METHODS: We reviewed the FDA's MAUDE database for any adverse events involving the use of SynCardia TAH from 1/01/2012 to 9/30/2020. All the events were independently reviewed by three physicians.
RESULTS: A total of 1,512 adverse events were identified in 453 "injury and death" reports in the MAUDE database. The most common adverse events reported were infection (20.2%) and device malfunction (20.1%). These were followed by bleeding events (16.5%), respiratory failure (10.1%), cerebrovascular accident (CVA)/other neurological dysfunction (8.7%), renal dysfunction (7.5%), hepatic dysfunction (2.2%), thromboembolic events (1.8%), pericardial effusion (1.8%), and hemolysis (1%). Death was reported in 49.4% of all the reported cases (n=224/453). The most common cause of death was multiorgan failure (n=73, 32.6%), followed by CVA/other non-specific neurological dysfunction (n=44, 19.7%), sepsis (n=24, 10.7%), withdrawal of support (n=20, 8.9%), device malfunction (n=11, 4.9%), bleeding (n=7, 3.1%), respiratory failure (n=7, 3.1%), gastrointestinal disorder (n=6, 2.7%), and cardiomyopathy (n=3, 1.3%).
CONCLUSIONS: Infection was the most common adverse event following the implantation of TAH. Most of the deaths reported were due to multiorgan failure. Early recognition and management of any possible adverse events after the TAH implantation are essential to improve the procedural outcome and patient survival.
OBJECTIVE: To report and describe the adverse events related to the use of Artic Front cryoballoon catheters (Arctic Front, Arctic Front Advance, and Arctic Front Advance Pro) reported in the Food and Drug Administration's (FDA) Manufacturers and User Defined Experience (MAUDE) database.
METHODS: We reviewed all the adverse events reported to the FDA MAUDE database over a 10.7-year study period from January 01, 2011 to September 31, 2021. All events were independently reviewed by two physicians.
RESULTS: During the study period, a total of 320 procedural-related adverse events reported in the MAUDE database were identified. The most common adverse event was transient or persistent phrenic nerve palsy (PNP), accounting for 48% of all events. This was followed by cardiac perforation (15%), pulmonary vein stenosis (8%), transient ischemic attack or stroke (6%), vascular injury (4%), transient or persistent ST-elevation myocardial infarction (3%), hemoptysis (2%), pericarditis (2%), and esophageal ulcer or fistula (1%). There were six reported intra-procedural death events as a result of cardiac perforation.
CONCLUSION: The two most common procedural adverse events associated with cryoballoon ablation were PNP and cardiac perforation. All cases of procedural mortality were due to cardiac perforation.
METHODS AND RESULTS: We queried the Centers for Disease Control and Prevention's Wide-Ranging Online Data for Epidemiologic Research database for data on patients with sarcoidosis aged ≥25 years from 1999 to 2020. Diseases of the circulatory system except ischemic heart disease were listed as the underlying cause of death, and sarcoidosis was stated as a contributing cause of death. We calculated age-adjusted mortality rate (AAMR) per 1 million individuals and determined the trends over time by estimating the annual percentage change using the Joinpoint Regression Program. Subgroup analyses were performed on the basis of demographic and geographic factors. In the 22-year study period, 3301 cardiovascular deaths with comorbid sarcoidosis were identified. The AAMR from cardiovascular deaths with comorbid sarcoidosis increased from 0.53 (95% CI, 0.43-0.65) per 1 million individuals in 1999 to 0.87 (95% CI, 0.75-0.98) per 1 million individuals in 2020. Overall, women recorded a higher AAMR compared with men (0.77 [95% CI, 0.74-0.81] versus 0.58 [95% CI, 0.55-0.62]). People with Black ancestry had higher AAMR than people with White ancestry (3.23 [95% CI, 3.07-3.39] versus 0.39 [95% CI, 0.37-0.41]). A higher percentage of death was seen in the age groups of 55 to 64 years in men (23.11%) and women (21.81%), respectively. In terms of US census regions, the South region has the highest AAMR from cardiovascular deaths with comorbid sarcoidosis compared with other regions (0.78 [95% CI, 0.74-0.82]).
CONCLUSIONS: The increase of AAMR from cardiovascular deaths with comorbid sarcoidosis and higher cardiovascular mortality rates among adults aged 55 to 64 years highlight the importance of early screening for cardiovascular diseases among patients with sarcoidosis.
METHODS: In this single-center retrospective study, the relationship between common driver mutations (EGFR mutation and ALK rearrangement) and PD-L1 expression in advanced NSCLC according to the patients' smoking history was examined. Light, moderate and heavy smokers had smoked
METHODS: We conducted a multicenter, hospital-based active surveillance study of adults in Malaysia with community-acquired pneumonia (CAP), acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and acute exacerbation of asthma (AEBA), who had influenza-like illness ≤10 days before hospitalization. We estimated the rate of laboratory-confirmed influenza and associated complications over 13 months (July 2018-August 2019) and described the distribution of causative influenza strains. We evaluated predictors of laboratory-confirmed influenza and severe clinical outcomes using multivariate analysis.
RESULTS: Of 1106 included patients, 114 (10.3%) were influenza-positive; most were influenza A (85.1%), with A/H1N1pdm09 being the predominant circulating strain during the study following a shift from A/H3N2 from January-February 2019 onwards. In multivariate analyses, an absence of comorbidities (none versus any comorbidity [OR (95%CI), 0.565 (0.329-0.970)], p = 0.038) and of dyspnea (0.544 (0.341-0.868)], p = 0.011) were associated with increased risk of influenza positivity. Overall, 184/1106 (16.6%) patients were admitted to intensive care or high-dependency units (ICU/HDU) (13.2% were influenza positive) and 26/1106 (2.4%) died (2.6% were influenza positive). Males were more likely to have a severe outcome (ICU/HDU admission or death).
CONCLUSIONS: Influenza was a significant contributor to hospitalizations associated with CAP, AECOPD and AEBA. However, it was not associated with ICU/HDU admission in this population. Study registration, NMRR ID: NMRR-17-889-35,174.
METHODS: We report the largest multicentre evaluation of the COPD airway mycobiome to date, including participants from Asia (Singapore and Malaysia) and the UK (Scotland) when stable (n=337) and during exacerbations (n=66) as well as nondiseased (healthy) controls (n=47). Longitudinal mycobiome analysis was performed during and following COPD exacerbations (n=34), and examined in terms of exacerbation frequency, 2-year mortality and occurrence of serum specific IgE (sIgE) against selected fungi.
RESULTS: A distinct mycobiome profile is observed in COPD compared with controls as evidenced by increased α-diversity (Shannon index; p<0.001). Significant airway mycobiome differences, including greater interfungal interaction (by co-occurrence), characterise very frequent COPD exacerbators (three or more exacerbations per year) (permutational multivariate ANOVA; adjusted p<0.001). Longitudinal analyses during exacerbations and following treatment with antibiotics and corticosteroids did not reveal any significant change in airway mycobiome profile. Unsupervised clustering resulted in two clinically distinct COPD groups: one with increased symptoms (COPD Assessment Test score) and Saccharomyces dominance, and another with very frequent exacerbations and higher mortality characterised by Aspergillus, Curvularia and Penicillium with a concomitant increase in serum sIgE levels against the same fungi. During acute exacerbations of COPD, lower fungal diversity associates with higher 2-year mortality.
CONCLUSION: The airway mycobiome in COPD is characterised by specific fungal genera associated with exacerbations and increased mortality.
PATIENTS AND METHODS: A total of 657 patients with EGFR-mutated (exon 19 deletions or L858R) locally advanced or metastatic NSCLC after disease progression on osimertinib were randomized 2 : 2 : 1 to receive amivantamab-lazertinib-chemotherapy, chemotherapy, or amivantamab-chemotherapy. The dual primary endpoints were progression-free survival (PFS) of amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy. During the study, hematologic toxicities observed in the amivantamab-lazertinib-chemotherapy arm necessitated a regimen change to start lazertinib after carboplatin completion.
RESULTS: All baseline characteristics were well balanced across the three arms, including by history of brain metastases and prior brain radiation. PFS was significantly longer for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy [hazard ratio (HR) for disease progression or death 0.48 and 0.44, respectively; P < 0.001 for both; median of 6.3 and 8.3 versus 4.2 months, respectively]. Consistent PFS results were seen by investigator assessment (HR for disease progression or death 0.41 and 0.38 for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy, respectively; P < 0.001 for both; median of 8.2 and 8.3 versus 4.2 months, respectively). Objective response rate was significantly higher for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (64% and 63% versus 36%, respectively; P < 0.001 for both). Median intracranial PFS was 12.5 and 12.8 versus 8.3 months for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (HR for intracranial disease progression or death 0.55 and 0.58, respectively). Predominant adverse events (AEs) in the amivantamab-containing regimens were hematologic, EGFR-, and MET-related toxicities. Amivantamab-chemotherapy had lower rates of hematologic AEs than amivantamab-lazertinib-chemotherapy.
CONCLUSIONS: Amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy improved PFS and intracranial PFS versus chemotherapy in a population with limited options after disease progression on osimertinib. Longer follow-up is needed for the modified amivantamab-lazertinib-chemotherapy regimen.