profile of the developed hydrogels. Matrix tablets were evaluated for release behavior at simulated body pH. The investigations performed for analysis of hydrogels and fabricated matrix tablets indicated the controlled drug release and gastro-protective drug delivery of CAP-co-poly(MAA) hydrogels and pH-sensitive matrix tablets for targeted delivery of gastro-sensitive/irritative agents. Graphical abstract.
    Matched MeSH terms: HeLa Cells
  9. Md Yusof EN, S A Ravoof TB, Tiekink ER, Veerakumarasivam A, Crouse KA, Mohamed Tahir MI, et al.
    Int J Mol Sci, 2015 May 15;16(5):11034-54.
    PMID: 25988384 DOI: 10.3390/ijms160511034
    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity.
    Matched MeSH terms: MCF-7 Cells
  10. Arshad L, Haque MA, Harikrishnan H, Ibrahim S, Jantan I
    Mol Biol Rep, 2024 Jul 11;51(1):789.
    PMID: 38990383 DOI: 10.1007/s11033-024-09722-z
    BACKGROUND: Syringin, a phenylpropanoid glycoside, has exhibited numerous biological properties including inhibitory activities against various immune and inflammatory disorders. In this study, syringin isolated from Tinospora crispa was evaluated for its ability to down-regulate activated nuclear factor-kappa B (NF-κB), phosphoinositide-3-kinase-Akt (PI3K-Akt) and mitogen-activated protein kinases (MAPKs) signal transducing networks in U937 macrophages activated by lipopolysaccharide.

    METHODS: The attenuating effects of syringin on the productions of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and the expressions of signaling molecules of the signaling pathways were investigated by using ELISA, Western blot, and qRT-PCR.

    RESULTS: Syringin downregulated the NF-κB, MAPKs, and PI3K-Akt signal networks by significantly reducing PGE2 production in the macrophages via suppression of COX-2 gene and protein expression levels. It also reduced TNF-α and IL-1β secretion and their mRNA expression, suppressed phosphorylation of NF-κB (p65), IKKα/β, and IκBα, and restored ability of IκBα to degrade. Syringin dose-dependently attenuated Akt, p38 MAPKs, JNK, and ERK phosphorylation. Also, the expression of corresponding upstream signaling molecules toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) were down-regulated in response to syringin treatment.

    CONCLUSION: The suppressive effect of syringin on the inflammatory signaling molecules in MyD88-dependent pathways suggested it's potential as a drug candidate for development into an agent for treatment of various immune-mediated inflammatory disorders.

    Matched MeSH terms: U937 Cells
  11. Xu ZQ, Kern ER, Westbrook L, Allen LB, Buckheit RW, Tseng CK, et al.
    Antivir Chem Chemother, 2000 Jan;11(1):23-9.
    PMID: 10693651
    Plant-derived and semi-synthetic calanolide compounds with anti-human immunodeficiency virus type 1 (HIV-1) activity were tested for anti-human cytomegalovirus (HCMV) activity in both cytopathic effect inhibition and plaque reduction assays. The results indicated that the anti-HCMV activity of calanolide compounds does not correlate with their activity against HIV-1. The semi-synthetic 12-keto derivatives tended to be more active against HCMV than the corresponding 12-OH congeners, which were more active against HIV-1. It appeared that the 7,8-unsaturated double bond in the chromene ring played a certain role in maintaining activities against both HCMV and HIV-1. Saturation of the double bond increased the EC50 values against both viruses, with concomitant increase in toxicity. The calanolide compounds reported here are the first non-nucleoside analogues capable of inhibiting both HIV-1 and HCMV and, therefore, may be useful chemoprophylactic agents for HCMV in HIV-infected people or vice versa.
    Matched MeSH terms: Cells, Cultured
  12. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R
    Molecules, 2015 Feb 05;20(2):2693-706.
    PMID: 25665064 DOI: 10.3390/molecules20022693
    Silver nanoparticles (Ag-NPs), the most popular nanoparticles, possess unique properties. Achillea biebersteinii is a plant of the Asteraceae family rich in active antitumor components. The aim of this research was the characterization and investigation of the cytotoxic properties of Ag-NPs synthesized using A. biebersteinii flower extract, on a human breast cancer cell line. The Ag-NPs were synthesized after approximately 180 min of reaction at 40 °C, then they were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The anti-apoptosis effect of Ag-NPs on the MCF-7 cell line was investigated by MTT assay, DAPI and acridine orange staining and caspase activity. The transcriptional expression of bax, bcl-2, caspase-3, -8 and -9 were also evaluated by RT-PCR. The TEM images revealed that the Ag-NPs morphology had a different shape. The DLS indicated that the average hydrodynamic diameter of the biosynthesized Ag-NPs was around 12 nm. By UV-visible spectroscopy the strongest absorbance peak was observed at 460 nm. The FTIR results also showed interaction between the plant extract and Ag-NPs due to the similarity in the peak patterns. The EDS results showed that Ag-NPs display an absorption peak at 3 keV, indicating the presence of the element silver. The Ag-NPs caused a dose-dependent decrease in cell viability, fragmentation in nucleic acid, inhibited the proliferation and induction of apoptosis on MCF-7 by suppressing specific cell cycle genes, and simulation programmed cell dead genes. Further investigation is required to establish the potential of this novel and promising approach in cancer therapy.
    Matched MeSH terms: MCF-7 Cells
  13. Kim RP, Bihud V, Bin Mohamad K, Leong KH, Bin Mohamad J, Bin Ahmad F, et al.
    Molecules, 2012 Dec 21;18(1):128-39.
    PMID: 23344192 DOI: 10.3390/molecules18010128
    Eleven compounds:goniomicin A (1), goniomicin B (2), goniomicin C (3), goniomicin D (4), tapisoidin (5), goniothalamin (6), 9-deoxygoniopypyrone (7), pterodondiol (8), liriodenine (9), benzamide (10) and cinnamic acid (11), were isolated from the stem bark of Goniothalamus tapisoides. All compounds were identified by spectroscopic analysis and, for known compounds, by comparison with published data. Goniothalamin (6) exhibited mild cytotoxic activity towards a colon cancer cell line (HT-29), with an IC(50)value of 64.17 ± 5.60 µM. Goniomicin B (2) give the highest antioxidant activity in the DPPH assay among all compounds tested, with an IC(50) of 0.207 µM.
    Matched MeSH terms: HT29 Cells
  14. Le VT, Leelakriangsak M, Lee SW, Panphon S, Utispan K, Koontongkaew S
    Braz J Microbiol, 2019 Jan;50(1):33-42.
    PMID: 30637641 DOI: 10.1007/s42770-018-0014-5
    Antibacterial activity of cell-free supernatant from Escherichia coli E against selected pathogenic bacteria in food and aquaculture was the highest against Edwardsiella tarda 3, a significant aquaculture pathogen. Biochemical properties of the bacteriocins were studied and bacteriocin was found to be sensitive to proteinase K, demonstrating its proteinaceous nature. In addition, pH and temperature affected bacteriocin activity and stability. The bacteriocins were partially purified by ammonium sulfate precipitation. The antibacterial activity was only detected in 20% ammonium sulfate fraction and direct detection of its activity was performed by overlaying on the indicator strains. The inhibition zone associated with the antibacterial activity was detected in the sample overlaid by E. tarda 3 and Staphylococcus aureus DMST8840 with the relative molecular mass of about 27 kDa and 10 kDa, respectively. Bacteriocin showed no cytotoxic effect on NIH-3T3 cell line; however, two virulence genes, aer and sfa, were detected in the genome of E. coli E by PCR. The characteristics of bacteriocins produced by E. coli E exhibited the antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria and the safe use determined by cytotoxicity test which may have interesting biotechnological applications.
    Matched MeSH terms: NIH 3T3 Cells
  15. Chiu HI, Lim V
    Int J Nanomedicine, 2021;16:2995-3020.
    PMID: 33911862 DOI: 10.2147/IJN.S302238
    PURPOSE: In chemotherapy, oral administration of drug is limited due to lack of drug specificity for localized colon cancer cells. The inability of drugs to differentiate cancer cells from normal cells induces side effects. Colonic targeting with polymeric nanoparticulate drug delivery offers high potential strategies for delivering hydrophobic drugs and fewer side effects to the target site. Disulfide cross-linked polymers have recently acquired high significance due to their potential to degrade in reducing colon conditions while resisting the upper gastrointestinal tract's hostile environment. The goal of this project is, therefore, to develop pH-sensitive and redox-responsive fluorescein-labeled wheat germ agglutinin (fWGA)-mounted disulfide cross-linked alginate nanoparticles (fDTP2) directly targeting docetaxel (DTX) in colon cancer cells.

    METHODS: fDTP2 was prepared by mounting fWGA on DTX-loaded nanoparticles (DTP2) using the two-step carbodiimide method. Morphology of fDTP2 was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) study was carried out to determine the mean diameter, polydispersity index (PDI) and zeta potential of fDTP2. Cellular uptake efficiency was examined using fluorescence microplate reader. Biocompatibility and active internalization of fDTP2 were conducted on HT-29.

    RESULTS: fDTP2 was found to exhibit a DTX loading efficiency of 19.3%. SEM and TEM tests revealed spherical nanoparticles. The in vitro DTX release test showed a cumulative release of 54.7%. From the DLS study, fDTP2 reported a 277.7 nm mean diameter with PDI below 0.35 and -1.0 mV zeta potential. HT-29 which was fDTP2-treated demonstrated lower viability than L929 with a half maximal inhibitory concentration (IC50) of 34.7 µg/mL. HT-29 (33.4%) internalized fDTP2 efficiently at 2 h incubation. The study on HT-29 active internalization of nanoparticles through fluorescence and confocal imaging indicated such.

    CONCLUSION: In short, fDTP2 demonstrated promise as a colonic drug delivery DTX transporter.

    Matched MeSH terms: HT29 Cells
  16. Shaikh LH, Zhou J, Teo AE, Garg S, Neogi SG, Figg N, et al.
    J Clin Endocrinol Metab, 2015 Jun;100(6):E836-44.
    PMID: 25915569 DOI: 10.1210/jc.2015-1734
    CONTEXT: Aldosterone synthesis and cellularity in the human adrenal zona glomerulosa (ZG) is sparse and patchy, presumably due to salt excess. The frequency of somatic mutations causing aldosterone-producing adenomas (APAs) may be a consequence of protection from cell loss by constitutive aldosterone production.

    OBJECTIVE: The objective of the study was to delineate a process in human ZG, which may regulate both aldosterone production and cell turnover.

    DESIGN: This study included a comparison of 20 pairs of ZG and zona fasciculata transcriptomes from adrenals adjacent to an APA (n = 13) or a pheochromocytoma (n = 7).

    INTERVENTIONS: Interventions included an overexpression of the top ZG gene (LGR5) or stimulation by its ligand (R-spondin-3).

    MAIN OUTCOME MEASURES: A transcriptome profile of ZG and zona fasciculata and aldosterone production, cell kinetic measurements, and Wnt signaling activity of LGR5 transfected or R-spondin-3-stimulated cells were measured.

    RESULTS: LGR5 was the top gene up-regulated in ZG (25-fold). The gene for its cognate ligand R-spondin-3, RSPO3, was 5-fold up-regulated. In total, 18 genes associated with the Wnt pathway were greater than 2-fold up-regulated. ZG selectivity of LGR5, and its absence in most APAs, were confirmed by quantitative PCR and immunohistochemistry. Both R-spondin-3 stimulation and LGR5 transfection of human adrenal cells suppressed aldosterone production. There was reduced proliferation and increased apoptosis of transfected cells, and the noncanonical activator protein-1/Jun pathway was stimulated more than the canonical Wnt pathway (3-fold vs 1.3-fold). ZG of adrenal sections stained positive for apoptosis markers.

    CONCLUSION: LGR5 is the most selectively expressed gene in human ZG and reduces aldosterone production and cell number. Such conditions may favor cells whose somatic mutation reverses aldosterone inhibition and cell loss.

    Matched MeSH terms: Tumor Cells, Cultured
  17. Asiri A, Saidin S, Sani MH, Al-Ashwal RH
    Sci Rep, 2021 Mar 11;11(1):5634.
    PMID: 33707606 DOI: 10.1038/s41598-021-85149-x
    In this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O-H and N-H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198-286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young's modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14-21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.
    Matched MeSH terms: Cells, Cultured
  18. Covés-Datson EM, King SR, Legendre M, Swanson MD, Gupta A, Claes S, et al.
    Sci Rep, 2021 01 12;11(1):656.
    PMID: 33436903 DOI: 10.1038/s41598-020-80577-7
    Lectins, carbohydrate-binding proteins, have been regarded as potential antiviral agents, as some can bind glycans on viral surface glycoproteins and inactivate their functions. However, clinical development of lectins has been stalled by the mitogenicity of many of these proteins, which is the ability to stimulate deleterious proliferation, especially of immune cells. We previously demonstrated that the mitogenic and antiviral activities of a lectin (banana lectin, BanLec) can be separated via a single amino acid mutation, histidine to threonine at position 84 (H84T), within the third Greek key. The resulting lectin, H84T BanLec, is virtually non-mitogenic but retains antiviral activity. Decreased mitogenicity was associated with disruption of pi-pi stacking between two aromatic amino acids. To examine whether we could provide further proof-of-principle of the ability to separate these two distinct lectin functions, we identified another lectin, Malaysian banana lectin (Malay BanLec), with similar structural features as BanLec, including pi-pi stacking, but with only 63% amino acid identity, and showed that it is both mitogenic and potently antiviral. We then engineered an F84T mutation expected to disrupt pi-pi stacking, analogous to H84T. As predicted, F84T Malay BanLec (F84T) was less mitogenic than wild type. However, F84T maintained strong antiviral activity and inhibited replication of HIV, Ebola, and other viruses. The F84T mutation disrupted pi-pi stacking without disrupting the overall lectin structure. These findings show that pi-pi stacking in the third Greek key is a conserved mitogenic motif in these two jacalin-related lectins BanLec and Malay BanLec, and further highlight the potential to rationally engineer antiviral lectins for therapeutic purposes.
    Matched MeSH terms: Cells, Cultured
  19. Yusefi M, Shameli K, Jahangirian H, Teow SY, Umakoshi H, Saleh B, et al.
    Int J Nanomedicine, 2020;15:5417-5432.
    PMID: 32801697 DOI: 10.2147/IJN.S250047
    INTRODUCTION: Green-based materials have been increasingly studied to circumvent off-target cytotoxicity and other side-effects from conventional chemotherapy.

    MATERIALS AND METHODS: Here, cellulose fibers (CF) were isolated from rice straw (RS) waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal (CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 460) cell lines after 72-hours of treatment.

    RESULTS: XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost fourfold increase in surface area and zeta potential of up to -33.61 mV. SEM images illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal cells, respectively.

    DISCUSSION: This study, therefore, showed the strong potential anticancer activity of the novel CF/5-FU formulations, warranting their further investigation.

    Matched MeSH terms: HCT116 Cells
  20. Lew SY, Lim SH, Lim LW, Wong KH
    BMC Complement Med Ther, 2020 Nov 11;20(1):340.
    PMID: 33176761 DOI: 10.1186/s12906-020-03132-x
    BACKGROUND: Hericium erinaceus is a culinary and medicinal mushroom in Traditional Chinese Medicines. It has numerous pharmacological effects including immunomodulatory, anti-tumour, anti-microbial, anti-aging and stimulation of nerve growth factor (NGF) synthesis, but little is known about its potential role in negating the detrimental effects of oxidative stress in depression. The present study investigated the neuroprotective effects of H. erinaceus standardised aqueous extract (HESAE) against high-dose corticosterone-induced oxidative stress in rat pheochromocytoma (PC-12) cells, a cellular model mimicking depression.

    METHODS: PC-12 cells was pre-treated with HESAE for 48 h followed by 400 μM corticosterone for 24 h to induce oxidative stress. Cells in complete medium without any treatment or pre-treated with 3.125 μg/mL desipramine served as the negative and positive controls, respectively. The cell viability, lactate dehydrogenase (LDH) release, endogenous antioxidant enzyme activities, aconitase activity, mitochondrial membrane potentials (MMPs), intracellular reactive oxygen species (ROS) levels and number of apoptotic nuclei were quantified. In addition, HESAE ethanol extract was separated into fractions by chromatographic methods prior to spectroscopic analysis.

    RESULTS: We observed that PC-12 cells treated with high-dose corticosterone at 400 μM had decreased cell viability, reduced endogenous antioxidant enzyme activities, disrupted mitochondrial function, and increased oxidative stress and apoptosis. However, pre-treatment with HESAE ranging from 0.25 to 1 mg/mL had increased cell viability, decreased LDH release, enhanced endogenous antioxidant enzyme activities, restored MMP, attenuated intracellular ROS and protected from ROS-mediated apoptosis. The neuroprotective effects could be attributed to significant amounts of adenosine and herierin III isolated from HESAE.

    CONCLUSIONS: HESAE demonstrated neuroprotective effects against high-dose corticosterone-induced oxidative stress in an in vitro model mimicking depression. HESAE could be a potential dietary supplement to treat depression.

    Matched MeSH terms: PC12 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links