MATERIALS AND METHODS: Thirty-Two Sprague Dawley (SD) male rats were divided into four groups. The group 1 was administrated with distilled water intragastrically and injected sterile saline subcutaneously. The group 2 was administrated with EA orally and injected with sterile saline subcutaneously. The groups 3 & 4 were subcutaneously exposed to Ni for 4 weeks twice daily before tooth extraction procedure, and maintained Ni injection until the animals were sacrificed. After one month Ni exposure, the group 4 was fed with EA while continuing Ni injection. All the groups were anesthetized, and the upper left incisor was extracted. Four rats from each group were sacrificed on 14(th) and 28(th) days. Tumour necrosis factor alpha (TNFα), Interleukin-1 beta (IL-1β) and Interleukin-6 (IL-6) were applied to assess in serum rat at 14th and 28(th) days. Superoxide dismutase (SOD) and Thiobarbituric acid reactive substances (TBRAS) levels were assessed to evaluate the antioxidant status and lipid peroxidation accordingly after tooth extraction in homogenized gingival maxilla tissue of rat at 14(th) and 28(th) days. The socket hard tissue was stained by eosin and hematoxylin (H&E); immunohistochemical technique was used to assess the healing process by Osteocalcin (OCN) and Alkaline Phosphatase (ALP) biomarkers.
RESULTS: Ni-induced rats administered with EA compound (Group 4) dropped the elevated concentration of pro-inflammatory cytokines significantly when compared to Ni-induced rats (Group 3) (p<0.05). Ni-induced rats administrated with EA compound (Group 4) showed significant production of SOD and recession in TBRAS level when compared to Ni-induced rats (Group 3) (p<0.05). The immunohistochemistry analysis has revealed that OCN and ALP have presented stronger expression in Ni-induced rats treated with EA (Group 4), as against Ni-induced rats (Group 3).
CONCLUSION: We have concluded that, Ni-induced rats, treated with EA have exerted positive effect on the trabecular bone formation after tooth extraction in nicotinic rats could be due to the antioxidant activity of EA which lead to upregulate of OCN and ALP proteins which are responsible for osteogenesis.
MATERIALS AND METHODS: Sixteen New Zealand white rabbits were randomly divided into four groups. Modified Hyrax expanders were placed across the midsagittal sutures and secured with miniscrew implants with the following activations: group 1 (control), 0.5 mm expansion/day for 12 days; group 2, 1 mm instant expansion followed by 0.5 mm expansion/day for 10 days; group 3, 2.5 mm instant expansion followed by 0.5 mm expansion/day for 7 days; and group 4, 4 mm instant expansion followed by 0.5 mm expansion/day for 4 days. After 6 weeks, sutural expansion and new bone formation were evaluated histomorphometrically. Statistical analysis was performed using Kruskal-Wallis/Mann-Whitney U tests and Spearman's rho correlation (p
Materials and Methods: The experiment was divided into short-term treatment (45 days) and long-term treatment (90 days), with each group divided into nine sub-groups consisting of six animals each. Sub-groups 1 and 2 served as normal, and N-acetylcysteine (NAC) controls, respectively. Sub-groups 3-9 received sodium arsenite in drinking water (50 mg/L). In addition, sub-group 4 received NAC (210 mg/kg b.wt) orally once daily, sub-groups 5-7 received aqueous seed extract of M. pruriens (350 mg/kg b.wt, 530 mg/kg b.wt, and 700 mg/kg b.wt) orally once daily and sub-groups 8 and 9 received a combination of NAC and aqueous seed extract of M. pruriens (350 mg/kg b.wt and 530 mg/kg b.wt) orally once daily. Following the treatment, the blood was drawn retro-orbitally to assess the liver (serum alanine transaminase [ALT], serum aspartate transaminase, and serum alkaline phosphatase) and kidney (serum urea and serum creatinine) functions. Learning and memory were assessed by passive avoidance test. Animals were sacrificed by an overdose of ketamine, and their Nissl stained hippocampal sections were analyzed for alterations in neural cell numbers in CA1 and CA3 regions.
Results: In the short-term treatment, groups administered with M. pruriens 530 mg/kg b.wt alone and combination of NAC + M. pruriens 350 mg/kg b.wt exhibited a significant improvement in memory retention, less severe neurodegeneration, and decrease in serum ALT levels. In long-term treatment, groups administered with M. pruriens 700 mg/kg b.wt alone and combination of NAC+M. pruriens 350 mg/kg b.wt, respectively, showed better memory retention, decreased neural deficits, and reduced levels of kidney and liver enzymes.
Conclusion: The seed extract of M. pruriens showed significant enhancement in memory and learning. The number of surviving neurons in the CA1 and CA3 regions also increased on treatment with M. pruriens. Serum ALT, serum urea, and serum creatinine levels showed significant improvement on long-term treatment with M. pruriens.
Materials and Methods: A total number of 50 participants (40 with chronic generalized periodontitis and 10 periodontally healthy volunteers) of 30-50 years were included in the study. Clinical parameters such as simplified oral hygiene index (OHI-S), gingival index, probing depth, and clinical attachment loss (CAL) were measured, and then, saliva and blood sample collection was done and analyzed for ALP levels by spectrometry. The clinical parameters along with saliva and serum ALP levels were reevaluated after 30 days following Phase I periodontal therapy. The results were statistically analyzed using paired t-test and one-way ANOVA.
Results: The saliva and serum ALP levels were significantly increased in patients with chronic generalized periodontitis with an increase in clinical parameters such as OHI-S, gingival index, probing depth, and CAL when compared with periodontally healthy individuals. The saliva and serum ALP levels were significantly decreased following Phase I periodontal, therapy along with improvement in clinical parameters.
Conclusion: With the limitations of the present study, it could be concluded that ALP levels in saliva can be used for the diagnosis of active phase of periodontal disease and also for evaluation of the treatment outcomes following Phase I periodontal therapy.
METHODS: Wistar rats employed for this study consisted of normoglycaemic and diabetic rats in nine experimental groups. The normoglycaemic and diabetic rats were either treated with metformin (500 mg/kg b.w.), quercetin (10 mg/kg b.w.), or ethanol extract of H. verticillata leaf (250 mg/kg b.w. and 500 mg/kg b.w.) administered orally for 28 days.
KEY FINDINGS: Results revealed that H. verticillata significantly lowered blood glucose level, attenuated dyslipidaemia, decreased atherogenic coefficient, atherogenic and coronary risk indices, and increased cardioprotective index in diabetic rats. Also, H. verticillata significantly decreased serum urea, creatinine, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and unconjugated bilirubin levels, relative to untreated diabetic rats. Further, H. verticillata increased serum superoxide dismutase, catalase and glutathione peroxidase activities and glutathione level, and decreased malondialdehyde level in diabetic rats in a manner similar to metformin and quercetin. Histopathological investigation of the liver and kidney revealed restored hepatocytes and amelioration of congested interstitial blood vessel of the Bowman's space of the kidneys upon intervention with H. verticillata.
SIGNIFICANCE: H. verticillata in addition to its anti-hyperglycaemic activity ameliorates oxidative stress, dyslipidaemia, atherogenicity and hepatorenal lesions in DM.