Displaying publications 3741 - 3760 of 3989 in total

Abstract:
Sort:
  1. Fredie Robinson, Jecelyn John, Tin Sabai Aung, Swe, Shamsul Bahari, David Matanjun
    MyJurnal
    Introduction: World Health Organization in 2019 reported that about 1.5 billion people are infected with soil-trans-mitted helminths (STH) worldwide. Infected children with STH might manifest signs of anaemia and impaired nutri-tionally or physically. This study aimed to look at the prevalence of STH in the area of North Sabah among rural pri-mary schools and examine the associated factors. Methods: A cross-sectional study was conducted in four selected primary school in the district of Kudat of Sabah from 2014 to 2015. Tools used for the study were questionnaire and stool sampling. Questionnaire focused data on sociodemographic, hygiene and use of anti-helminths drugs. Stool samples collected were sent for microscopic examination for presence of STH ova. Written consents were obtained from parents/guardians. Chi-square was used to examine the association of having STH and factors on utilities fa-cilities, hygiene and anti-helminths drug. SPSS version 23 was used for statistical analysis. Results: There was 433 school children aged 7 to 12 years old with 224 males and 209 females respondents. Three-quarters main source of water supply in the homes from treated water. Those with proper built toilet were 96%. Practices of washing hands after toilet and before eating were 96% as well. Almost 95% wear slippers when outside homes. Only 61% took their anti-helminths drug in the past 1 year while in the last 6 months the uptake was 38.7%. The prevalence of positive ova of STH in the stool sample was 57 out of 433 or 13.2%. STH infection was not statistically significant associated with the above factors. Conclusion: The prevalence of STH infection among primary school children in the district of Kudat although has lowered over the years is still considered higher than most states in Malaysia. Continuous public health intervention is necessary to further bring down the prevalence of STH infections.
    Matched MeSH terms: Water Supply
  2. Eskandari A, Leow TC, Rahman MBA, Oslan SN
    Biomolecules, 2020 12 09;10(12).
    PMID: 33317024 DOI: 10.3390/biom10121649
    Antifreeze proteins (AFPs) are specific proteins, glycopeptides, and peptides made by different organisms to allow cells to survive in sub-zero conditions. AFPs function by reducing the water's freezing point and avoiding ice crystals' growth in the frozen stage. Their capability in modifying ice growth leads to the stabilization of ice crystals within a given temperature range and the inhibition of ice recrystallization that decreases the drip loss during thawing. This review presents the potential applications of AFPs from different sources and types. AFPs can be found in diverse sources such as fish, yeast, plants, bacteria, and insects. Various sources reveal different α-helices and β-sheets structures. Recently, analysis of AFPs has been conducted through bioinformatics tools to analyze their functions within proper time. AFPs can be used widely in various aspects of application and have significant industrial functions, encompassing the enhancement of foods' freezing and liquefying properties, protection of frost plants, enhancement of ice cream's texture, cryosurgery, and cryopreservation of cells and tissues. In conclusion, these applications and physical properties of AFPs can be further explored to meet other industrial players. Designing the peptide-based AFP can also be done to subsequently improve its function.
    Matched MeSH terms: Water
  3. Tan LF, Elaine E, Pui LP, Nyam KL, Yusof YA
    Acta Sci Pol Technol Aliment, 2021 1 16;20(1):55-66.
    PMID: 33449520 DOI: 10.17306/J.AFS.0771
    BACKGROUND: Biodegradable food packaging has improved in quality with recent research incorporating natural extracts for functionality purposes. This research aims to develop chitosan film with Chrysanthemum morifolium essential oil to improve the shelf life of fresh raw chicken and beef.

    METHODS: 1.5% (w/v) chitosan films with Chrysanthemum morifolium essential oil (0% to 6% (v/v)) were produced through homogenization, the casting of a film solution in a petri dish and convection drying. The edible film was evaluated in terms of its physical (color, thickness, water vapor permeability), mechanical (puncture strength, tensile strength, elongation at break) and chemical properties (antioxidant assay, Fourier Transform Infrared Spectroscopy (FTIR)).

    RESULTS: With an increasing concentration of Chrysanthemum morifolium in the chitosan film, the test values of physical properties such as tensile strength, puncture force, and elongation at break declined significantly. However, the thickness, water permeability, and color profile (L*, a*, b*) values of the chitosan film increased. Similarly, the scavenging effect of antioxidant assay increased (from 4.97% to 18.63%) with a rise in Chrysanthemum morifolium concentration. 2%, 3%, and 4% of Chrysanthemum morifolium in the chitosan film showed a significant inhibition zone ranging from 2.67 mm to 3.82 mm against Staphylococcus aureus, a spoilage bacterium that is commonly found in chicken and beef products. The storage and pH tests showed that 4% of Chrysanthemum morifolium in the film maintained pH level (safe to consume), and the shelf life was extended from 3 days to 5 days of meat storage.

    CONCLUSIONS: This study demonstrated that the incorporation of 4% (v/v) Chrysanthemum morifolium extract into 1.5% (w/v) chitosan film extends the storage duration of raw meat products noticeably by reducing Staphylococcus aureus activity. Therefore, it increases the quality of the edible film as an environmentally friendly food packaging material so that it can act as a substitute for the use of plastic bags. Future studies will be conducted on improving the tensile strength of the edible film to increase the feasibility of using it in the food industry. In addition, the microstructure and surface morphology of the edible film can be further determined.

    Matched MeSH terms: Water
  4. Manshor NM, Razali N, Jusoh RR, Asmawi MZ, Mohamed N, Zainol S, et al.
    Int J Cardiol Hypertens, 2020 Mar;4:100024.
    PMID: 33447753 DOI: 10.1016/j.ijchy.2020.100024
    Introduction: Labisia pumila has been reported to possess activities including antioxidant, anti-aging and anti-cancer but there is no report on its vasorelaxant effects.

    Objective: This study aims to fractionate water extract of Labisia pumila, identify the compound(s) involved and elucidate the possible mechanism(s) of its vasorelaxant effects.

    Methods: Water extract of Labisia pumila was subjected to liquid-liquid extraction to obtain ethyl acetate, n-butanol and water fractions. In SHR aortic ring preparations, water fraction (WF-LPWE) was established as the most potent fraction for vasorelaxation. The pharmacological mechanisms of the vasorelaxant effect of WF-LPWE were investigated with and without the presence of various inhibitors. The cumulative dose-response curves of potassium chloride (KCl)-induced contractions were conducted to study the possible mechanisms of WF-LPWE in reducing vasoconstriction.

    Results: WF-LPWE produced dose-dependent vasorelaxant effect in endothelium-denuded aortic ring and showed non-competitive inhibition of dose-response curves of PE-induced contraction, and at its higher concentrations reduced KCl-induced contraction. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) significantly inhibited vasorelaxant effect of WF-LPWE. WF-LPWE significantly reduced the release of intracellular calcium ion (Ca2+) from the intracellular stores and suppressed the calcium chloride (CaCal2)-induced contraction. Nω-nitro-L-arginine methyl ester (L-NAME), methylene blue, indomethacin and atropine did not influence the vasorelaxant effects of WF-LPWE.

    Conclusion: WF-LPWE exerts its vasorelaxant effect independently of endothelium and possibly by inhibiting the release of calcium from intracellular calcium stores, receptor-operated calcium channels and formation of inositol 1,4,5- triphosphate. WF-LPWE vasorelaxant effect may also mediated via nitric oxide-independent direct involvement of soluble guanylate cyclase (sGC)/ cyclic guanosine monophosphate (cGMP) pathways.

    Matched MeSH terms: Water
  5. Shafqat SR, Bhawani SA, Bakhtiar S, Ibrahim MNM
    BMC Chem, 2020 Dec;14(1):27.
    PMID: 32266334 DOI: 10.1186/s13065-020-00680-8
    Congo red (CR) is an anionic azo dye widely used in many industries including pharmaceutical, textile, food and paint industries. The disposal of huge amount of CR into the various streams of water has posed a great threat to both human and aquatic life. Therefore, it has become an important aspect of industries to remove CR from different water sources. Molecular imprinting technology is a very slective method to remove various target pollutant from environment. In this study a precipitation polymerization was employed for the effective and selective removal of CR from contaminated aqueous media. A series of congo red molecularly imprinted polymers (CR-MIPs) of uniform size and shape was developed by changing the mole ratio of the components. The optimum ratio (0.1:4: 20, template, functional monomer and cross-linking monomer respectively) for CR1-MIP from synthesized polymers was able to rebind about 99.63% of CR at the optimum conditions of adsorption parameters (contact time 210 min, polymer dosage 0.5 g, concentration 20 ppm and pH 7). The synthesized polymers were characterized by various techniques such as Fourier Infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), and Brumauer-Emmett-Teller (BET). The polymer particles have successfully removed CR from different aqueous media with an efficiency of about ~ 90%.
    Matched MeSH terms: Water
  6. Kong, C. K., Tan, Y. N., Chye, F. Y., Sit, N. W.
    MyJurnal
    The edible shoots of Dendrocalamus asper (family Poaceae) is an underutilised food. The
    present work was conducted to evaluate the nutritional compositions, biological activities, and
    phytochemical contents of the shoots of D. asper obtained from different regions of Malaysia,
    Peninsular (DP) and East Malaysia (DS). The nutritional analysis was conducted using the
    Official Methods of Analysis of the AOAC International. All minerals were quantified using
    an inductively coupled plasma-mass spectrometer, except for potassium which was measured
    using a flame atomic absorption spectrometer. Total phenolic content (TPC) was determined
    using the Folin-Ciocalteu method. Antibacterial and antifungal activities were assayed using
    a colourimetric broth microdilution method, while antioxidant activity was tested using DPPH
    radical scavenging activity, ferric-reducing antioxidant power, and cellular antioxidant activity (CAA) assays. Enzyme inhibitory activities were examined using α-amylase and α-glucosidase. Both bamboo shoots (boiled at 100°C for 20 min) were high in moisture (> 93 g/100 g
    FW), crude protein (> 21 g/100 g DW), and crude fibre contents (> 9 g/100 g DW), but low in
    fat content (< 4 g/100 g DW). Potassium was the most abundant mineral at 205.67 and 203.83
    µg/100 g DW of bamboo shoots of DP and DS, respectively. The extracts (hexane, ethyl
    acetate, ethanol, and water) of both shoots showed stronger antifungal activity than antibacterial activity against selected human pathogens. All extracts of DP shoots demonstrated higher
    CAA in HeLa cells and α-amylase inhibitory activity than that of DS shoots. In contrast, the
    extracts of DS shoots exhibited stronger inhibition on α-glucosidase and contained higher
    TPC than that of DP shoots. The D. asper shoots obtained from the Peninsular Malaysia and
    East Malaysia contained different types of secondary metabolites which account for the differences in the biological activities. In conclusion, D. asper shoots have potential as a nutritional
    and functional food.
    Matched MeSH terms: Water
  7. Rehman U, Sarfraz RM, Mahmood A, Hussain Z, Thu HE, Zafar N, et al.
    Curr Drug Deliv, 2021 Feb 11.
    PMID: 33583374 DOI: 10.2174/1567201818666210212085912
    BACKGROUND: Despite exhibiting promising anticancer potential, the clinical significance of capecitabine (a potent prodrug of 5-fluorouracil used for treatment of colorectal cancer) is limited owing to its acidic and enzymatic hydrolysis, lower absorption following the oral administration, poor bioavailability, short plasma half-life and poor patient compliance.

    OBJECTIVES: The present study was aimed to fabricate the capecitabine as smart pH-responsive hydrogel network to efficiently facilitate its oral delivery while shielding its stability in the gastric media.

    METHODS: The smart pH sensitive HP-β-CD/agarose-g-poly(MAA) hydrogel network was developed using an aqueous free radical polymerization technique. The developed hydrogels were characterized for drug-loading efficiency, structural and compositional features, thermal stability, swelling behaviour, morphology, physical form, and release kinetics. The pH-responsive behaviour of developed hydrogels was established by conducting the swelling and release behaviour at different pH values (1.2 and 7.4), demonstrating significantly higher swelling and release at pH 7.4 as compared with pH 1.2. The capecitabine-loaded hydrogels were also screened for acute oral toxicity in animals by analysing the body weight, water and food intake, dermal toxicity, ocular toxicity, biochemical analysis, and histological examination.

    RESULTS: The characteristic evaluations revealed that capecitabine (anticancer agent) was successfully loaded into the hydrogel network. Capecitabine loading was ranged from 71.22% to 90.12%. An interesting feature of hydrogel was its pH-responsive behaviour which triggers release at basic pH (94.25%). Optimum swelling (95%) was seen at pH 7.4. Based upon regression coefficient R2 (0.96 - 0.99) best fit model was zero order. The extensive toxicity evaluations evidenced good safety profile with no signs of oral, dermal or ocular toxicities, as well as no variations in blood parameters and histology of vital organs.

    CONCLUSION: Our findings conclusively evinced that the developed hydrogel exhibited excellent pharmaceutical and therapeutic potential and thus can be employed as pH-responsive system for controlled delivery of anticancer agents.

    Matched MeSH terms: Water
  8. Arzmi MH, John A, Rismayuddin NAR, Kenali NM, Darnis DS
    Data Brief, 2021 Apr;35:106769.
    PMID: 33537383 DOI: 10.1016/j.dib.2021.106769
    Deer antler velvet (DAV) has been traditionally used in Chinese medicine, including treatment on toothache [1]. Due to its rapid and regenerative capacity, deer antlers were proposed to be the good model for bone remodelling in mammals [2]. The data presented in this work is on the liquid chromatography and mass spectrometry (LC-MS) profile and bioactive potential of Malayan deer antler velvet (DAV) on different Candida species that has clinical importance. Aqueous extraction of DAV samples was subjected to Liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) profiling. Reverse phase (RP) separation was used due to the process extraction using water as a solvent to separate polar compound. The data was interpreted using Profile Analysis 2.1V. The DAV samples were also tested for the effect on the biofilm formation of seven Candida species in a 96 well plate [3]. The biofilms were developed for 72 h in aerobic environment. Following that, the biofilms biomass was determined using crystal violet assay.
    Matched MeSH terms: Water
  9. Ghaffari Khaligh N, Mihankhah T, Titinchi S, Shahnavaz Z, Rafie Johan M
    Turk J Chem, 2020;44(4):1100-1109.
    PMID: 33488215 DOI: 10.3906/kim-2005-6
    This work introduces a new additive named 4,4'-trimethylenedipiperidine for the practical and ecofriendly preparation of ethyl 5-amino-7-(4-phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylate derivatives. This chemical is commercially available and easy to handle. It also possesses a low melting point and a broad liquid range temperature, high thermal stability, and good solubility in water. Based on green chemistry principles, the reaction was performed in a) a mixture of green solvents i.e. water and ethanol (1:1 v/v) at reflux temperature, and b) the additive was liquefied at 65 °C and the reaction was conducted in the liquid state of the additive. High yields of the desired triazolo-pyrimidines were obtained under both aforementioned conditions. Our results demonstrated that this additive, containing 2 Lewis base sites and able to act as an acceptor-donor hydrogen bonding group, is a novel and efficient alternative to piperidine, owing to its unique properties such as its reduced toxicity, nonflammable nature, nonvolatile state, broad liquid range temperature, high thermal stability, and ability to be safely handled. Furthermore, this additive could be completely recovered and exhibited high recyclability without any change in its chemical structure and no significant reduction in its activity. The current methodology has several advantages: (a) it avoids the use of hazardous materials, as well as toxic, volatile, and flammable solvents, (b) it does not entail tedious processes, harsh conditions, and the multistep preparation of catalysts, (c) it uses a metal-free and noncorrosive catalyst, and (d) reduces the generation of hazardous waste and simple work-up processes. The most important result of this study is that 4,4'-trimethylenedipiperidine can be a promising alternative for toxic, volatile, and flammable base reagents in organic synthesis owing to its unique properties.
    Matched MeSH terms: Water
  10. Omar NI, Baharin B, Lau SF, Ibrahim N, Mohd N, Ahmad Fauzi A, et al.
    Vet Med Int, 2020;2020:8862489.
    PMID: 33456747 DOI: 10.1155/2020/8862489
    Ficus deltoidea has been shown to possess antioxidant properties that could prevent the development of chronic inflammatory bone diseases. In this study, the efficacy of F. deltoidea in preventing alveolar bone resorption in osteoporotic rats induced by ovariectomy (OVX) was investigated. Twenty-four female Wistar rats were divided into four groups (n = 6) consisting of sham-operated (SO), ovariectomized control (OVXN), ovariectomized treated with estrogen (OVXP), and ovariectomized treated with F. deltoidea extract (OVXF). At the beginning of the study, two nonovariectomized, healthy rats were sacrificed to serve as baseline (BL). Treatment of the rats commenced two weeks after ovariectomy-the OVXP rats that served as positive control received Premarin® (64.5 μg/kg body weight), while OVXF rats were given F. deltoidea (800 mg/kg body weight); both agents were administered orally for two months. The negative control group of rats (OVXN) and the SO group received deionized water, also administered via oral gavage. At necropsy, morphometric assessment of the interradicular bone of the first molar was carried out using a micro-CT scanner, while quantification of osteoclasts and osteoblasts was performed histologically. The results showed that no statistically significant differences among the groups (p > 0.05) for bone morphometric assessment. However, trabecular thickness in the OVXF group was similar to BL, while trabecular separation and alveolar bone loss height were lower than those of the OVXN group. Histologically, the OVXF group demonstrated a significantly lower number of osteoclasts and a higher number of osteoblasts compared with OVXN (p=0.008 and p=0.019, respectively; p < 0.05). In conclusion, F. deltoidea has the capacity to prevent alveolar bone loss in ovariectomy-induced osteoporosis rats by potentially preserving trabecular bone microarchitecture and to decrease osteoclast and increase osteoblast cell count.
    Matched MeSH terms: Water
  11. Lim YL, Yong D, Ee R, Tee KK, Yin WF, Chan KG
    J Biotechnol, 2015 Aug 10;207:32-3.
    PMID: 25975625 DOI: 10.1016/j.jbiotec.2015.04.027
    Serratia multitudinisentens RB-25(T) (=DSM 28811(T) =LMG 28304(T)) is a newly proposed type strain in the genus of Serratia isolated from a municipal landfill site. Here, we present the complete genome of S. multitudinisentens RB-25(T) which contains a complete chitinase operon and other chitin and N-acetylglucosamine utilisation enzymes. To our knowledge, this is the first report of the complete genome sequence of this novel isolate and its chitinase gene discovery.
    Matched MeSH terms: Water Microbiology
  12. Nor Qhairul Izzreen, M. N., Mohd Fadzelly, A. B., Umi Hartina, M. R., Rabiatul Amirah, R., Rozzamri, A.
    MyJurnal
    The present work investigated the cytotoxicity capacity of the MDA-MB-231 (human
    cancer-derived), A549 (human lung cancer-derived), Caov3 (human ovarian cancer-derived),
    and HeLa (human cervical cancer-derived) cell lines on a wide range of tea leaves; green tea,
    black tea, tea waste, and compost from Sabah. A group of male and female Sprague Dawley
    rats was used to screen the sub-acute toxicity of green tea extract in tea leaves from Sabah for
    28 d. Results revealed that the ethanol extract of tea leaves had strong cytotoxic activity
    against all cancer lines. Tea waste showed higher cytotoxicity when extracted using hot water.
    The ethanol extract of black tea leaves exhibited the highest inhibitory activity against the
    proliferation of Caov3, whereas the ethanol extract of green tea leaves exhibited a promising
    cytotoxic activity against MDA-MB-231 and HeLa cell lines. Toxicity studies showed
    decreased testes weight and increased liver weight in male rats that were administered with
    5000 mg/kg of tea extract. This coincided with the significant increase portrayed by enzyme
    alanine aminotransferase (ALT) in the serum of treated male rats in the 5000 mg/kg dose
    group. Moreover, there was an increase of alkaline phosphatase (ALP) and ALT for the
    female rats in the 5000 mg/kg dose group. The increased levels of ALT and ALP enzymes, as
    well as liver weight, signified mechanical trauma in the liver of male and female rats in the
    5000 mg/kg dose group.
    Matched MeSH terms: Water
  13. Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF
    Front Pharmacol, 2021;12:631402.
    PMID: 33986667 DOI: 10.3389/fphar.2021.631402
    Edible bird's nest (EBN) is reported to have a positive in vitro proliferative effect and contain male reproductive hormones. Spermatogonia cells proliferate during spermatogenesis under male reproductive hormones stimulation that include testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Characterization of EBN through liquid chromatography-mass spectrometry (LCMS) has found testosterone as a base peak. Six types of amino acids, estradiol and sialic acid were among the major peaks that have been characterized. Based on the presence of these reproductive components, this study evaluated different doses of EBN on sperm parameters and male reproductive hormones of Sprague Dawley rats. Sixteen Sprague Dawley rats at the age of eight weeks were randomly and equally divided into four groups, which are Control, 10 mg/kg BW/d 50 mg/kg BW/d, and 250 mg/kg BW/d EBN group. The rats were fed with EBN enriched pellet daily and water ad-libitum. Rats were sacrificed and the organ was weighed for organ coefficients after eight weeks of treatment. Sperm concentration, percentage of sperm motility, and sperm viability were evaluated. Meanwhile, ELISA method was used to measure testosterone, FSH, and LH. Findings showed that there were no significant differences in organ coefficient between groups. Supplementation of 250 mg/kg BW/d EBN demonstrated a significant increase in sperm concentration, percentage of sperm motility as well as FSH and LH level compared to 10 mg/kg BW/d group. There was a dose-dependent increase in testosterone level but was not significant between groups. Based on these findings, EBN is concluded to have crucial effects on male reproductive parameters.
    Matched MeSH terms: Water
  14. Nurainna Abd Majid, Zuriani Zainol, Nor Aripin Shamaan, Nazefah Abd Hamid, Nuruliza Roslan, Noor Fadzilah Zulkifli
    MyJurnal
    Introduction: Iron deficiency anaemia (IDA) is endemic especially in the under-developed and developing countries and is a major public health concern. Improving nutrition is one of the ways to alleviate this condition. Consumption of locally available and affordable food such as date palm and goat milk which are rich in iron is one of the ways to overcome IDA. This study is aimed at evaluating the effect of date palm and goat milk supplementation on hae- matological parameters and iron bioavailability in IDA rats. Methods: 24 male Wistar rats were randomly divided into normal control and IDA group. The normal control was fed with normal diet and water ad libitum while the IDA group were fed on iron-deficient diet for two weeks to induce iron deficiency. The IDA rats were further divided into subgroups; each being supplemented with date palm, goat milk, a combination of date palm and goat milk, and ferrous fumarate as positive control. Blood were collected after 28 days for haematological parameters and iron profile determination. Iron bioavailability was assessed using the haemoglobin regeneration efficiency (HRE) index. Data was analysed by Student T Test and ANOVA using SPSS 23.0 software with p value < 0.05 considered as sta- tistically significant. Results: Supplementation of date palm and goat milk for 28 days significantly improved Hb, RBC, PCV, MCV, MCH, serum iron and transferrin saturation (p
    Matched MeSH terms: Water
  15. Saallah S, Naim MN, Mokhtar MN, Abu Bakar NF, Gen M, Lenggoro IW
    Enzyme Microb Technol, 2014 Oct;64-65:52-9.
    PMID: 25152417 DOI: 10.1016/j.enzmictec.2014.06.002
    In this study, the potential of electrohydrodynamic atomization or electrospraying to produce nanometer-order CGTase particles from aqueous suspension was demonstrated. CGTase enzyme was prepared in acetate buffer solution (1% v/v), followed by electrospraying in stable Taylor cone-jet mode. The deposits were collected on aluminium foil (collector) at variable distances from the tip of spraying needle, ranging from 10 to 25 cm. The Coulomb fission that occurs during electrospraying process successfully transformed the enzyme to the solid state without any functional group deterioration. The functional group verification was conducted by FTIR analysis. Comparison between the deposit and the as-received enzyme in dry state indicates almost identical spectra. By increasing the distance of the collector from the needle tip, the average particle size of the solidified enzyme was reduced from 200±117 nm to 75±34 nm. The average particle sizes produced from the droplet fission were in agreement with the scaling law models. Enzyme activity analysis showed that the enzyme retained its initial activity after the electrospraying process. The enzyme particles collected at the longest distance (25 cm) demonstrated the highest enzyme activity, which indicates that the activity was controlled by the enzyme particle size.
    Matched MeSH terms: Water
  16. NURDIYANA ROSLAN, MAZIDAH MAMAT, MAZIDAH MAMAT, KU HALIM KU BULAT
    MyJurnal
    Batik industryiswell known intheEast Coast of Malaysia, particularly in Terengganu and Kelantan. This industry consumes a lot of waterforthe batik making processwhich contributes tohigh dischargeof wastewater containingexcess dye pollutants. Hence,in this study, ananionic clayofnickel/aluminium-layered double hydroxide (NiAL) was investigatedas a potential adsorbent for the removal of anionic dyeof Eriochrome Black T (EBT). The NiAL was synthesized via self-assemblymethod and characterization of NiALwas carried outusing powder X-ray diffraction (PXRD) and Fourier transform infrared spectrophotometer (FTIR). The composition and morphology of NiAL was further analyzed using carbon, hydrogen, nitrogen, sulphur elemental analyzer (CHNS), thermogravimetric analyzer (TGA) and scanning electron microscope (SEM).The potential of NiAL as an adsorbent for the removal ofEBT in aqueous solution was tested at different dosages of NiAL. Theadsorptionabilitywasanalyzedby using two common adsorption isotherms, which were Langmuir and Freundlich models. The adsorption of EBT onto NiAL was governedby Freundlich isotherm model indicating that the adsorption occurs in heterogeneous system.
    Matched MeSH terms: Waste Water
  17. Juneta-Nor AS, Noordin NM, Azra MN, Ma HY, Husin NM, Ikhwanuddin M
    J Zhejiang Univ Sci B, 2020 10 13;21(10):823-834.
    PMID: 33043647 DOI: 10.1631/jzus.B2000126
    Ecdysis is a common phenomenon that happens throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii. It is vital to better understand the correlation between cannibalism and biochemical compound that exists during the moulting process. The objective of the present study was to determine the amino acid profile released by M. rosenbergii during the ecdysis process that promotes cannibalism. To accomplish this, changes in amino acid levels (total amino acid (TAA) and free amino acid (FAA)) of tissue muscle, exoskeleton, and sample water of culture medium from the moulting (E-stage) and non-moulting (C-stage) prawns were analysed using high-performance liquid chromatography (HPLC). Comparison study revealed that among the TAA compounds, proline and sarcosine of tissues from moulting prawn were found at the highest levels. The level of FAA from water that contains moulting prawns (E-stage) was dominated by tryptophan and proline. Significant values obtained in the present study suggested that these amino acid compounds act as a chemical cue to promote cannibalism in M. rosenbergii during ecdysis. The knowledge of compositions and compounds that were released during the moulting process should be helpful for better understanding of the mechanism and chemical cues that play roles on triggering cannibalism, and also for future dietary manipulation to improve feeding efficiencies and feeding management, which indirectly impacts productivity and profitability.
    Matched MeSH terms: Fresh Water
  18. Gulati N, Kumar Chellappan D, M Tambuwala M, A A Aljabali A, Prasher P, Kumar Singh S, et al.
    Assay Drug Dev Technol, 2021 05 14;19(4):246-261.
    PMID: 33989048 DOI: 10.1089/adt.2021.012
    Nanoemulsions (NMs) are one of the most important colloidal dispersion systems that are primarily used to improve the solubility of poorly water soluble drugs. The main objectives of this study were, first, to prepare an NM loaded with fenofibrate using a high shear homogenization technique and, second, to study the effect of variable using a central composite design. Twenty batches of fenofibrate-loaded NM formulations were prepared. The formed NMs were subjected to droplet size analysis, zeta potential, entrapment efficiency, pH, dilution, polydispersity index, transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry, differential scanning calorimetry (DSC), and in vitro drug release study. Analysis of variance was used for entrapment efficiency data to study the fitness and significance of the design. The NM-7 batch formulation demonstrated maximum entrapment efficiency (81.82%) with lowest droplet size (72.28 nm), and was thus chosen as the optimized batch. TEM analysis revealed that the NM was well dispersed with droplet sizes <100 nm. Incorporation of the drug into the NM was confirmed with DSC studies. In addition, the batch NM-7 also showed the maximum in vitro drug release (87.6%) in a 0.05 M sodium lauryl sulfate solution. The release data revealed that the NM followed first-order kinetics. The outcomes of the study revealed the development of a stable oral NM containing fenofibrate using the high shear homogenization technique. This approach may aid in further enhancing the oral bioavailability of fenofibrate, which requires further in vivo studies.
    Matched MeSH terms: Water
  19. JIAZHEN LIM, YANG LEE, BADIOZAMAN SULAIMAN, LESLEY MAURICE BILUNG, YEE LING CHONG
    MyJurnal
    The epidermal mucus of fish contains antimicrobial agents that act as biological defence against disease. This study aims to identify antibacterial activity and protein concentration of epidermal mucus of Barbodes everetti, a Bornean endemic freshwater fish. The epidermal mucus was extracted with 3% acetic acid, 0.85% sodium chloride and crude solvents. The mucus activity against eight strains of human pathogenic bacteria, including Bacillus cereus ATCC 33019, Escherichia coli O157:H7, Listeria monocytogenes ATCC 7644, Pseudomonas aeruginosa ATCC 27853, Salmonella braenderup ATCC BAA 664, Salmonella typhimurium, Staphylococcus aureus ATCC 25933, and Vibrio cholerae, were tested. The acetic acid mucus extract of B. everetti was able to inhibit five strains of bacteria and show no activity toward E. coli O157:H7, B. cereus ATCC 33019 and L. monocytogenes ATCC 7644. Moreover, the highest protein concentration was quantified in crude extract, followed by aqueous and acetic acid extracts. This study provides a preliminary knowledge on the activity of epidermal mucus of B. everetti towards five out of the eight human pathogens tested, therefore it may contain potential sources of novel antibacterial components which could be further extracted for the production of natural antibiotics towards human-related pathogenic bacteria.
    Matched MeSH terms: Fresh Water
  20. Khan MA, Nayan N, Shadiullah, Ahmad MK, Fhong SC, Tahir M, et al.
    Molecules, 2021 May 04;26(9).
    PMID: 34064537 DOI: 10.3390/molecules26092700
    In this work, advanced nanoscale surface characterization of CuO Nanoflowers synthesized by controlled hydrothermal approach for significant enhancement of catalytic properties has been investigated. The CuO nanoflower samples were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffraction (SAED), high-angular annular dark field scanning transmission electron microscopy (HAADF-STEM) with elemental mapping, energy dispersive spectroscopy (STEM-EDS) and UV-Vis spectroscopy techniques. The nanoscale analysis of the surface study of monodispersed individual CuO nanoflower confirmed the fine crystalline shaped morphology composed of ultrathin leaves, monoclinic structure and purified phase. The result of HR-TEM shows that the length of one ultrathin leaf of copper oxide nanoflower is about ~650-700 nm, base is about ~300.77 ± 30 nm and the average thickness of the tip of individual ultrathin leaf of copper oxide nanoflower is about ~10 ± 2 nm. Enhanced absorption of visible light ~850 nm and larger value of band gap energy (1.68 eV) have further supported that the as-grown material (CuO nanoflowers) is an active and well-designed surface morphology at the nanoscale level. Furthermore, significant enhancement of catalytic properties of copper oxide nanoflowers in the presence of H2O2 for the degradation of methylene blue (MB) with efficiency ~96.7% after 170 min was obtained. The results showed that the superb catalytic performance of well-fabricated CuO nanoflowers can open a new way for substantial applications of dye removal from wastewater and environment fields.
    Matched MeSH terms: Waste Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links