Displaying publications 361 - 380 of 488 in total

Abstract:
Sort:
  1. NURUL AIMI NADIA IBRAHIM, MOHAMAD AWANG, SURIANI MAT JUSOH
    MyJurnal
    Renewable materials have some bearing on the environment and have since increased research works related to polymer composites. This work was conducted to investigate the effects of interwoven kenaf fibres and the use of kenaf fibres in composites. In this research, interwoven between kenaf and polyethylene terephthalate (PET) was prepared and epoxy was used as the polymer matrix to form composites. The kenaf fibre composites with various kenaf fibre contents (2, 5, 8, and 10 wt %) interwoven with (PET) fibres were prepared by using open mould method. The properties of kenaf/PET/epoxy composites (KPTE) were studied. The kenaf fibre composites characterization was determined based on their mechanical properties, water absorption, morphology and thermal properties. The tensile strength test was performed using Testometric machine. The finding shows that the strength increases as the amount of kenaf fibres in the composites increases. The composites with 10% kenaf fibres interwoven PET displayed the highest tensile strength (85.3 ± 2.9 MPa) while unfilled epoxy show the lowest tensile strength (64.1 ± 16.5 MPa). The addition of kenaf fibres minimally increases the water absorption up to about 1.4%. The increases of kenaf fibres also reduces the overall thermal stability of the composites compared to the PET and epoxy resin composites. The morphology properties of KPTE composites support the tensile properties surface of the composites. This study assists to propose the kenaf fibres as a potential filler for properties improvements in epoxy-based composites contributing to the development of another environment-friendly material.
    Matched MeSH terms: Physical Phenomena
  2. MUHAMMAD SAFIY SABRIL, MUHAMMAD SAFIY SABRIL, FAEZAH JASMAN, NURUL ADILAH ABDUL LATIFF, SEVIA MAHDALIZA IDRUS, WAN HAFIZA WAN HASSAN
    MyJurnal
    Underwater wireless communications refer to transmitting data in an unguided water environment by wireless carriers including acoustic, radio frequency (RF), and optical waves. Relative to acoustic and RF, the optical wave is more promising to offer higher bandwidth at a lower energy consumption rate. However, an optical wave has its challenges such as attenuation due to absorption, scattering and turbulence effects. Therefore, this work attempts to investigate the performance of lightwave propagation for underwater optical wireless communication (UOWC) using simulation and experimental approaches. First, the performance of optical waves was analyzed using MATLAB by simulating the light attenuation model which based on depth-dependent chlorophyll concentration. A depth profile that related to the surface chlorophyll levels for the range 0-4 mg/m3 was used to represent the open ocean. The simulation showed that the attenuation of light less affected for operating wavelength range of 450 – 550 nm. Further, an experimental set-up was developed which consists of a transmitter, receiver, and aquarium to emulate the UOWC channel. Three types of water including clear, sea and cloudy were tested to analyze their interaction with the light emitted by a light-emitting diode (LED) and a laser diode. The emitted light detected by the light sensor and the strength of an audio signal transmitted through the UOWC were measured using a light meter and sound meter respectively. The measured power was plotted against distance and the attenuation constant c was deduced through curve fitting method. The analysis showed irrespective of the light sources, UOWC in cloudy water suffered the highest attenuation relative to still clear and seawater. The received power emitted by laser was at least 41% higher than the LED. This study contributes to identify the potential and limitations of different operating schemes to optimize UOWC performance.
    Matched MeSH terms: Physical Phenomena
  3. Norha Abdul Hadi, Mawar Hasyikin Abu Seman, Madhiyah Yahaya Bermakai
    MyJurnal
    Derivation of activated carbon from biomass wastes for energy storage applications such as fuel cells and supercapacitors are attracting wide attractions as the world is now demand for other sustainable energy that can help to explore new technologies especially for energy conversion and storage. This is important because the world now is facing a rapid depletion of fossil energy. In this review, an outline of recent trends towards biomass-derived specifically from fruit-based biomass wastes is explained in a holistic manner. Thanks to their high carbon content, high specific surface area and developed porous structure, biomass-derived chars can be treated and converted into carbon. The performance of activated carbon in terms of Brunette Emmet Teller (BET) surface area, micropore volume, total pore volume and specific capacitance has been reported. This review showed that higher BET surface will contribute to higher pore volume in the activated carbon that makes them good candidates for the fabrication of electrodes in supercapacitor applications. This study was focused on providing a detailed comparison of published studies that utilized different physical and chemical routes and their effect of modification such as various activation temperatures and the ratio of activating agents towards the performance of the activated carbon under different parameters. Implementing chemical routes with an ideal 600°C – 850°C and inclusion ratio might be effective to produce high performance activated carbon.
    Matched MeSH terms: Physical Phenomena
  4. Krishnan S, Abd Ghani N, Aminuddin NF, Quraishi KS, Razafindramangarafara BL, Baup S, et al.
    Ultrason Sonochem, 2021 Jun;74:105576.
    PMID: 33975186 DOI: 10.1016/j.ultsonch.2021.105576
    This study investigates the potential of using small amounts of ionic liquids (IL) to enhance ultrasound-assisted extraction of lipids content from green microalgae. Three imidazolium-based ILs (butyl, octyl and dodecyl), each of them with two anions (bromide and acetate) were tested as additives. Viscosity and surface tension of the ILs aqueous mixtures were analyzed to determine the influence of ILs' anions and alkyl chain length, whereas KI dosimetry experiments were used as an indicator of radicals formation. A key finding suggests that the small addition of ILs improves the ultrasonication either by enhancing the viscosity and reducing the water surface tension, leading to a more powerful acoustic cavitation process or by increasing HO° production likely to oxidize the microalgae cells membranes, and consequently disrupting them on a more efficient manner. KI dosimetry also revealed that long ILs alkyl chain is detrimental. This experimental observation is confirmed thus strengthened as the yield of extracted lipids from green microalgae has shown an incremental trend when the IL concentration also increased. These hypotheses are currently under investigation to spot detailed impact of ILs on cavitation process.
    Matched MeSH terms: Physical Phenomena
  5. Muhammad Faiz Ghazali, Mohamad Juraidi Jamal, Syed Azuan Syed Ahmad
    MyJurnal
    Synthetic fibers such as glass fiber and carbon fiber are traditionally used as reinforcement in engineering composites. The increasing of environmental concerns has led to the use of natural fibers as renewable alternatives reinforcement. Among them, coconut meat husk fiber which abundant availability can be used as reinforcement fiber. However, the coconut meat husk fiber, same as other natural fibers, has the issues of fiber/matrix bonding and moisture absorption. Chemical treatments are needed to modify the surface of fiber, aiming at improving the adhesion with polymer matrix and reducing the hydrophilicity of the fiber. Alkalization was used in this study to treat the coconut meat husk fiber. The effects of chemical treatments for 1hr and 24 hr treatment time on the coconut meat husk fibers reinforced composites were investigated. A result showed that the 24 hr alkali treatment gave the highest tensile stenght compared to the 1hr treatment and RO water.
    Matched MeSH terms: Physical Phenomena
  6. Robin Chang YH, Jiang J, Khong HY, Saad I, Chai SS, Mahat MM, et al.
    ACS Appl Mater Interfaces, 2021 Jun 02;13(21):25121-25136.
    PMID: 34008948 DOI: 10.1021/acsami.1c04759
    Transition metal chalcogenides (TMCs) have gained worldwide interest owing to their outstanding renewable energy conversion capability. However, the poor mechanical flexibility of most existing TMCs limits their practical commercial applications. Herein, triggered by the recent and imperative synthesis of highly ductile α-Ag2S, an effective approach based on evolutionary algorithm and ab initio total-energy calculations for determining stable, ductile phases of bulk and two-dimensional Ag
    x
    Se1-x and Ag
    x
    Te1-x compounds was implemented. The calculations correctly reproduced the global minimum bulk stoichiometric P212121-Ag8Se4 and P21/c-Ag8Te4 structures. Recently reported metastable AgTe3 was also revealed but it lacks dynamical stability. Further single-layered screening unveiled two new monolayer P4/nmm-Ag4Se2 and C2-Ag8Te4 phases. Orthorhombic Ag8Se4 crystalline has a narrow, direct band gap of 0.26 eV that increases to 2.68 eV when transforms to tetragonal Ag4Se2 monolayer. Interestingly, metallic P21/c-Ag8Te4 changes to semiconductor when thinned down to monolayer, exhibiting a band gap of 1.60 eV. Present findings confirm their strong stability from mechanical and thermodynamic aspects, with reasonable Vickers hardness, bone-like Young's modulus (E) and high machinability observed in bulk phases. Detailed analysis of the dielectric functions ε(ω), absorption coefficient α(ω), power conversion efficiency (PCE) and refractive index n(ω) of monolayers are reported for the first time. Fine theoretical PCE (SLME method ∼11-28%), relatively high n(0) (1.59-1.93), and sizable α(ω) (104-105 cm-1) that spans the infrared to visible regions indicate their prospects in optoelectronics and photoluminescence applications. Effective strategies to improve the temperature dependent power factor (PF) and figure of merit (ZT) are illustrated, including optimizing the carrier concentration. With decreasing thickness, ZT of p-doped Ag-Se was found to rise from approximately 0.15-0.90 at 300 K, leading to a record high theoretical conversion efficiency of ∼12.0%. The results presented foreshadow their potential application in a hybrid device that combines the photovoltaic and thermoelectric technologies.
    Matched MeSH terms: Physical Phenomena
  7. Mohammed HG, Albarody TMB, Susilawati S, Gohari S, Doyan A, Prayogi S, et al.
    Materials (Basel), 2021 May 18;14(10).
    PMID: 34070195 DOI: 10.3390/ma14102650
    This paper introduces a new spark plasma sintering technique that is able to order crystalline anisotropy by in-series/in situ DC electric coupled magnetic field. The process control parameters have been investigated on the production of anisotropic BaFe12O19 magnets based on resulted remanence (Mr). Sintering holding time (H.T.), cooling rate (C.R.), pressure (P), and sintering temperature (S.T.) are optimized by Taguchi with L9 orthogonal array (OA). The remanent magnetization of nanocrystalline BaFe12O19 in parallel (Mrǁ) and perpendicular (MrꞱ) to the applied magnetic field was regarded as a measure of performance. The Taguchi study calculated optimum process parameters, which significantly improved the sintering process based on the confirmation tests of BaFe12O19 anisotropy. The magnetic properties in terms of Mrǁ and MrꞱ were greatly affected by sintering temperature and pressure according to ANOVA results. In addition, regression models were developed for predicting the Mrǁ as well as MrꞱ respectively.
    Matched MeSH terms: Physical Phenomena
  8. Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S
    Polymers (Basel), 2021 May 12;13(10).
    PMID: 34065779 DOI: 10.3390/polym13101544
    Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
    Matched MeSH terms: Physical Phenomena
  9. Lee XJ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Ng HK
    Bioresour Technol, 2017 Jul;236:155-163.
    PMID: 28399419 DOI: 10.1016/j.biortech.2017.03.105
    This research investigated the potential of palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS), abundantly available agricultural wastes, as feedstock for biochar production by slow pyrolysis (50mLmin(-1) N2 at 500°C). Various characterization tests were performed to establish the thermochemical properties of the feedstocks and obtained biochars. PKS and EFB had higher lignin, volatiles, carbon and HHV, and lower ash than POS. The thermochemical conversion had enhanced the biofuel quality of PKS-char and EFB-char exhibiting increased HHV (26.18-27.50MJkg(-1)) and fixed carbon (53.78-59.92%), and decreased moisture (1.03-2.26%). The kinetics of pyrolysis were evaluated by thermogravimetry at different heating rates (10-40°C). The activation energies determined by Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models were similar, and comparable with literature data. The findings implied that PKS and EFB are very promising sources for biochars synthesis, and the obtained chars possessed significant biofuel potential.
    Matched MeSH terms: Physical Phenomena
  10. Izadi M, Abd Rahman MS, Ab-Kadir MZ, Gomes C, Jasni J, Hajikhani M
    PLoS One, 2017;12(2):e0172118.
    PMID: 28234930 DOI: 10.1371/journal.pone.0172118
    Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance.
    Matched MeSH terms: Physical Phenomena
  11. Nur Hanani ZA, Beatty E, Roos YH, Morris MA, Kerry JP
    Foods, 2013 Jan 02;2(1):1-17.
    PMID: 28239092 DOI: 10.3390/foods2010001
    The objectives of this study were to develop composite films using various gelatin sources with corn oil (CO) incorporation (55.18%) and to investigate the mechanical and physical properties of these films as potential packaging films. There were increases (p < 0.05) in the tensile strength (TS) and puncture strength (PS) of films when the concentration of gelatin increased. The mechanical properties of these films were also improved when compared with films produced without CO. Conversely, the water barrier properties of composite films decreased (p < 0.05) when the concentration of gelatin in composite films increased. Comparing with pure gelatin films, water and oxygen barrier properties of gelatin films decreased when manufactured with the inclusion of CO.
    Matched MeSH terms: Physical Phenomena
  12. Noor, N.M., Ahmad, M.H., Othman, N.H.
    MyJurnal
    The importance of the performance of concrete cannot be neglected since it is the early indicator of its physical and mechanical properties. It became more important when material with different physical properties than normal material such as rubber tire was used as concrete constituent. This paper presented apart of research result conducted on mortar and concrete with crumb rubber. Crumb rubber was replaced at 10%, 15% and 20% as sand replacement by volume. In addition, ordinary Portland cement was added to silica fume at 10% and 15% by weight. The properties measured in this study are air content and workability test. As for workability, superplasticizers were constantly used at 1% dosage for all mortar mixture, and 0.5% to 0.7% for concrete mixture. The air content was set at 4% to 6% and mortar flow test was conducted on a steel plate, shocked 15 times in 15 seconds and concrete slump test was carried out using slump cone equipment. Pressure method was used to measure air content. All mixes were done in a controlled room temperature. Results showed that when CR was added in the mixture segregation was observed in mortar requiring a high dose of superplasticizer to be added to improve the workability while air-modifying agent was used to reduce the mortar air content. In concrete mixture, low dosage of superplasticizers was required for workability and air-entrained agent was injected into the mixture to increase the air content between 4%-6%.
    Matched MeSH terms: Physical Phenomena
  13. Bradley DA, Zubair HT, Oresegun A, Louay GT, Ariffin A, Khandaker MU, et al.
    Appl Radiat Isot, 2018 Nov;141:176-181.
    PMID: 29673719 DOI: 10.1016/j.apradiso.2018.02.025
    In previous work we investigated the real-time radioluminescence (RL) yield of Ge-doped silica fibres and Al2O3 nanodot media, sensing electron- and x-ray energies and intensities at values familiarly obtained in external beam radiotherapy. The observation of an appreciable low-dose sensitivity has given rise to the realisation that there is strong potential for use of RL dosimetry in diagnostic radiology. Herein use has been made of P-doped silica optical fibre, 2 mm diameter, also including a 271 µm cylindrical doped core. With developing needs for versatile x-ray imaging dosimetry, preliminary investigations have been made covering the range of diagnostic x-ray tube potentials 30 kVp to 120 kVp, demonstrating linearity of RL with kVp as well as in terms of the current-time (mAs) product. RL yields also accord with the inverse-square law. Given typical radiographic-examination exposure durations from tens- to a few hundred milliseconds, particular value is found in the ability to record the influence of x-ray generator performance on the growth and decay of beam intensity, from initiation to termination.
    Matched MeSH terms: Physical Phenomena
  14. Ismail Lias, Muhammad Hussain Ismail, Iskandar Dzulkernain Md Raffee, Mohd Aman Ihsan Mamat
    MyJurnal
    Aluminium foam tube is a metal that consists of porous medium with special characteristics such as good energy absorption, good heat transfer and high thermal conductivity. These make it suitable to be used in a wide range of applications such as in heat exchangers. The aim of this project is to identify and analyse mechanical behaviour and microstructure aluminium foam tube produced and fabricated with infiltration method with vacuum-gas. The density of aluminium foam tube was also determined and an average aluminium foam tube with porosity 50% - 80% with the average NaCl particle size 2mm, 3mm and 4mm was produced. Foams with porosity 60%-75% NaCl has higher energy absorption. These was based on foam structure, density and maximum compressive load test result.
    Matched MeSH terms: Physical Phenomena
  15. Aman S, Khan I, Ismail Z, Salleh MZ, Al-Mdallal QM
    Sci Rep, 2017 05 26;7(1):2445.
    PMID: 28550289 DOI: 10.1038/s41598-017-01358-3
    This article investigates heat transfer enhancement in free convection flow of Maxwell nanofluids with carbon nanotubes (CNTs) over a vertically static plate with constant wall temperature. Two kinds of CNTs i.e. single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) are suspended in four different types of base liquids (Kerosene oil, Engine oil, water and ethylene glycol). Kerosene oil-based nanofluids are given a special consideration due to their higher thermal conductivities, unique properties and applications. The problem is modelled in terms of PDE's with initial and boundary conditions. Some relevant non-dimensional variables are inserted in order to transmute the governing problem into dimensionless form. The resulting problem is solved via Laplace transform technique and exact solutions for velocity, shear stress and temperature are acquired. These solutions are significantly controlled by the variations of parameters including the relaxation time, Prandtl number, Grashof number and nanoparticles volume fraction. Velocity and temperature increases with elevation in Grashof number while Shear stress minimizes with increasing Maxwell parameter. A comparison between SWCNTs and MWCNTs in each case is made. Moreover, a graph showing the comparison amongst four different types of nanofluids for both CNTs is also plotted.
    Matched MeSH terms: Physical Phenomena
  16. Solodovnikov SF, Atuchin VV, Solodovnikova ZA, Khyzhun OY, Danylenko MI, Pishchur DP, et al.
    Inorg Chem, 2017 Mar 20;56(6):3276-3286.
    PMID: 28266857 DOI: 10.1021/acs.inorgchem.6b02653
    Cs2Pb(MoO4)2crystals were prepared by crystallization from their own melt, and the crystal structure has been studied in detail. At 296 K, the molybdate crystallizes in the low-temperature α-form and has a monoclinic palmierite-related superstructure (space group C2/m, a = 2.13755(13) nm, b = 1.23123(8) nm, c = 1.68024(10) nm, β = 115.037(2)°, Z = 16) possessing the largest unit cell volume, 4.0066(4) nm3, among lead-containing palmierites. The compound undergoes a distortive phase transition at 635 K and incongruently melts at 943 K. The electronic structure of α-Cs2Pb(MoO4)2was explored by using X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy methods. For α-Cs2Pb(MoO4)2, the photoelectron core-level and valence-band spectra and the XES band representing the energy distribution of Mo 4d and O 2p states were recorded. Our results allow one to conclude that the Mo 4d and O 2p states contribute mainly to the central part and at the top of the valence band, respectively, with also significant contributions throughout the whole valence-band region of the molybdate under consideration.
    Matched MeSH terms: Physical Phenomena
  17. Bathrellos GD, Skilodimou HD, Chousianitis K, Youssef AM, Pradhan B
    Sci Total Environ, 2017 Jan 01;575:119-134.
    PMID: 27736696 DOI: 10.1016/j.scitotenv.2016.10.025
    Preparation of natural hazards maps are vital and essential for urban development. The main scope of this study is to synthesize natural hazard maps in a single multi-hazard map and thus to identify suitable areas for the urban development. The study area is the drainage basin of Xerias stream (Northeastern Peloponnesus, Greece) that has frequently suffered damages from landslides, floods and earthquakes. Landslide, flood and seismic hazard assessment maps were separately generated and further combined by applying the Analytical Hierarchy Process (AHP) and utilizing a Geographical Information System (GIS) to produce a multi-hazard map. This map represents the potential suitability map for urban development in the study area and was evaluated by means of uncertainty analysis. The outcome revealed that the most suitable areas are distributed in the southern part of the study area, where the landslide, flood and seismic hazards are at low and very low level. The uncertainty analysis shows small differences on the spatial distribution of the suitability zones. The produced suitability map for urban development proves a satisfactory agreement between the suitability zones and the landslide and flood phenomena that have affected the study area. Finally, 40% of the existing urban pattern boundaries and 60% of the current road network are located within the limits of low and very low suitability zones.
    Matched MeSH terms: Physical Phenomena
  18. Yusup Y, Kayode JS, Alkarkhi AFM
    Data Brief, 2018 Aug;19:1477-1481.
    PMID: 30229020 DOI: 10.1016/j.dib.2018.06.020
    Air-sea flux exchanges influence the climate condition and the global carbon-moisture cycle. It is imperative to understand the fundamentals of the natural systems at the tropical coastal ocean and how the transformation takes place over the time. Hence, latent and sensible heat fluxes, microclimate variables, and surface water temperature data were collected using eddy covariance instruments mounted on a platform at a tropical coastal ocean station from November 2015 to October 2017. The research data is to gain the needful knowledge of the energy exchanges in the tropical climatic environment to further improve predictive algorithms or models. Therefore, it is intended that this data report will offer appropriate information for the Monsoonal, and diurnal patterns of latent (LE) and sensible (H) heats and hence, establish the relationship between microclimate variables on the energy fluxes at the peninsular Malaysian tropical coastal ocean.
    Matched MeSH terms: Physical Phenomena
  19. Rahman MA, Ahamed E, Faruque MRI, Islam MT
    Sci Rep, 2018 Oct 08;8(1):14948.
    PMID: 30297730 DOI: 10.1038/s41598-018-33295-0
    Various techniques are commonly used to produce nano-crystalline NiAl2O4 materials; however, their practical applications in the microwave region remain very limited. In this work, flexible substrates for metamaterials containing two different concentrations of NiAl2O4 (labelled Ni36 and Ni42) have been synthesised using a sol-gel method. The formation of spinel structures in the synthesised materials is confirmed, and their crystalline sizes are determined using scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray techniques. The dielectric properties, conductivities, loss tangents, and other parameters of the NiAl2O4-based substrates are analysed to evaluate their applicability as dielectric materials for the microwave frequency range. The obtained results show that the fabricated Ni36 and Ni42 nickel aluminates possess dielectric constants of 4.94 and 4.97 and loss tangents of 0.01 and 0.007, respectively; in addition, they exhibit high flexibility and light weight, which make them suitable for applications as metamaterial substrates. The synthesised structures are also validated experimentally using a commercially available electromagnetic simulator; as a result, double negative behaviour of the flexible metamaterials has been observed. Furthermore, it is found that the prepared NiAl2O4 substrates can be used in the S-, C-, and X-bands of the microwave frequency region.
    Matched MeSH terms: Physical Phenomena
  20. Jeofry H, Ross N, Le Brocq A, Graham AGC, Li J, Gogineni P, et al.
    Nat Commun, 2018 11 01;9(1):4576.
    PMID: 30385741 DOI: 10.1038/s41467-018-06679-z
    Satellite imagery reveals flowstripes on Foundation Ice Stream parallel to ice flow, and meandering features on the ice-shelf that cross-cut ice flow and are thought to be formed by water exiting a well-organised subglacial system. Here, ice-penetrating radar data show flow-parallel hard-bed landforms beneath the grounded ice, and channels incised upwards into the ice shelf beneath meandering surface channels. As the ice transitions to flotation, the ice shelf incorporates a corrugation resulting from the landforms. Radar reveals the presence of subglacial water alongside the landforms, indicating a well-organised drainage system in which water exits the ice sheet as a point source, mixes with cavity water and incises upwards into a corrugation peak, accentuating the corrugation downstream. Hard-bedded landforms influence both subglacial hydrology and ice-shelf structure and, as they are known to be widespread on formerly glaciated terrain, their influence on the ice-sheet-shelf transition could be more widespread than thought previously.
    Matched MeSH terms: Physical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links