Displaying publications 341 - 360 of 474 in total

Abstract:
Sort:
  1. Kho SK, Keeble D, Wong HK, Estudillo AJ
    Soc Neurosci, 2023 Dec;18(6):393-406.
    PMID: 37840302 DOI: 10.1080/17470919.2023.2263924
    Successful face recognition is important for social interactions and public security. Although some preliminary evidence suggests that anodal and cathodal transcranial direct current stimulation (tDCS) might modulate own- and other-race face identification, respectively, the findings are largely inconsistent. Hence, we examined the effect of both anodal and cathodal tDCS on the recognition of own- and other-race faces. Ninety participants first completed own- and other-race Cambridge Face Memory Test (CFMT) as baseline measurements. Next, they received either anodal tDCS, cathodal tDCS or sham stimulation and finally they completed alternative versions of the own- and other-race CFMT. No difference in performance, in terms of accuracy and reaction time, for own- and other-race face recognition between anodal tDCS, cathodal tDCS and sham stimulation was found. Our findings cast doubt upon the efficacy of tDCS to modulate performance in face identification tasks.
    Matched MeSH terms: Electrodes
  2. Mousazadeh M, Niaragh EK, Usman M, Khan SU, Sandoval MA, Al-Qodah Z, et al.
    Environ Sci Pollut Res Int, 2021 Aug;28(32):43143-43172.
    PMID: 34164789 DOI: 10.1007/s11356-021-14631-w
    Electrocoagulation (EC) is one of the emerging technologies in groundwater and wastewater treatment as it combines the benefits of coagulation, sedimentation, flotation, and electrochemical oxidation processes. Extensive research efforts implementing EC technology have been executed over the last decade to treat chemical oxygen demand (COD)-rich industrial wastewaters with the aim to protect freshwater streams (e.g., rivers, lakes) from pollution. A comprehensive review of the available recent literature utilizing EC to treat wastewater with high COD levels is presented. In addition, recommendations are provided for future studies to improve the EC technology and broaden its range of application. This review paper introduces some technologies which are often adopted for industrial wastewater treatment. Then, the EC process is compared with those techniques as a treatment for COD-rich wastewater. The EC process is considered as the most privileged technology by different research groups owing to its ability to deal with abundant volumes of wastewater. After, the application of EC as a single and combined treatment for COD-rich wastewaters is thoroughly reviewed. Finally, this review attempts to highlight the potentials and limitations of EC. Related to the EC process in batch operation mode, the best operational conditions are found at 10 V and 60 min of voltage and reaction time, respectively. These last values guarantee high COD removal efficiencies of > 90%. This review also concludes that considerably large operation costs of the EC process appears to be the serious drawback and renders it as an unfeasible approach for handling of COD rich wastewaters. In the end, this review has attempted to highlights the potential and limitation of EC and suggests that vast notably research in the field of continuous flow EC system is essential to introduce this technology as a convincing wastewater technology.
    Matched MeSH terms: Electrodes
  3. Nandrajog P, Idris Z, Azlen WN, Liyana A, Abdullah JM
    Asian J Neurosurg, 2017 Jul-Sep;12(3):447-453.
    PMID: 28761523 DOI: 10.4103/1793-5482.180921
    BACKGROUND: The aim of the study is to compare the amplitude and latency of the P300 event-related potential (ERP) component between a control group and patients after mild traumatic brain injury (mTBI) during 1-7 days (short duration) and 2-3 months (long duration), and to compare the outcome of neuropsychological tests between the long duration postinjury and control study groups.

    MATERIALS AND METHODS: We studied responses to auditory stimulation in two main and one subgroups, namely the control healthy group (19 patients, both ERP and neuropsychology test done), the mTBI 1 group (17 patients, only ERP done within 7 days after injury), and the mTBI 2 subgroup (the 17 mTBI 1 patients in whom a repeated ERP together with neuropsychological testing was done at 2-3 months postinjury). Auditory evoked responses were studied with two different stimuli (standard and target stimuli), where the P300 amplitude and latency were recorded from three midline sites and results were compared between the groups, as were the neuropsychological test results.

    RESULTS: There was a significant prolongation of the target P300 latency values shown by the MBI 1 group measured at the central electrode when compared to the control group, which was also seen when the mTBI 1 and mTBI 2 groups were compared. The results of the P300 amplitude values measured at the frontal electrode showed the control group to have higher readings during the presentation of standard tones when compared to the mTBI 1 group. The mTBI 2 group performed better on some neuropsychological tests.

    CONCLUSION: The latency of P300 was significantly prolonged in early mTBI patients who improved over time, and the neuropsychological testing on mTBI 2 patients showed them to be comparable to the control group. The study indicates that ERP should be used as an additional modality of investigation in mTBI patients.
    Matched MeSH terms: Electrodes
  4. Azman NZM, Zainal PNS, Alang Ahmad SA
    PLoS One, 2020;15(6):e0234148.
    PMID: 32502185 DOI: 10.1371/journal.pone.0234148
    In this paper, Response Surface Methodology with central composite design (RSM/CCD) was used to optimize a modified electrode for improved electron transfer rate and electrochemical performance. The modification was done on a screen-printed carbon electrode (SPCE) with reduced graphene oxide (ERGO)/calix [4] arene (ERGOC4-SPCE). The properties of the modified electrodes were analyzed via cyclic voltammetry, Raman spectroscopy, and Fourier-Transform Infrared (FT-IR) spectroscopy. Then, different variables were optimized, namely, the concentration of graphene oxide, GO (A), the number of scan cycles of graphene oxide (B), and the deposition time (C). The effect of the optimized variables on the reduction-oxidation peak current response of the potassium ferricyanide redox system was analyzed. By using statistical analysis, it shows a significant effect of the concentration of GO, the deposition time, and the number of scans cycles on the peak current response. The coefficient of determination (R2) value of 0.9987 produced indicated a good fit of the model with experimental finding.
    Matched MeSH terms: Electrodes
  5. Białobrzeska W, Dziąbowska K, Lisowska M, Mohtar MA, Muller P, Vojtesek B, et al.
    Biosensors (Basel), 2021 Jun 07;11(6).
    PMID: 34200338 DOI: 10.3390/bios11060184
    The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.
    Matched MeSH terms: Electrodes
  6. Ariffin EY, Zakariah EI, Ruslin F, Kassim M, Yamin BM, Heng LY, et al.
    Sci Rep, 2021 Apr 12;11(1):7883.
    PMID: 33846405 DOI: 10.1038/s41598-021-86939-z
    Ferrocene or ferrocenium has been widely studied in the field of organometallic complexes because of its stable thermodynamic, kinetic and redox properties. Novel hexaferrocenium tri[hexa(isothiocyanato)iron(III)]trihydroxonium (HexaFc) complex was the product from the reaction of ferrocene, maleic acid and ammonium thiocyanate and was confirmed by elemental analysis CHNS, FTIR and single crystal X-ray crystallography. In this study, HexaFc was used for the first time as an electroactive indicator for porcine DNA biosensor. The UV-Vis DNA titrations with this compound showed hypochromism and redshift at 250 nm with increasing DNA concentrations. The binding constant (Kb) for HexaFc complex towards CT-DNA (calf-thymus DNA) was 3.1 × 104 M-1, indicated intercalator behaviour of the complex. To test the usefulness of this complex for DNA biosensor application, a porcine DNA biosensor was constructed. The recognition probes were covalently immobilised onto silica nanospheres (SiNSs) via glutaraldehyde linker on a screen-printed electrode (SPE). After intercalation with the HexaFc complex, the response of the biosensor to the complementary porcine DNA was measured using differential pulse voltammetry. The DNA biosensor demonstrated a linear response range to the complementary porcine DNA from 1 × 10-6 to 1 × 10-3 µM (R2 = 0.9642) with a limit detection of 4.83 × 10-8 µM and the response was stable up to 23 days of storage at 4 °C with 86% of its initial response. The results indicated that HexaFc complex is a feasible indicator for the DNA hybridisation without the use of a chemical label for the detection of porcine DNA.
    Matched MeSH terms: Electrodes
  7. Chung HY, Pan GT, Hong ZY, Hsu CT, Chong S, Yang TC, et al.
    Molecules, 2020 Sep 04;25(18).
    PMID: 32899765 DOI: 10.3390/molecules25184050
    A series of heteroatom-containing porous carbons with high surface area and hierarchical porosity were successfully prepared by hydrothermal, chemical activation, and carbonization processes from soybean residues. The initial concentration of soybean residues has a significant impact on the textural and surface functional properties of the obtained biomass-derived porous carbons (BDPCs). SRAC5 sample with a BET surface area of 1945 m2 g-1 and a wide micro/mesopore size distribution, nitrogen content of 3.8 at %, and oxygen content of 15.8 at % presents the best electrochemical performance, reaching 489 F g-1 at 1 A g-1 in 6 M LiNO3 aqueous solution. A solid-state symmetric supercapacitor (SSC) device delivers a specific capacitance of 123 F g-1 at 1 A g-1 and a high energy density of 68.2 Wh kg-1 at a power density of 1 kW kg-1 with a wide voltage window of 2.0 V and maintains good cycling stability of 89.9% capacitance retention at 2A g-1 (over 5000 cycles). The outstanding electrochemical performances are ascribed to the synergistic effects of the high specific surface area, appropriate pore distribution, favorable heteroatom functional groups, and suitable electrolyte, which facilitates electrical double-layer and pseudocapacitive mechanisms for power and energy storage, respectively.
    Matched MeSH terms: Electrodes
  8. Yee R, Gadler F, Hussin A, Bin Omar R, Khaykin Y, Verma A, et al.
    Heart Rhythm, 2014 Jul;11(7):1150-5.
    PMID: 24801899 DOI: 10.1016/j.hrthm.2014.04.020
    Left ventricular (LV) lead implantation for cardiac resynchronization therapy (CRT) is associated with lead dislodgement rates ranging from 3% to 10%, and some implant approaches to prevent dislodgement may contribute to suboptimal CRT response. We report our early human experience with an LV lead with a side helix for active fixation to the coronary vein wall.
    Matched MeSH terms: Electrodes, Implanted*
  9. Zain ZM, O'Neill RD, Lowry JP, Pierce KW, Tricklebank M, Dewa A, et al.
    Biosens Bioelectron, 2010 Feb 15;25(6):1454-9.
    PMID: 19945264 DOI: 10.1016/j.bios.2009.10.049
    D-serine has been implicated as a brain messenger, promoting not only neuronal signalling but also synaptic plasticity. Thus, a sensitive tool for D-serine monitoring in brain is required to understand the mechanisms of D-serine release from glia cells. A biosensor for direct fixed potential amperometric monitoring of D-serine incorporating mammalian D-amino acid oxidase (DAAO) immobilized on a Nafion coated poly-ortho-phenylenediamine (PPD) modified Pt-Ir disk electrode was therefore developed. The combined layers of PPD and Nafion enhanced the enzyme activity and biosensor efficiency by approximately 2-fold compared with each individual layer. A steady state response time (t(90%)) of 0.7+/-0.1s (n=8) and limit of detection 20+/-1 nM (n=8) were obtained. Cylindrical geometry showed lower sensitivity compared to disk geometry (61+/-7 microA cm(-2) mM(-1), (n=4), R(2)=0.999). Interference by ascorbic acid (AA), the main interference species in the central nervous system and other neurochemical electroactive molecules was negligible. Implantation of the electrode and microinjection of D-serine into rat brain striatal extracellular fluid demonstrated that the electrode was capable of detecting D-serine in brain tissue in vivo.
    Matched MeSH terms: Electrodes, Implanted*
  10. Winie T, Arof AK
    Spectrochim Acta A Mol Biomol Spectrosc, 2006 Mar 1;63(3):677-84.
    PMID: 16157506
    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF(3)SO(3))-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF(3)SO(3) interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR)(2), CONHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF(3)SO(3) has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li(+) ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.
    Matched MeSH terms: Electrodes*
  11. Nor MH, Mubarak MF, Elmi HSh, Ibrahim N, Wahab MF, Ibrahim Z
    Bioresour Technol, 2015 Aug;190:458-65.
    PMID: 25799955 DOI: 10.1016/j.biortech.2015.02.103
    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge.
    Matched MeSH terms: Electrodes/microbiology*
  12. Thanalechumi P, Mohd Yusoff AR, Yusop Z
    J Environ Sci Health B, 2019;54(4):294-302.
    PMID: 30729855 DOI: 10.1080/03601234.2018.1561057
    A newly developed electrochemical sensor for chlorothalonil based on nylon 6,6 film deposited onto screen printed electrode (SPE) with electrochemical modulation of pH at the electrode/solution interface was studied for the first time. Differential pulse cathodic stripping voltammetry (DPCSV) was used to carry out the electrochemical and analytical studies. Experimental parameters such as accumulation potential, initial potential, accumulation time and pH of Britton-Robinson buffer have been optimized. Chlorothalonil gave optimum analytical signal in a medium of 0.04 M Britton-Robinson buffer at pH 6.0. A well-defined reduction peak was observed, at Ep= -0.851 and -0.938 V vs. Ag/AgCl (3.0 M KCl) for both bare SPE and modified SPE, respectively. The peak currents of modified SPE were significantly increased as compared to bare SPE. At the modified SPE, a linear relationship between the peak current and chlorothalonil concentration was obtained in the range from 0.1 to 2.8 × 10-6 M with a detection limit of 1.53 × 10-8 M (S/N= 3). The practical applicability of the newly developed method has been demonstrated on analyses of real water samples. The newly developed sensor shows good reproducibility with RSD of 3.92%. The nylon 6,6 modified SPE showed itself as promising sensor with good selectivity for chlorothalonil determination.
    Matched MeSH terms: Electrodes*
  13. Dzulkarnain AAA, Noor Ibrahim SHM, Anuar NFA, Abdullah SA, Tengku Zam Zam TZH, Rahmat S, et al.
    Int J Audiol, 2017 Oct;56(10):723-732.
    PMID: 28415891 DOI: 10.1080/14992027.2017.1313462
    OBJECTIVE: To investigate the influence of two different electrode montages (ipsilateral: reference to mastoid and vertical: reference to nape of neck) to the ABR results recorded using a level-specific (LS)-CE-Chirp® in normally hearing subjects at multiple intensities levels.

    DESIGN: Quasi-experimental and repeated measure study designs were applied in this study. Two different stopping criteria were used, (1) a fixed-signal averaging 4000 sweeps and, (2) a minimum quality indicator of Fmp = 3.1 with a minimum of 800 sweeps.

    STUDY SAMPLE: Twenty-nine normally hearing adults (18 females, 11 male) participated.

    RESULTS: Wave V amplitudes were significantly larger in the LS CE-Chirp® recorded from the vertical montage than the ipsilateral montage. Waves I and III amplitudes were significantly larger from the ipsilateral LS CE-Chirp® than from the other montages and stimulus combinations. The differences in the quality of the ABR recording between the vertical and ipsilateral montages were marginal.

    CONCLUSIONS: Overall, the result suggested that the vertical LS CE-Chirp® ABR had a high potential for a threshold-seeking application, because it produced a higher wave V amplitude. The Ipsilateral LS CE-Chirp® ABR, on the other hand, might also have a high potential for the site of lesion application, because it produced larger waves I and III amplitudes.

    Matched MeSH terms: Electrodes*
  14. Dzulkarnain AAA, Abdullah SA, Ruzai MAM, Ibrahim SHMN, Anuar NFA, Rahim 'EA
    Am J Audiol, 2018 Sep 12;27(3):294-305.
    PMID: 30054628 DOI: 10.1044/2018_AJA-17-0087
    Purpose: The purpose of this study was to investigate the influence of 2 different electrode montages (ipsilateral and vertical) on the auditory brainstem response (ABR) findings elicited from narrow band (NB) level-specific (LS) CE-Chirp and tone-burst in subjects with normal hearing at several intensity levels and frequency combinations.

    Method: Quasi-experimental and repeated-measures study designs were used in this study. Twenty-six adults with normal hearing (17 females, 9 males) participated. ABRs were acquired from the study participants at 3 intensity levels (80, 60, and 40 dB nHL), 3 frequencies (500, 1000, and 2000 Hz), 2 electrode montages (ipsilateral and vertical), and 2 stimuli (NB LS CE-Chirp and tone-burst) using 2 stopping criteria (fixed averages at 4,000 sweeps and F test at multiple points = 3.1).

    Results: Wave V amplitudes were only 19%-26% larger for the vertical recordings than the ipsilateral recordings in both the ABRs obtained from the NB LS CE-Chirp and tone-burst stimuli. The mean differences in the F test at multiple points values and the residual noise levels between the ABRs obtained from the vertical and ipsilateral montages were statistically not significant. In addition, the ABR elicited from the NB LS CE-Chirp was significantly larger (up to 69%) than those from the tone-burst, except at the lower intensity level.

    Conclusion: Both the ipsilateral and vertical montages can be used to record ABR to the NB LS CE-Chirp because of the small enhancement in the wave V amplitude provided by the vertical montage.

    Matched MeSH terms: Electrodes*
  15. Syamila N, Syahir A, Sulaiman Y, Ikeno S, Tan WS, Ahmad H, et al.
    Bioelectrochemistry, 2022 Feb;143:107952.
    PMID: 34600402 DOI: 10.1016/j.bioelechem.2021.107952
    The diagnosis of hepatitis B virus (HBV) and monitoring of the vaccination efficiency against HBV require real-time analysis. The presence of antibody against hepatitis B virus surface antigen (anti-HBsAg) as a result of HBV infection and/or immunization may indicate individual immune status towards HBV. This study investigated the ability of a bio-nanogate-based displacement immunosensing strategy in detecting anti-HBsAg antibody, via nonspecific-binding between polyamidoamine dendrimers encapsulated gold nanoparticles (PAMAM-Au) and the 'antigenic determinant' region (aD) of HBsAg. For this purpose, maltose binding protein harbouring the aD region (MBP-aD) was synthesized as a bioreceptor and immobilized on the screen-printed carbon electrode (SPCE). Following that, PAMAM-Au was deposited on MBP-aD, forming the 'gate' and was used as a monitoring agent. Under optimal conditions, the high specificity of anti-HBsAg antibody towards MBP-aD displaced PAMAM-Au causing the decrement of anodic peak in differential pulse voltammetry (DPV) analysis. The signal changes were proportionally related to the concentration of anti-HBsAg antibody, in a range of 1 - 1000 mIU/mL with a limit of detection (LOD) of 2.5 mIU/mL. The results also showed high specificity and selectivity of the immunosensor platform in detecting anti-HBsAg antibody both in spiked buffer and human serum samples.
    Matched MeSH terms: Electrodes*
  16. Al-Qaim FF, Mussa ZH, Othman MR, Abdullah MP
    J Hazard Mater, 2015 Dec 30;300:387-397.
    PMID: 26218306 DOI: 10.1016/j.jhazmat.2015.07.007
    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products.
    Matched MeSH terms: Electrodes*
  17. Misni M, Sathishkumar P, Ahamad R, MohdYusoff AR
    Environ Technol, 2015;36(17):2249-54.
    PMID: 25749108 DOI: 10.1080/09593330.2015.1025105
    Para-arsanilic acid (p-ASA) has been widely used in the poultry industry to promote growth and prevent dysentery. It is excreted unchanged in the manure and released into non-target sites causing organoarsenic pollution risk to the environment and living system. Therefore, simple and effective analytical strategies are demanded for determining the samples that contain p-ASA. However, direct determination of both p-ASA and ortho-arsanilic acid (o-ASA) using differential pulse cathodic stripping voltammetry (DPCSV) gives the similar voltammograms that directly hamper the analysis used by the DPCSV technique. In this study, a method to determine and differentiate p-ASA from o-ASA via diazotization and coupling reaction of the amine groups followed by the direct DPCSV determination of diazo compounds is presented. The diazotization reaction carried out at pH 1.5 and 0 ± 1°C for 10 min showed two reduction peaks in DPCSV at-70 mV and -440 mV vs. Ag/AgCl (KCl 3 M). However, when the diazotization reaction was performed at pH 12.5 and 0 ± 1°C for 40 min, a coloured azo compound was produced and the DPCSV showed only one reduction peak that appeared at -600 mV vs. Ag/AgCl (3 M of KCl). The results of this study show that only p-ASA compound gave a reduction peak, whereas o-ASA compound did not give any peak. The detection limit of p-ASA was found to be 4 × 10(-8 )M. As a result, the proposed electro-analytical technique might be a good candidate to determine and differentiate the p-ASA present in the poultry and environmental samples.
    Matched MeSH terms: Electrodes
  18. Zhou X, Qu Y, Kim BH, Choo PY, Liu J, Du Y, et al.
    Bioresour Technol, 2014 Oct;169:265-70.
    PMID: 25062537 DOI: 10.1016/j.biortech.2014.07.012
    The effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink.
    Matched MeSH terms: Electrodes
  19. Ibitoye MO, Hamzaid NA, Zuniga JM, Abdul Wahab AK
    Clin Biomech (Bristol, Avon), 2014 Jun;29(6):691-704.
    PMID: 24856875 DOI: 10.1016/j.clinbiomech.2014.04.003
    Previous studies have explored to saturation the efficacy of the conventional signal (such as electromyogram) for muscle function assessment and found its clinical impact limited. Increasing demand for reliable muscle function assessment modalities continues to prompt further investigation into other complementary alternatives. Application of mechanomyographic signal to quantify muscle performance has been proposed due to its inherent mechanical nature and ability to assess muscle function non-invasively while preserving muscular neurophysiologic information. Mechanomyogram is gaining accelerated applications in evaluating the properties of muscle under voluntary and evoked muscle contraction with prospects in clinical practices. As a complementary modality and the mechanical counterpart to electromyogram; mechanomyogram has gained significant acceptance in analysis of isometric and dynamic muscle actions. Substantial studies have also documented the effectiveness of mechanomyographic signal to assess muscle performance but none involved comprehensive appraisal of the state of the art applications with highlights on the future prospect and potential integration into the clinical practices. Motivated by the dearth of such critical review, we assessed the literature to investigate its principle of acquisition, current applications, challenges and future directions. Based on our findings, the importance of rigorous scientific and clinical validation of the signal is highlighted. It is also evident that as a robust complement to electromyogram, mechanomyographic signal may possess unprecedented potentials and further investigation will be enlightening.
    Matched MeSH terms: Electrodes
  20. Hajian R, Yusof NA, Faragi T, Shams N
    PLoS One, 2014;9(5):e96686.
    PMID: 24809346 DOI: 10.1371/journal.pone.0096686
    In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L-1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10-8 to 4.0×10-5 mol L-1 with the detection limit of 1.2×10-8 mol L-1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices.
    Matched MeSH terms: Electrodes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links