Displaying publications 321 - 340 of 473 in total

Abstract:
Sort:
  1. Kanakaraju D, Motti CA, Glass BD, Oelgemöller M
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17437-48.
    PMID: 27230148 DOI: 10.1007/s11356-016-6906-8
    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.
    Matched MeSH terms: Water/chemistry
  2. Saqib NU, Adnan R, Shah I
    Environ Sci Pollut Res Int, 2016 Aug;23(16):15941-51.
    PMID: 27335012 DOI: 10.1007/s11356-016-6984-7
    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.
    Matched MeSH terms: Waste Water/chemistry*
  3. Rahman RA, Molla AH, Fakhru'l-Razi A
    Environ Sci Pollut Res Int, 2014 Jan;21(2):1178-87.
    PMID: 23881591 DOI: 10.1007/s11356-013-1974-5
    Sustainable, environmental friendly, and safe disposal of sewage treatment plant (STP) sludge is a global expectation. Bioremediation performance was examined at different hydraulic retention times (HRT) in 3-10 days and organic loading rates (OLR) at 0.66-7.81 g chemical oxygen demand (COD) per liter per day, with mixed filamentous fungal (Aspergillus niger and Penicillium corylophilum) inoculation by liquid-state bioconversion (LSB) technique as a continuous process in large-scale bioreactor. Encouraging results were monitored in treated sludge by LSB continuous process. The highest removal of total suspended solid (TSS), turbidity, and COD were achieved at 98, 99, and 93%, respectively, at 10 days HRT compared to control. The minimum volatile suspended solid/suspended solid implies the quality of water, which was recorded 0.59 at 10 days and 0.72 at 3 days of HRT. In treated supernatant with 88% protein removal at 10 days of HRT indicates a higher magnitude of purification of treated sludge. The specific resistance to filtration (SRF) quantifies the performance of dewaterability; it was recorded minimum 0.049 × 10(12) m kg(-1) at 10 days of HRT, which was equivalent to 97% decrease of SRF. The lower OLR and higher HRT directly influenced the bioremediation and dewaterability of STP sludge in LSB process. The obtained findings imply encouraging message in continuing treatment of STP sludge, i.e., bioremediation of wastewater for environmental friendly disposal in near future.
    Matched MeSH terms: Waste Water/chemistry
  4. Altowayti WAH, Allozy HGA, Shahir S, Goh PS, Yunus MAM
    Environ Sci Pollut Res Int, 2019 Oct;26(28):28737-28748.
    PMID: 31376124 DOI: 10.1007/s11356-019-06059-0
    Several parts of the world have been facing the problem of nitrite and nitrate contamination in ground and surface water. The acute toxicity of nitrite has been shown to be 10-fold higher than that of nitrate. In the present study, aminated silica carbon nanotube (ASCNT) was synthesised and tested for nitrite removal. The synergistic effects rendered by both amine and silica in ASCNT have significantly improved the nitrite removal efficiency. The IEP increased from 2.91 for pristine carbon nanotube (CNT) to 8.15 for ASCNT, and the surface area also increased from 178.86 to 548.21 m2 g-1. These properties have promoted ASCNT a novel adsorbent to remove nitrite. At optimum conditions of 700 ppm of nitrite concentration at pH 7 and 5 h of contact with 15 mg of adsorbent, the ASCNT achieved the maximal loading capacity of 396 mg/g (85% nitrite removal). The removal data of nitrite onto ASCNT fitted the Langmuir isotherm model better than the Freundlich isotherm model with the highest regression value of 0.98415, and also, the nonlinear analysis of kinetics data showed that the removal of nitrite followed pseudo-second-order kinetic. The positive values of both ΔS° and ΔH° suggested an endothermic reaction and an increase in randomness at the solid-liquid interface. The negative ΔG° values indicated a spontaneous adsorption process. The ASCNT was characterised using FESEM-EDX and FTIR, and the results obtained confirmed the removal of nitrite. Based on the findings, ASCNT can be considered as a novel and promising candidate for the removal of nitrite ions from wastewater.
    Matched MeSH terms: Water/chemistry
  5. Kardi SN, Ibrahim N, Rashid NAA, Darzi GN
    Environ Sci Pollut Res Int, 2019 Jul;26(21):21201-21215.
    PMID: 31115820 DOI: 10.1007/s11356-019-05204-z
    One of the biggest challenges of using single-chamber microbial fuel cells (MFCs) that utilize proton-exchange membrane (PEM) air cathode for bioenergy recovery from recalcitrant organic compounds present in wastewater is mainly attributed to their high internal resistance in the anodic chamber of the single microbial fuel cell (MFC) configurations. The high internal resistance is due to the small surface area of the anode and cathode electrodes following membrane biofouling and pH splitting conditions as well as substrate and oxygen crossover through the membrane pores by diffusion. To address this issue, the fabrication of new PEM air-cathode single-chamber MFC configuration was investigated with inner channel flow open assembled with double PEM air cathodes (two oxygen reduction activity zones) coupled with spiral-anode MFC (2MA-CsS-AMFC). The effect of various proton-exchange membranes (PEMs), including Nafion 117 (N-117), Nafion 115 (N-115), and Nafion 212 (N-212) with respective thicknesses of 183, 127, and 50.08 μ, was separately incorporated into carbon cloth as PEM air-cathode electrode to evaluate their influences on the performance of the 2MA-CsS-AMFC configuration operated in fed-batch mode, while Azorubine dye was selected as the recalcitrant organic compound. The fed-batch test results showed that the 2MA-CsS-AMFC configuration with PEM N-115 operated at Azorubine dye concentration of 300 mg L-1 produced the highest power density of 1022.5 mW m-2 and open-circuit voltage (OCV) of 1.20 V coupled with enhanced dye removal (4.77 mg L h-1) compared to 2MA-CsS-AMFCs with PEMs N-117 and N-212 and those in previously published data. Interestingly, PEM 115 showed remarkable reduction in biofouling and pH splitting. Apart from that, mass transfer coefficient of PEM N-117 was the most permeable to oxygen (KO = 1.72 × 10-4 cm s-1) and PEM N-212 was the most permeable membrane to Azorubine (KA = 7.52 × 10-8 cm s-1), while PEM N-115 was the least permeable to both oxygen (KO = 1.54 × 10-4) and Azorubine (KA = 7.70 × 10-10). The results demonstrated that the 2MA-CsS-AMFC could be promising configuration for bioenergy recovery from wastewater treatment under various PEMs, while application of PEM N-115 produced the best performance compared to PEMs N-212 and N-117 and those in previous studies of membrane/membrane-less air-cathode single-chamber MFCs that consumed dye wastewater.
    Matched MeSH terms: Waste Water/chemistry
  6. Hairuddin MN, Mubarak NM, Khalid M, Abdullah EC, Walvekar R, Karri RR
    Environ Sci Pollut Res Int, 2019 Dec;26(34):35183-35197.
    PMID: 31691169 DOI: 10.1007/s11356-019-06524-w
    The pollution of water resources due to the disposal of industrial wastes that have organic material like phenol is causing worldwide concern because of their toxicity towards aquatic life, human beings and the environment. Phenol causes nervous system damage, renal kidney disease, mental retardation, cancer and anaemia. In this study, magnetic palm kernel biochar is used for removal of phenol from wastewater. The effect of parameters such as pH, agitation speed, contact time and magnetic biochar dosage are validated using design of experiments. The statistical analysis reveals that the optimum conditions for the highest removal (93.39%) of phenol are obtained at pH of 8, magnetic biochar dosage of 0.6 g, agitation speed at 180 rpm and time of 60 min with the initial concentration of 10 mg/L. The maximum adsorption capacities of phenol were found to be 10.84 mg/g and Langmuir and Freundlich isotherm models match the experimental data very well and adsorption kinetic obeys a pseudo-second order. Hence, magnetic palm kernel can be a potential candidate for phenol removal from wastewater.
    Matched MeSH terms: Waste Water/chemistry
  7. Abdul Rahman MZ, Salleh AB, Abdul Rahman RN, Abdul Rahman MB, Basri M, Leow TC
    Protein Sci, 2012 Aug;21(8):1210-21.
    PMID: 22692819 DOI: 10.1002/pro.2108
    The activation of lipases has been postulated to proceed by interfacial activation, temperature switch activation, or aqueous activation. Recently, based on molecular dynamics (MD) simulation experiments, the T1 lipase activation mechanism was proposed to involve aqueous activation in addition to a double-flap mechanism. Because the open conformation structure is still unavailable, it is difficult to validate the proposed theory unambiguously to understand the behavior of the enzyme. In this study, we try to validate the previous reports and uncover the mystery behind the activation process using structural analysis and MD simulations. To investigate the effects of temperature and environmental conditions on the activation process, MD simulations in different solvent environments (water and water-octane interface) and temperatures (20, 50, 70, 80, and 100°C) were performed. Based on the structural analysis of the lipases in the same family of T1 lipase (I.5 lipase family), we proposed that the lid domain comprises α6 and α7 helices connected by a loop, thus forming a helix-loop-helix motif involved in interfacial activation. Throughout the MD simulations experiments, lid displacements were only observed in the water-octane interface, not in the aqueous environment with respect to the temperature effect, suggesting that the activation process is governed by interfacial activation coupled with temperature switch activation. Examining the activation process in detail revealed that the large structural rearrangement of the lid domain was caused by the interaction between the hydrophobic residues of the lid with octane, a nonpolar solvent, and this conformation was found to be thermodynamically favorable.
    Matched MeSH terms: Water/chemistry
  8. Thegarathah P, Jewaratnam J, Simarani K, Elgharbawy AAM
    PeerJ, 2024;12:e17151.
    PMID: 39026538 DOI: 10.7717/peerj.17151
    BACKGROUND: The booming palm oil industry is in line with the growing population worldwide and surge in demand. This leads to a massive generation of palm oil mill effluent (POME). POME is composed of sterilizer condensate (SC), separator sludge (SS), and hydro-cyclone wastewater (HCW). Comparatively, SS exhibits the highest organic content, resulting in various environmental impacts. However, past studies mainly focused on treating the final effluent. Therefore, this pioneering research investigated the optimization of pollutant removal in SS via different aspects of bioremediation, including experimental conditions, treatment efficiencies, mechanisms, and degradation pathways.

    METHODS: A two-level factorial design was employed to optimize the removal of chemical oxygen demand (COD) and turbidity using Aspergillus niger. Bioremediation of SS was performed through submerged fermentation (SmF) under several independent variables, including temperature (20-40 °C), agitation speed (100-200 RPM), fermentation duration (72-240 h), and initial sample concentration (20-100%). The characteristics of the treated SS were then compared to that of raw sludge.

    RESULTS: Optimal COD and turbidity removal were achieved at 37 °C 100 RPM, 156 h, and 100% sludge. The analysis of variance (ANOVA) revealed a significant effect of selective individual and interacting variables (p 

    Matched MeSH terms: Waste Water/chemistry
  9. Abu Ismaiel A, Aroua MK, Yusoff R
    Sensors (Basel), 2014 Jul 21;14(7):13102-13.
    PMID: 25051034 DOI: 10.3390/s140713102
    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10(-9) to 1.0 × 10(-2) M, with a detection limit of 1 × 10(-10) M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (~5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3-9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species.
    Matched MeSH terms: Water/chemistry
  10. Al-Hada NM, Saion EB, Shaari AH, Kamarudin MA, Flaifel MH, Ahmad SH, et al.
    PLoS One, 2014;9(8):e103134.
    PMID: 25093752 DOI: 10.1371/journal.pone.0103134
    A facile thermal-treatment route was successfully used to synthesize ZnO nanosheets. Morphological, structural, and optical properties of obtained nanoparticles at different calcination temperatures were studied using various techniques. The FTIR, XRD, EDX, SEM and TEM images confirmed the formation of ZnO nanosheets through calcination in the temperature between 500 to 650 °C. The SEM images showed a morphological structure of ZnO nanosheets, which inclined to crumble at higher calcination temperatures. The XRD and FTIR spectra revealed that the samples were amorphous at 30 °C but transformed into a crystalline structure during calcination process. The average particle size and degree of crystallinity increased with increasing calcination temperature. The estimated average particle sizes from TEM images were about 23 and 38 nm for the lowest and highest calcination temperature i.e. 500 and 650 °C, respectively. The optical properties were determined by UV-Vis reflection spectrophotometer and showed a decrease in the band gap with increasing calcination temperature.
    Matched MeSH terms: Water/chemistry
  11. Aziz NFHA, Abbasiliasi S, Ng HS, Phapugrangkul P, Bakar MHA, Tam YJ, et al.
    J Chromatogr B Analyt Technol Biomed Life Sci, 2017 Jun 15;1055-1056:104-112.
    PMID: 28458127 DOI: 10.1016/j.jchromb.2017.04.029
    The partitioning of β-mannanase derived from Bacillus subtilis ATCC 11774 in aqueous two-phase system (ATPS) was studied. The ATPS containing different molecular weight of polyethylene glycol (PEG) and types of salt were employed in this study. The PEG/salt composition for the partitioning of β-mannanase was optimized using response surface methodology. The study demonstrated that ATPS consists of 25% (w/w) of PEG 6000 and 12.52% (w/w) of potassium citrate is the optimum composition for the purification of β-mannanase with a purification fold (PF) of 2.28 and partition coefficient (K) of 1.14. The study on influences of pH and crude loading showed that ATPS with pH 8.0 and 1.5% (w/w) of crude loading gave highest PF of 3.1. To enhance the partitioning of β-mannanase, four ionic liquids namely 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim]BF4), 1-butyl-3-methylimidazolium bromide ([Bmim]Br), 1-ethyl-3-methylimidazolium bromide ([Emim]Br) was added into the system as an adjuvant. The highest recovery yield (89.65%) was obtained with addition of 3% (w/w) of [Bmim]BF4. The SDS-PAGE analysis revealed that the β-mannanase was successfully recovered in the top phase of ATPS with the molecular size of 36.7kDa. Therefore, ATPS demonstrated a simple and efficient approach for recovery and purification of β-mannanase from fermentation broth in one single-step strategy.
    Matched MeSH terms: Water/chemistry
  12. Veloo KV, Ibrahim NAS
    Molecules, 2021 Sep 10;26(18).
    PMID: 34576966 DOI: 10.3390/molecules26185495
    Extensive use of organophosphorus pesticides in agriculture leads to adverse effects to the environment and human health. Sample preparation is compulsory to enrich target analytes prior to detection as they often exist at trace levels and this step is critical as it determines the concentration of pollutants present in samples. The selection of a suitable extraction method is of great importance. The analytical performance of the extraction methods is influenced by the selection of sorbents as sorbents play a vital role in the sensitivity and selectivity of an analytical method. To date, numerous sorbent materials have been developed to cater to the needs of selective and sensitive pesticides' detection. Comprehensive details pertaining to extraction methods, developed sorbents, and analytical performance are provided. This review intended to provide a general overview on different extraction techniques and sorbents that have been developed in the last 10 years for organophosphorus pesticides' determinations in food and water samples.
    Matched MeSH terms: Water/chemistry
  13. Azmi NAN, Elgharbawy AAM, Salleh HM, Moniruzzaman M
    Molecules, 2022 Oct 09;27(19).
    PMID: 36235261 DOI: 10.3390/molecules27196725
    Fish by-product oil and lemon oil have potential applications as active ingredients in many industries, including cosmetics, pharmaceuticals and food. However, the physicochemical properties, especially the poor stability, compromised the usage. Generally, nanoemulsions were used as an approach to stabilize the oils. This study employed an ultrasonication method to form oil-in-water nanoemulsion of lemon and fish by-product oils (NE-FLO). The formulation is produced at a fixed amount of 2 wt% fish by-product oil, 8 wt% lemon oil, 10 wt% surfactant, 27.7 wt% co-surfactants and 42 min of ultrasonication time. The size, polydispersity index (PDI) and zeta potential obtained were 44.40 nm, 0.077, and -5.02 mV, respectively. The biological properties, including antioxidant, antibacterial, cell cytotoxicity, and anti-inflammatory, showed outstanding performance. The antioxidant activity is comparable without any significant difference with ascorbic acid as standard and is superior to pure lemon oil. NE-FLO successfully inhibits seven Gram-positive and seven Gram-negative bacterial strains. NE-FLO's anti-inflammatory activity is 99.72%, comparable to nordihydroguaiaretic acid (NDGA) as the standard. At a high concentration of 10,000 µg·mL-1, NE-FLO is non-toxic to normal skin cells. These findings demonstrate that the NE-FLO produced in this study has significant potential for usage in various industries.
    Matched MeSH terms: Water/chemistry
  14. Ismail I, Singh R, Sirisinghe RG
    PMID: 17883020
    This crossover study assessed the effectiveness of plain water (PW), sports drink (SD), fresh young coconut water (CW) and sodium-enriched fresh young coconut water (SCW) on whole body rehydration (R) and plasma volume (PV) restoration after exercise-induced dehydration. Ten healthy male subjects ran at 65% of VO2max in an environmental temperature of 32.06 +/- 0.02 degree C with a relative humidity (rh) of 53.32 +/- 0.17% for 90 minutes to lose 3% body weight (BW). During the 2-hour rehydration period, subjects drank, in randomized order, PW, SD, CW or SCW equivalent to 120% of BW lost in three boluses representing 50, 40 and 30% of the fluid lost at 0, 30, and 60 minutes, respectively. In all trials subjects were still somewhat dehydrated even after the 2-hour rehydration period. Indexes of percent rehydration with PW, SD, CW and SCW were 58 +/- 2, 68 +/- 2, 65+/- 2 and 69 +/- 1%, respectively, with significantly better rehydration with SD and SCW. The rehydration indexes for SD and SCW were significantly lower than PW (p < 0.01). PV was restored to euhydration levels after 2 hours of rehydration with SD, CW and SCW but not with PW. The plasma glucose concentration were significantly higher when SD, CW and SCW were ingested. SCW was similar in sweetness to CW and SD but caused less nausea and stomach upset compared to SD and PW. In conclusion, ingesting SCW was as good as ingesting a commercial sports drink for whole body rehydration after exercise-induced dehydration but with better fluid tolerance.
    Matched MeSH terms: Water/chemistry*
  15. Fathima A, Ilankoon IMSK, Chong MN
    Chemosphere, 2024 Sep;363:142800.
    PMID: 38977249 DOI: 10.1016/j.chemosphere.2024.142800
    Microbial fuel cells (MFC) are emerging energy-efficient systems for copper (Cu) electrowinning from waste streams by coupling it with anodic oxidation of organics in wastewater. However, there is a lack of research examining scalable electrocatalysts for Cu electrowinning at low cathodic overpotentials in highly saline catholytes often found in e-waste leachates. The challenge of developing resilient anodic biofilms that withstand the antagonistic effects of ions migrating from catholytes in saline MFC also needs to be addressed. In this study, polypyrrole (PPy) cathodic electrocatalysts were developed and coupled with a robust halophilic anodic biofilm in MFC to improve the kinetics of Cu electrowinning from acidic chloride-based catholytes. Electrochemical characterisation of these cathodes revealed shuttling of electrons by redox-active PPy via the formation of intermediate Cu+-complexes as an energy-efficient pathway for producing metallic Cu. High power densities ranging from 0.63 ± 0.17 to 0.73 ± 0.05 W m-2 were achieved with undoped-PPy and phytic acid doped-PPy cathodes with simultaneous recovery of ∼97% Cu. These electrocatalysts also exhibited low charge transfer resistance (3-8 mΩ m2) that met the requisites for scalable cathodes in MFC. However, a decrease in the efficiency of PPy cathodes was observed over 5 d due to competing reactions at their interfaces, including re-oxidation of deposited Cu and cathodic corrosion, with further studies suggested to enhance their corrosion resistance. Nonetheless, integrating PPy electrocatalysts for Cu electrowinning in saline MFC has advanced its outlooks as an energy-efficient downstream process for urban mining of Cu from e-waste.
    Matched MeSH terms: Waste Water/chemistry
  16. Amin-Safwan A, Muhd-Farouk H, Nadirah M, Ikhwanuddin M
    Pak J Biol Sci, 2016;19(5):219-226.
    PMID: 29023026 DOI: 10.3923/pjbs.2016.219.226
    BACKGROUND AND OBJECTIVE: Mud crab from the genus Scylla are considered as one of the most demanded seafood items nowadays as their flesh has high quality, tasty and higher growth rate thus support and boosted expansion in aquaculture sector especially in Malaysia. Present study was designed to focus on the effect of water salinity on the ovarian maturation of orange mud crab, Scylla olivacea based on morphological characteristics.

    METHODOLOGY: Samples were collected from Setiu wetlands, Terengganu, Malaysia from July-September, 2015. Ovarian maturation of S. olivacea was classified into four stages based on previous study which were: Immature (Stage 1), early mature (Stage 2), late mature (Stage 3) and fully mature (Stage 4).

    RESULTS: Morphologically as the ovary develop the colouration start to change from translucent or whitish in colour and sometimes creamy to pale yellow, follow by light orange and lastly reddish orange. Stage 1 ovary was translucent and whitish in colour, stage 2 ovary was pale yellow in colour, stage 3 was light orange and stage 4 ovary was reddish orange in colour. Gonad Somatic Index (GSI) of S. olivacea remained low at stage 1 and 2 and began to increase started at stage 3. This present study involved three different salinities treatments, which treatment 1 (10 ppt), treatment 2 (20 ppt) and treatment 3 (30 ppt). Treatment 2 produce the highest number of stage 4 ovarian maturation based on colouration and the highest GSI recorded, follow by treatment 1 and lastly treatment 3.

    CONCLUSION: This present study proved that salinity does affected the ovarian maturation of S. olivacea in captivity and provides important information regarding the effect of water salinity on ovarian maturation for further studies on reproductive biology of this species.
    Matched MeSH terms: Water/chemistry*
  17. Safdar ME, Wang X, Abbas M, Ozaslan C, Asif M, Adnan M, et al.
    PLoS One, 2021;16(11):e0258920.
    PMID: 34739485 DOI: 10.1371/journal.pone.0258920
    Weed infestation is a persistent problem for centuries and continues to be major yield reducing issue in modern agriculture. Chemical weed control through herbicides results in numerous ecological, environmental, and health-related issues. Moreover, numerous herbicides have evolved resistance against available herbicides. Plant extracts are regarded as an alternative to herbicides and a good weed management option. The use of plant extracts is environmentally safe and could solve the problem of herbicide resistance. Therefore, laboratory and wire house experiments were conducted to evaluate the phytotoxic potential of three Fabaceae species, i.e., Cassia occidentalis L. (Coffee senna), Sesbania sesban (L.) Merr. (Common sesban) and Melilotus alba Medik. (White sweetclover) against seed germination and seedling growth of some broadleaved weed species. Firstly, N-hexane and aqueous extracts of these species were assessed for their phytotoxic effect against lettuce (Lactuca sativa L.). The extracts found more potent were further tested against germination and seedling growth of four broadleaved weed species, i.e., Parthenium hysterophorus L. (Santa-Maria), Trianthema portulacastrum L. (Pigweed), Melilotus indica L (Indian sweetclover). and Rumex dentatus L. (Toothed dock) in Petri dish and pot experiments. Aqueous extracts of all species were more toxic than their N-hexane forms for seed germination and seedling growth of lettuce; therefore, aqueous extracts were assessed for their phytotoxic potential against four broadleaved weed species. Aqueous extracts of all species proved phytotoxic against T. portulacastrum, P. hysterophorus, M. indica and R. dentatus and retarder their germination by 57, 90, 100 and 58%, respectively. Nevertheless, foliar spray of C. occidentalis extract was the most effective against T. portulacastrum as it reduced its dry biomass by 72%, while M. alba was effective against P. hysterophorus, R. dentatus and M. indica and reduced their dry biomass by 55, 68 and 81%, respectively. It is concluded that aqueous extracts of M. alba, S. sesban and C. occidentalis could be used to retard seed germination of T. portulacastrum, P. hysterophorus, M. indica and R. dentatus. Similarly, aqueous extracts of C. occidentalis can be used to suppress dry biomass of T. portulacastrum, and those of M. alba against P. hysterophorus, R. dentatus. However, use of these extracts needs their thorough testing under field conditions.
    Matched MeSH terms: Water/chemistry
  18. Osman A, Zaleha MI, Letchumen R, Khalid BA
    Med J Malaysia, 1995 Sep;50(3):256-62.
    PMID: 8926905
    The study was conducted to compare the prevalence of goitre among Malays and Aborigines in remote inland rural areas to those in coastal areas. All subjects were examined thoroughly by an experienced endocrinologist for the presence of goitre. The overall goitre prevalence in coastal areas was 6.3%; 6.0% (4/67) of Aborigines and 6.7% (4/60) of Malays were affected. However, in remote inland areas, the prevalence of goitre was almost 5 times higher compared to coastal areas. The prevalence of goitre was 30.7% in Baling; 30.2% (19/63) Aborigines and 30.8% (92/299) Malays were affected. Iodine deficiency is the most likely cause for the high prevalence of goitre in the remote inland areas.
    Matched MeSH terms: Water/chemistry
  19. Amirian V, Russel M, Yusof ZNB, Chen JE, Movafeghi A, Kosari-Nasab M, et al.
    World J Microbiol Biotechnol, 2025 Jan 07;41(2):24.
    PMID: 39762597 DOI: 10.1007/s11274-024-04243-0
    Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms. Thus, environmentally friendly and sustainable solutions for their removal are urgently needed. In this context, both natural and engineered bacterial and algal communities have played a crucial role in the degradation of various phthalic acid esters present in water and soil. When algae-bacteria co-culture is compared to a singular algae or bacteria system, this symbiotic system shows superior performance in the removal of dibutyl phthalates and diethyl phthalates from synthetic wastewater. This review provides an optimistic outlook for co-culture systems by in-depth examining single microorganisms, namely bacteria and algae, as well as algae-bacterial consortiums for phthalates degradation, which will draw attention to species co-existence for the removal of various pollutants from the environment. In addition, further development and research, particularly on the mechanisms, genes involved in the degradation of phthalic acid esters, and interactions between bacterial and algal species, will lead to the discovery of more adaptable species as well as the production of targeted species to address the environmental pollution crisis and provide a green, efficient, and sustainable approach to environmental protection. Discrepancies in knowledge and potential avenues for exploration will enhance the existing body of literature, enabling researchers to investigate this field more comprehensively.
    Matched MeSH terms: Waste Water/chemistry
  20. Harruddin N, Othman N, Ee Sin AL, Raja Sulaiman RN
    Environ Technol, 2015 Jan-Feb;36(1-4):271-80.
    PMID: 25514128 DOI: 10.1080/09593330.2014.943301
    Effluent containing colour/dyes, especially reactive dyes, becomes a great concern of wastewater treatment because it is toxic to human life and aquatic life. In this study, reactive dye of Black B was separated using the supported liquid membrane process. Commercial polypropylene membrane was used as a support of the kerosene-tridodecylamine liquid membrane. Several parameters were tested and the result showed that almost 100% of 70 ppm Black B was removed and 99% of 70 ppm Black B was recovered at pH 2 of the feed phase containing 0.00001 M Na2SiO3, flow rate of 150 ml/min and 0.2 M NaOH. The membrane support also remained stable for up to 36 hours under an optimum condition.
    Matched MeSH terms: Waste Water/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links