Displaying publications 21 - 40 of 61 in total

Abstract:
Sort:
  1. Razali N, Abdul Aziz A, Lim CY, Mat Junit S
    PeerJ, 2015;3:e1292.
    PMID: 26557426 DOI: 10.7717/peerj.1292
    The leaf extract of Tamarindus indica L. (T. indica) had been reported to possess high phenolic content and showed high antioxidant activities. In this study, the effects of the antioxidant-rich leaf extract of the T. indica on lipid peroxidation, antioxidant enzyme activities, H2O2-induced ROS production and gene expression patterns were investigated in liver HepG2 cells. Lipid peroxidation and ROS production were inhibited and the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was enhanced when the cells were treated with the antioxidant-rich leaf extract. cDNA microarray analysis revealed that 207 genes were significantly regulated by at least 1.5-fold (p < 0.05) in cells treated with the antioxidant-rich leaf extract. The expression of KNG1, SERPINC1, SERPIND1, SERPINE1, FGG, FGA, MVK, DHCR24, CYP24A1, ALDH6A1, EPHX1 and LEAP2 were amongst the highly regulated. When the significantly regulated genes were analyzed using Ingenuity Pathway Analysis software, "Lipid Metabolism, Small Molecule Biochemistry, Hematological Disease" was the top biological network affected by the leaf extract, with a score of 36. The top predicted canonical pathway affected by the leaf extract was the coagulation system (P < 2.80 × 10(-6)) followed by the superpathway of cholesterol biosynthesis (P < 2.17 × 10(-4)), intrinsic prothrombin pathway (P < 2.92 × 10(-4)), Immune Protection/Antimicrobial Response (P < 2.28 × 10(-3)) and xenobiotic metabolism signaling (P < 2.41 × 10(-3)). The antioxidant-rich leaf extract of T. indica also altered the expression of proteins that are involved in the Coagulation System and the Intrinsic Prothrombin Activation Pathway (KNG1, SERPINE1, FGG), Superpathway of Cholesterol Biosynthesis (MVK), Immune protection/antimicrobial response (IFNGR1, LEAP2, ANXA3 and MX1) and Xenobiotic Metabolism Signaling (ALDH6A1, ADH6). In conclusion, the antioxidant-rich leaf extract of T. indica inhibited lipid peroxidation and ROS production, enhanced antioxidant enzyme activities and significantly regulated the expression of genes and proteins involved with consequential impact on the coagulation system, cholesterol biosynthesis, xenobiotic metabolism signaling and antimicrobial response.
  2. Kareem HS, Nordin N, Heidelberg T, Abdul-Aziz A, Ariffin A
    Molecules, 2016 Feb 17;21(2).
    PMID: 26901175 DOI: 10.3390/molecules21020224
    A series of heterocyclic compounds bearing the well-known free radical scavenging 3,4,5-trimethoxybenzyloxy group, was synthesized. The key compound 4-(3,4,5-trimethoxybenzyl-oxy)benzohydrazide was converted into thiosemicarbazide derivatives, which were subsequently cyclized with NaOH to provide 1,2,4-triazole derivatives. Alternative treatment of the acid hydrazide with carbon disulfide in the presence of KOH led to the corresponding 1,3,4-oxadiazole and various alkylated derivatives. The newly synthesized compounds were purified and the structures of the products were elucidated and confirmed on the basis of their analytical and spectral data. Their antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) and Ferric Reducing Antioxidant Power (FRAP) assays. The thiosemicarbazide derivatives were highly active in both antioxidant assays with the lowest IC50 value for DPPH radical scavenging. Theoretical calculations based on density functional theory (DFT) were performed to understand the relative importance of NH, SH and CH hydrogens on the radical scavenging activities of these compounds.
  3. Makhadmeh GN, Abdul Aziz A, Abdul Razak K
    Artif Cells Nanomed Biotechnol, 2016 Aug;44(5):1285-9.
    PMID: 25811998 DOI: 10.3109/21691401.2015.1024843
    The synthesis of methylene blue (MB) encapsulated in silica nanoparticles (SiNPs) as an application for photodynamic therapy is reported in this study. Semi-rigid tissues with optical properties similar to that of human tissues were used as sample materials to determine the applicability of MB encapsulated in SiNPs.
  4. Ho IYM, Abdul Aziz A, Mat Junit S
    Sci Rep, 2020 06 19;10(1):9987.
    PMID: 32561807 DOI: 10.1038/s41598-020-66913-x
    Barringtonia racemosa leaf water extract (BLE) had been shown to have high gallic acid (GA) content and BLE has been postulated to have anti-proliferative effects towards colorectal cancer. This study aims to further investigate the mechanism underlying the anti-proliferative effect of BLE in Caco-2 cells and to determine if GA is responsible for the observed effects. Both BLE and GA inhibited Caco-2 cells in a dose-dependent manner. Cells exposed to IC50 concentration of BLE and GA showed reduced antioxidant activities. GA-treated Caco-2 cells experienced higher oxidative stress compared to cells treated with BLE. Both BLE and GA significantly up-regulated the expression of SLC2A1. BLE but not GA, significantly down-regulated the expression of ADH4. Meanwhile, GA but not BLE, significantly up-regulated AKRIB10 and GLO1 but significantly down-regulated HAGH. Alterations in gene expression were coupled with changes in extracellular glucose and pyruvate levels. While BLE decreased intracellular pyruvate, GA did the opposite. Both intracellular and extracellular D-lactate were not affected by either BLE or GA. GA showed more pronounced effects on apoptosis while BLE irreversibly reduced cell percentage in the G0/G1 phase. In conclusion, this study demonstrates the multiple-actions of BLE against Caco-2 cells, potentially involving various polyphenolic compounds, including GA.
  5. Mohamed NA, Ahmad Zainol Hady A, Abdul Aziz AH, Isahak I
    Trop Biomed, 2020 Dec 01;37(4):1141-1145.
    PMID: 33612766 DOI: 10.47665/tb.37.4.1141
    Coronavirus Disease 2019 (COVID-19) has infected more than 8 million people globally since its discovery in December 2019. For COVID-19 prevention, the World Health Organization recommended regular handwashing with soap, cough etiquette, mask wearing and social distancing. However, COVID-19 is rather difficult to contain because of its high transmissibility property. Gargling is effective for reducing infection in the respiratory tract. Most antiseptic gargles have antimicrobial properties against common respiratory pathogens. No published study on the effectiveness of antiseptic gargling among COVID-19 patients has been available to date. This article reviewed available literature on methods and solutions available for gargling and their effect on respiratory tract infections.
  6. Noor NM, Umar S, Abdul-Aziz A, Sheikh K, Somavarapu S
    Bioengineering (Basel), 2022 Jan 01;9(1).
    PMID: 35049720 DOI: 10.3390/bioengineering9010011
    Male pattern baldness (MPB) is a common condition that has a negative impact on the psycho-social health of many men. This study aims to engineer an alcohol-free formulation to cater for individuals who may have had allergic reactions to alcohol-based preparations. A lipid-based nanoparticle system composed of stearic and oleic acid (solid and liquid lipid) was used to deliver dutasteride (DST) for topical application. Two compositions, with oleic acid (Formulation A) and without (Formulation B), were compared to analyse the role of oleic acid as a potential active ingredient in addition to DST. DST-loaded LNP were prepared using the emulsification-ultrasonication method. All of the prepared formulations were spherical in shape in the nanometric size range (150-300 nm), with entrapment efficiencies of >75%. X-ray diffractograms revealed that DST exists in an amorphous form within the NLP matrices. The drug release behaviour from both LNP preparations displayed slow release of DST. Permeation studies through pig ear skin demonstrated that DST-LNP with oleic acid produced significantly lower permeation into the dermis compared to the formulation without oleic acid. These results suggest that the proposed formulation presents several characteristics which are novel, indicating its suitability for the dermal delivery of anti-androgenic molecules.
  7. Ong J, Yap AU, Abdul Aziz A, Yahya NA
    Oper Dent, 2023 Jan 01;48(1):90-97.
    PMID: 36445974 DOI: 10.2341/21-202-L
    This study investigated the effects of environmental pH on the flexural properties of ion-releasing restorative materials (IRMs), including giomer (Beautifil-Bulk Restorative - BB), alkasite (Cention N - CN), bioactive composite (Activa - AB) and resin-modified glass ionomer (Riva Light Cure -RV) restoratives. A bio-inert resin-based composite (Filtek Bulk-fill Posterior - FB) served as the control. Stainless steel molds were used to fabricate 40 beam-shaped specimens (12mm × 2mm × 2mm) for each material. The specimens were finished, measured, and randomly distributed into four groups (n=10) and immersed in aqueous solutions of pH 3.0, pH 5.0, pH 6.8, and pH 10.0 at 37°C for 28 days. Specimens were then subjected to a uniaxial three-point bending flexural test with a load cell of 5 KN and a fixed deformation rate of 0.5 mm/min until fracture occurred. Flexural modulus and strength were statistically analyzed using analysis of variance/Dunnet T3's test (p=0.05). Mean flexural modulus varied from (2.40±0.41 to 9.65±1.21 GPa), while mean flexural strength ranged from (21.56±2.78 to 163.86±13.13 MPa). Significant differences in flexural properties were observed among the various pH values and materials. All materials immersed in artificial saliva (pH 6.8) presented the highest flexural properties, except AB. The flexural strength of AB was significantly better when exposed to acidic environments. FB had better flexural properties than IRMs after exposure to a range of environmental pH values.
  8. Eng ZH, Abdul Aziz A, Ng KL, Mat Junit S
    Front Mol Biosci, 2023;10:1237548.
    PMID: 37692064 DOI: 10.3389/fmolb.2023.1237548
    Introduction: Papillary thyroid cancer (PTC) accounts for approximately 80% of all thyroid cancer cases. The mechanism of PTC tumourigenesis is not fully understood, but oxidative imbalance is thought to play a role. To gain further insight, this study evaluated antioxidant status, DNA repair capacity and genetic alterations in individuals diagnosed with benign thyroid lesion in one lobe (BTG) and PTC lesion in another. Methods: Individuals with coexisting BTG and PTC lesions in their thyroid lobes were included in this study. Reactive oxygen species (ROS) level, ABTS radical scavenging activity, ferric reducing antioxidant capacity, glutathione peroxidase and superoxide dismutase activities were measured in the thyroid tissue lysate. The expression of selected genes and proteins associated with oxidative stress defence and DNA repair were analysed through quantitative real-time PCR and Western blotting. Molecular alterations in genomic DNA were analysed through whole-exome sequencing and the potentially pathogenic driver genes filtered through Cancer-Related Analysis of Variants Toolkit (CRAVAT) analysis were subjected to pathway enrichment analysis using Metascape. Results: Significantly higher ROS level was detected in the PTC compared to the BTG lesions. The PTC lesions had significantly higher expression of GPX1, SOD2 and OGG1 but significantly lower expression of CAT and PRDX1 genes than the BTG lesions. Pathway enrichment analysis identified "regulation of MAPK cascade," "positive regulation of ERK1 and ERK2 cascade" and "negative regulation of reactive oxygen species metabolic process" to be significantly enriched in the PTC lesions only. Four pathogenic genetic variants were identified in the PTC lesions; BRAF V600E, MAP2K7-rs2145142862, BCR-rs372013175 and CD24 NM_001291737.1:p.Gln23fs while MAP3K9 and G6PD were among 11 genes that were mutated in both BTG and PTC lesions. Conclusion: Our findings provided further insight into the connection between oxidative stress, DNA damage, and genetic changes associated with BTG-to-PTC transformation. The increased oxidative DNA damage due to the heightened ROS levels could have heralded the BTG-to-PTC transformation, potentially through mutations in the genes involved in the MAPK signalling pathway and stress-activated MAPK/JNK cascade. Further in-vitro functional analyses and studies involving a larger sample size would need to be carried out to validate the findings from this pilot study.
  9. Lim CY, Mat Junit S, Abdulla MA, Abdul Aziz A
    PLoS One, 2013;8(7):e70058.
    PMID: 23894592 DOI: 10.1371/journal.pone.0070058
    BACKGROUND: Tamarindus indica (T. indica) is a medicinal plant with many biological activities including anti-diabetic, hypolipidaemic and anti-bacterial activities. A recent study demonstrated the hypolipidaemic effect of T. indica fruit pulp in hamsters. However, the biochemical and molecular mechanisms responsible for these effects have not been fully elucidated. Hence, the aims of this study were to evaluate the antioxidant activities and potential hypocholesterolaemic properties of T. indica, using in vitro and in vivo approaches.

    METHODOLOGY/PRINCIPAL FINDINGS: The in vitro study demonstrated that T. indica fruit pulp had significant amount of phenolic (244.9 ± 10.1 mg GAE/extract) and flavonoid (93.9 ± 2.6 mg RE/g extract) content and possessed antioxidant activities. In the in vivo study, hamsters fed with high-cholesterol diet for ten weeks showed elevated serum triglyceride, total cholesterol, HDL-C and LDL-C levels. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters significantly lowered serum triglyceride, total cholesterol and LDL-C levels but had no effect on the HDL-C level. The lipid-lowering effect was accompanied with significant increase in the expression of Apo A1, Abcg5 and LDL receptor genes and significant decrease in the expression of HMG-CoA reductase and Mtp genes. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters also protected against oxidative damage by increasing hepatic antioxidant enzymes, antioxidant activities and preventing hepatic lipid peroxidation.

    CONCLUSION/SIGNIFICANCE: It is postulated that tamarind fruit pulp exerts its hypocholesterolaemic effect by increasing cholesterol efflux, enhancing LDL-C uptake and clearance, suppressing triglyceride accumulation and inhibiting cholesterol biosynthesis. T. indica fruit pulp has potential antioxidative effects and is potentially protective against diet-induced hypercholesterolaemia.

  10. Makhadmeh GN, Abdul Aziz A, Abdul Razak K, Abu Noqta O
    IET Nanobiotechnol, 2015 Dec;9(6):381-5.
    PMID: 26647815 DOI: 10.1049/iet-nbt.2015.0003
    This study analysed the physical effects of Cichorium Pumilum (CP), as a natural photosensitizer (PS), and Protoporphyrin IX (PpIX), as a synthetic PS, encapsulated with silica nanoparticles (SiNPs) in photodynamic therapy. The optimum concentrations of CP and PpIX, needed to destroy Red Blood Cells (RBC), were determined and the efficacy of encapsulated CP and PpIX were compared with naked CP and PpIX was verified. The results confirmed the applicability of CP and PpIX encapsulated in SiNPs on RBCs, and established a relationship between the encapsulated CP and PpIX concentration and the time required to rupture 50% of the RBCs (t50). The CP and PpIX encapsulated in SiNPs exhibited higher efficacy compared with that of naked CP and PpIX, respectively, and CP had less efficacy compared with PpIX.
  11. Hashim H, Muda AS, Abdul Aziz A, Abdul Hamid Z
    Malays J Med Sci, 2016 Jul;23(4):59-64.
    PMID: 27660546 MyJurnal DOI: 10.21315/mjms2016.23.4.8
    Embolisation has long been used as an adjunct to surgical resection in the treatment of brain arteriovenous malformation (bAVM). The most commonly used embolic material, n-butylcyanoacrylate glue, requires experience and skill to handle its quick and unpredictable flow and polymerisation. A new liquid embolic agent, ethylene vinyl alcohol copolymer (Onyx), is less adhesive and polymerises slowly, which provides better control for radiologists performing embolisation.
  12. Adenan DM, Jaafar Z, Jayapalan JJ, Abdul Aziz A
    PeerJ, 2020;8:e9230.
    PMID: 32477840 DOI: 10.7717/peerj.9230
    INTRODUCTION: A high body fat coupled with low cardiopulmonary fitness and an increase in oxidative stress has been connoted as contributing factors in developing cardiovascular comorbidities. This study aimed to investigate the correlation between antioxidants and oxidative stress status with cardiopulmonary responses in women of different body mass index (BMI).

    SUBJECTS AND METHODS: Eighty female adults were recruited and divided into three groups; normal weight (n = 23), overweight (n = 28) and obese (n = 29), according to their BMI. Blood samples were obtained prior to cardiopulmonary exercise testing. Plasma samples were separated by centrifugation and analysed for enzymatic antioxidant activity including catalase, glutathione peroxidase and superoxide dismutase. Non-enzymatic antioxidant activities were assessed using 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging and ferric reducing ability of plasma (FRAP) assays. To evaluate the oxidative stress status of subjects, levels of reactive oxygen species and malondialdehyde, the by-product of lipid peroxidation, were measured. Cardiopulmonary responses were analysed using cardiopulmonary exercise testing (CPET) which involved 15 various parameters such as peak oxygen consumption, metabolic equivalents and respiratory exchange ratio.

    RESULTS: The obese group had significantly lower ABTS radical scavenging and FRAP activities than the normal weight group. A higher catalase activity was observed in the obese group than the normal weight group. Spearman's correlation showed an inverse relationship between catalase and peak oxygen consumption, while partial correlation analysis showed inverse correlations between superoxide dismutase and respiratory frequency, ABTS activity and oxygen pulse, and between ABTS activity and cardiac output.

    CONCLUSION: Our results demonstrate a lower cardiovascular fitness and antioxidant capacity in obese women; the higher catalase activity may be a compensatory mechanism. The negative correlations found between these two parameters may indicate the potential effect of antioxidants on the cardiopulmonary system and deserve further analysis in a larger population. Nevertheless, this study provides the basis for future studies to further explore the relationships between redox status and cardiopulmonary responses. This can potentially be used to predict future risk of developing diseases associated with oxidative stress, especially pulmonary and cardiovascular diseases.

  13. Razali N, Mat Junit S, Ariffin A, Ramli NS, Abdul Aziz A
    PMID: 26683054 DOI: 10.1186/s12906-015-0963-2
    Tamarindus indica L. (T. indica) or locally known as "asam jawa" belongs to the family Leguminosae. T. indica seeds as by-products from the fruits were previously reported to contain high polyphenolic content. However, identification of their bioactive polyphenols using recent technologies is less well researched but nonetheless important. Hence, it was the aim of this study to provide further information on the polyphenolic content and antioxidant activities as well as to identify and quantify its bioactive polyphenols.
  14. Chong UR, Abdul-Rahman PS, Abdul-Aziz A, Hashim OH, Mat-Junit S
    Biomed Res Int, 2013;2013:459017.
    PMID: 24455694 DOI: 10.1155/2013/459017
    The fruit pulp extract of Tamarindus indica has been reported for its antioxidant and hypolipidemic properties. In this study, the methanol extract of T. indica fruit pulp was investigated for its effects on the abundance of HepG2 cell lysate proteins. Cell lysate was extracted from HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp. Approximately 2500 spots were resolved using two-dimensional gel electrophoresis and the abundance of 20 cellular proteins was found to be significantly reduced. Among the proteins of reduced abundance, fourteen, including six proteins involved in metabolism (including ethanolamine phosphate cytidylyltransferase), four mitochondrial proteins (including prohibitin and respiratory chain proteins), and four proteins involved in translation and splicing, were positively identified by mass spectrometry and database search. The identified HepG2 altered abundance proteins, when taken together and analyzed by Ingenuity Pathways Analysis (IPA) software, are suggestive of the effects of T. indica fruit pulp extract on metabolism and inflammation, which are modulated by LXR/RXR. In conclusion, the methanol fruit pulp extract of T. indica was shown to cause reduced abundance of HepG2 mitochondrial, metabolic, and regulatory proteins involved in oxidative phosphorylation, protein synthesis, and cellular metabolism.
  15. Kong KW, Mat-Junit S, Ismail A, Aminudin N, Abdul-Aziz A
    Food Chem, 2014 Mar 1;146:85-93.
    PMID: 24176317 DOI: 10.1016/j.foodchem.2013.09.012
    The polyphenolic profiles and antioxidant activities of the water extracts of Barringtonia racemosa shoots (leaves and stems) were explored. Two methods, freeze drying and air drying, for preparation of the shoots, were also compared. Freeze drying was better as air drying caused 5-41% reduction of polyphenols. Three phenolic acids and three flavonoids were identified, using UHPLC. The descending order of polyphenols in the leaves and stems was gallic acid>ellagic acid>quercetin>protocatechuic acid>rutin>kaempferol. In vitro antioxidant analyses were performed using biological samples. In the LDL oxidation assay, B. racemosa leaf extract (IC50=73.0μg/ml) was better than stem extract (IC50=226μg/ml) at inhibiting the formation of TBARS and lipid hydroperoxides. Similar trends were observed for serum and haemoglobin oxidation. B. racemosa leaf extract was better than its stem extract in delaying the time required to oxidise haemoglobin to methaemoglobin. The high polyphenolic content of B. racemosa shoots could have contributed towards their antioxidative effects.
  16. Chong UR, Abdul-Rahman PS, Abdul-Aziz A, Hashim OH, Junit SM
    PLoS One, 2012;7(6):e39476.
    PMID: 22724021 DOI: 10.1371/journal.pone.0039476
    The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach.
  17. Kareem HS, Ariffin A, Nordin N, Heidelberg T, Abdul-Aziz A, Kong KW, et al.
    Eur J Med Chem, 2015 Oct 20;103:497-505.
    PMID: 26402727 DOI: 10.1016/j.ejmech.2015.09.016
    A new series of antioxidants, namely imines bearing the well-known free radical scavenger group 3,4,5-trimethoxybenzyloxy, was designed and synthesized. Theoretical calculations based on density functional theory (DFT) were performed to understand the antioxidant activities. Experimental studies evaluating the antioxidant activities of the compounds using DPPH and FRAP assays verified the predictions obtained by DMOL3 based on DFT.1. The DPPH radical scavenging activities depended on the substitution pattern of the aromatic aldehyde, with both the substitution type and position showing significant effects. Compounds 7b, 7c and 7d, which contain a phenolic hydroxyl group at the para position to the imine as well as, additional electron donating groups at the ortho-position to this hydroxyl group, exhibited IC₅₀ values of 62, 75 and 106 μg/mL, respectively, and potent antioxidant activities against DPPH, which were better than that of the reference compound BHT. With the exception of compounds 7a and 7h with a phenolic hydroxyl group at the ortho position, all of the investigated compounds exhibited ferric reducing activities above 1000 μM. Correlation analysis between the two antioxidant assays revealed moderate positive correlation (r = 0.59), indicating differing antioxidant activities based on the reaction mechanism. Therefore, imines bearing a 3,4,5-trimethoxybenzyloxy group can be proposed as potential antioxidants for tackling oxidative stress.
  18. Mohd Hazli UHA, Abdul-Aziz A, Mat-Junit S, Chee CF, Kong KW
    Food Res Int, 2019 01;115:241-250.
    PMID: 30599938 DOI: 10.1016/j.foodres.2018.08.094
    Alternanthera sessilis (red) (ASR) is an edible herbal plant with many beneficial health effects. This study aimed to investigate the antioxidant components and antioxidant activities of the edible leaves and stems of ASR extracted using solvent of varying polarities namely water, ethanol, ethyl acetate and hexane. ASR leaf extracts showed higher in both antioxidant components and activities than the stem extracts. Among the antioxidant components, the ethanol leaf extract showed higher phenolic (77.29 ± 1.02 mg GAE/g extract) content while the ethyl acetate leaf extract was rich in flavonoids (157.44 ± 10.19 mg RE/g extract), carotenoids (782.97 ± 10.78 mg BE/g extract) and betalains (betanin: 67.08 ± 0.49 mg/g extract; amaranthin: 93.94 ± 0.68 mg/g extract and betaxanthin: 53.92 ± 0.88 mg/g extract). Nevertheless, the ethanol leaf extract showed the highest DPPH radical scavenging activity and ABTS radical cation scavenging activity. It also exhibited highest ferric reducing activity among all the extracts. Four polyphenolic compounds from ASR leaf, namely ferulic acid, rutin, quercetin and apigenin, were identified and quantified using ultra high performance liquid chromatography. The existence of these compounds was further verified using tandem mass spectrometry. These current results indicate that ASR leaf particularly the ethanol extract has the potential to be exploited as a source of natural antioxidants.
  19. Noor NM, Abdul-Aziz A, Sheikh K, Somavarapu S, Taylor KMG
    Pharmaceutics, 2020 Oct 20;12(10).
    PMID: 33092119 DOI: 10.3390/pharmaceutics12100994
    Dutasteride, licensed as an oral medicine for the treatment of benign prostatic hypoplasia, has been investigated as a treatment for androgenic alopecia. In this study, the potential for dustasteride to be delivered topically in order to reduce systemic exposure, irritation of the skin, and also cytotoxicity was explored. Chitosan oligomer (CSO) was successfully synthesised with lauric acid as a coating for a dutasteride-loaded nanostructured lipid carriers (DST-NLCs) system. DST-NLCs were prepared using a combination of melt-dispersion and ultrasonication. These negatively charged NLCs (-18.0 mV) had a mean particle size of ~184 nm, which was not significantly increased (p > 0.05) when coated with lauric acid-chitosan oligomer (CSO-LA), whilst the surface charge changed to positive (+24.8 mV). The entrapment efficiency of DST-NLCs was 97%, and coated and uncoated preparations were physically stable for up to 180 days at 4-8 °C. The drug release was slower from DST-NLCs coated with CSO-LA than from uncoated NLCs, with no detectable drug permeation through full-thickness pig ear skin from either preparation. Considering the cytotoxicity, the IC50 values for the DST-NLCs, coated and uncoated with CSO-LA were greater than for dutasteride alone (p < 0.05). DST-NLCs and empty NLCs coated with CSO-LA at 25 µM increased the cell proliferation compared to the control, and no skin irritation was observed when the DST-NLC formulations were tested using EpiDerm™. The cell and skin uptake studies of coated and uncoated NLCs incorporating the fluorescent marker Coumarin-6 showed the time-dependent uptake of Coumarin-6. Overall, the findings suggest that DST-NLCs coated with CSO-LA represent a promising formulation strategy for dutasteride delivery for the treatment of androgenic alopecia, with a reduced cytotoxicity compared to that of the drug alone and lower irritancy than an ethanolic solution of dutasteride.
  20. Omar NH, Mohd Nordin NA, Chai SC, Abdul Aziz AF
    Med J Malaysia, 2020 03;75(2):146-151.
    PMID: 32281596
    INTRODUCTION: There is scarcity of research information on upper limb (UL) functionality among Malaysian post-stroke population despite the increasing number of stroke survivors. This study intends to evaluate functionality among stroke survivors residing in the community, with a specific focus on the UL.

    METHODS: This cross-sectional study involved 65 stroke survivors with UL dysfunction (mean (SD) age = 64.83 (8.05) years, mean (SD) post-stroke duration 41.62 (35.24) months) who attended community-based rehabilitation program. Upper limb functionality was assessed using the UL items of Stroke Specific Quality of Life Scale (SSQOL), the Lawton Instrumental Activities of Daily Living (IADL) Scale and the Jebsen-Taylor Hand Function Test (JTHFT). The stroke survivors' performance in completing JTHFT using their affected dominant hand was compared with standard norms.

    RESULTS: The three most affected UL daily living tasks were writing (64.7%, n=42), opening a jar (63.1%, n=41) and putting on socks (58.5%, n=38). As for IADL, the mean (SD) score of Lawton scale was 3.26 (2.41), with more than 50% unable to handle finance, do the laundry and prepare meals for themselves. Performances of stroke survivors were much slower than normal population in all tasks of JTHFT (p<0.05), with largest speed difference demonstrated for 'stacking objects' task (mean difference 43.24 secs (p=0.003) and 24.57 (p<0.001) in males and females, respectively.

    CONCLUSION: UL functions are significantly impaired among stroke survivors despite undergoing rehabilitation. Rehabilitation professionals should prioritize highly problematic tasks when retraining UL for greater post-stroke functionality.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links