AIM OF THIS REVIEW: This article aims to provide a comprehensive review of the traditional uses, botany, cultivation, phytochemistry, pharmacological effects, practical applications, and potential uses of L. pumila (LP). Furthermore, we also explore the safety of this plant and its potential prospects for application.
MATERIALS AND METHODS: The keywords "Labisia pumila," "Kacip Fatimah," and "Marantodes pumilum" were used to collect relevant information through electronic searches (including Elsevier, PubMed, Google Scholar, Baidu Scholar, CNKI, ScienceDirect, and Web of Science).
RESULTS: This review summarizes 102 chemical components from different parts of the plant, including flavonoids, phenolic acids, saponins, and other chemical components. In addition, we also address the associated cultivation conditions, traditional uses, pharmacological effects and toxicity. A large number of reports indicate that LP has various pharmacological effects such as antioxidant, phytoestrogenic, anti-inflammtory, antimicrobial, anti-osteoporosis and anti-obesity properties. These results provide valuable references for future research on LP. In addition, LP is also a potential medicinal and edible plant, and is currently sold on the market as a dietary supplement.
CONCLUSIONS: LP is a renowned traditional ethnic medicine with numerous pharmacological activities attributed to its bioactive components. Therefore, isolation and identification of the chemical components in LP can be a focus of our future research. Current studies have focused only on the effects of LP on estrogen deficiency-related diseases in women and bone diseases. There is no scientific evidence for other traditional uses. Therefore, it is important to further explore its pharmacological activities and fill the research gaps related to other traditional uses. Furthermore, research on its safety should be expanded to prepare clinical applications.
METHODS: TC-16 was screened for phytochemicals. Phenolic and flavonoid contents of TC-16 and its individual ingredients were determined, followed by assessment of antioxidant properties using in vitro assays including 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and β-carotene bleaching (BCB) assays. Interactions among the herbs were also investigated by calculating the difference in antioxidant activity and combination index.
RESULTS: Alkaloids, flavonoids, terpenoids, saponins and glycosides were present in TC-16. TC-16 possessed the highest phenolic (46.14 ± 1.40 mg GAE/g) and flavonoid (132.69 ± 1.43 mg CE/g) contents following C. longa. Synergistic antioxidant activity among the herbs was evident in ORAC and BCB assays which uses mainly hydrogen atom transfer-based antioxidant mechanisms.
CONCLUSIONS: TC-16 demonstrated roles in combating free radicals. In a PHF, synergistic interaction among the herbs is observed in some but not all mechanisms. Mechanisms showing synergistic interactions should be highlighted to maximise the beneficial property of the PHF.