Displaying publications 21 - 40 of 365 in total

Abstract:
Sort:
  1. Thriumani R, Zakaria A, Hashim YZH, Jeffree AI, Helmy KM, Kamarudin LM, et al.
    BMC Cancer, 2018 04 02;18(1):362.
    PMID: 29609557 DOI: 10.1186/s12885-018-4235-7
    BACKGROUND: Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells.

    METHOD: The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium.

    RESULTS: This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells.

    CONCLUSION: The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.

    Matched MeSH terms: Biosensing Techniques
  2. Khalil I, Yehye WA, Julkapli NM, Rahmati S, Sina AA, Basirun WJ, et al.
    Biosens Bioelectron, 2019 Apr 15;131:214-223.
    PMID: 30844598 DOI: 10.1016/j.bios.2019.02.028
    Surface-enhanced Raman scattering (SERS) based DNA biosensors have considered as excellent, fast and ultrasensitive sensing technique which relies on the fingerprinting ability to produce molecule specific distinct spectra. Unlike conventional fluorescence based strategies SERS provides narrow spectral bandwidths, fluorescence quenching and multiplexing ability, and fitting attribute with short length probe DNA sequences. Herein, we report a novel and PCR free SERS based DNA detection strategy involving dual platforms and short DNA probes for the detection of endangered species, Malayan box turtle (MBT) (Cuora amboinensis). In this biosensing feature, the detection is based on the covalent linking of the two platforms involving graphene oxide-gold nanoparticles (GO-AuNPs) functionalized with capture probe 1 and gold nanoparticles (AuNPs) modified with capture probe 2 and Raman dye (Cy3) via hybridization with the corresponding target sequences. Coupling of the two platforms generates locally enhanced electromagnetic field 'hot spot', formed at the junctions and interstitial crevices of the nanostructures and consequently provide significant amplification of the SERS signal. Therefore, employing the two SERS active substrates and short-length probe DNA sequences, we have managed to improve the sensitivity of the biosensors to achieve a lowest limit of detection (LOD) as low as 10 fM. Furthermore, the fabricated biosensor exhibited sensitivity even for single nucleotide base-mismatch in the target DNA as well as showed excellent performance to discriminate closely related six non-target DNA sequences. Although the developed SERS biosensor would be an attractive platform for the authentication of MBT from diverse samples including forensic and/or archaeological specimens, it could have universal application for detecting gene specific biomarkers for many diseases including cancer.
    Matched MeSH terms: Biosensing Techniques
  3. Jiajia L, Azlin Suhaida Azmi, Kim Minsoo P, Fathilah Ali
    Sains Malaysiana, 2017;46:1097-1102.
    Polymer-based nanocomposites have attracted a lot of attention for amperometric biosensor development due to their general physical and chemical properties including biocompatibility, film-forming ability, stability and different functional groups that can be bonded with other biomolecues. In this study, poly-4-vinlyridine homopolymer (P4VP) and polylactic acid-block-poly(2-vinylpyridine) block copolymer (PLA-b-P2VP) were used to hybridize with gold precursors (Au3+) based on the association between the nitrogen of the pyridine group of P4VP or P2VP block with gold precursors. P4VP/Au3+ and PLA-b-P2VP/Au3+ nanocomposites were prepared with ratio of gold to P2VP or P4VP (10:1). The Au3+ in both polymers was reduced to gold nanoparticles (AuNPs) via in-situ approach by using hydrazine. Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM) and cyclic voltammetry (CV) were used to characterize the structural, morphological and electrochemical properties of the nanocomposites. The peak currents of P4VP/AuNPs and PLA-b-P2VP/AuNPs nanocomposites modified electrode were 6.685 nA and 69.432 nA, respectively, which are much lower than bare electrode (205.019 nA) due to the non-conductivity of P4VP and PLA-b-P2VP. In order to improve the electron transfer capability of electrode, graphene oxide (GO) was blended and electrochemically reduced to obtain P4VP/AuNPs/rGO and PLA-b-P2VP/AuNPs/rGO nanocomposites. After immobilization of these two nanocomposites on electrode through drop casting method, the peak currents of P4VP/AuNPs/rGO and PLA-b-P2VP/AuNPs/rGO nanocomposites modified electrode were 871.172 nA and 663.947 nA, respectively, which are much higher than bare electrode (205.019 nA) and shown good capability to accelerate electron transfer. Based on these characterizations, P4VP/AuNPs/rGO has potential as the nanocomposite to modify the electrode for enzymatic biosensor development.
    Matched MeSH terms: Biosensing Techniques
  4. Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I
    Food Chem, 2020 Sep 15;324:126664.
    PMID: 32380410 DOI: 10.1016/j.foodchem.2020.126664
    Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.
    Matched MeSH terms: Biosensing Techniques
  5. Taniselass S, Arshad MKM, Gopinath SCB, Fathil MFM, Ibau C, Anbu P
    Mikrochim Acta, 2021 07 15;188(8):257.
    PMID: 34268634 DOI: 10.1007/s00604-021-04922-x
    A label-free chemical bonding strategy mediated by reduced graphene oxide (rGO) basal plane functional groups has been developed for cardiac Troponin I (cTnI) detection. Four different chemical strategies on respective electrode sensing surface were precedingly examined using electrochemical impedance spectroscopy. The impedimetric assessment was carried out by sweeping frequency at the range 0.1-500 kHz perturbated at a small amplitude of AC voltage (25 mV). The chemical strategy-4 denoted as S-4 shows a significant analytical performance on cTnI detection in spiked buffer and human serum, whereby the pre-mixture of rGO and (3-Aminopropyl)triethoxysilane (APTES) creates a large number of amine sites (-NH2), which significantly enhanced the antibody immobilization without excessive functionalization. The as-fabricated immunosensor exhibited an ultra-low limit of detection of 6.3 ag mL-1 and the lowest antigen concentration measured was at 10 ag mL-1. The immunosensor showed a linear and wide range of cTnI detection (10 ag mL-1-100 ng mL-1) in human serum with a regression coefficient of 0.9716, rapid detection (5 min of binding time), and stable and highly reproducible bioelectrode response with RSD 
    Matched MeSH terms: Biosensing Techniques
  6. Parmin NA, Hashim U, Gopinath SCB
    Int J Biol Macromol, 2018 Feb;107(Pt B):1738-1746.
    PMID: 29030179 DOI: 10.1016/j.ijbiomac.2017.10.051
    Human Papillomavirus (HPV) is a standout amongst the most commonly reported over 100 types, among them genotypes 16, 18, 31 and 45 are the high-risk HPV. Herein, we designed the oligonucleotide probe for the detection of predominant HPV type 16 for the sensing applications. Conserved amino acid sequences within E6 region of the open reading frame in the HPV genome was used as the basis to design oligonucleotide probe to detect cervical cancer. Analyses of E6 amino acid sequences from the high-risk HPVs were done to check the percentage of similarity and consensus regions that cause different cancers, including cervical cancer. Basic local alignment search tools (BLAST) have given extra statistical parameters, for example, desire values (E-values) and score bits. The probe, 'GGG GTC GGT GGA CCG GTC GAT GTA' was designed with 66.7% GC content. This oligonucleotide probe is designed with the length of 24 mer, GC percent is between 40 and 70, and the melting point (Tm) is above 50°C. The probe needed an acceptable length between 22 and 31 mer. The choice of region is identified here can be used as a probe, has implications for HPV detection techniques in biosensor especially for clinical determination of cervical cancer.
    Matched MeSH terms: Biosensing Techniques
  7. Syahir A, Kajikawa K, Mihara H
    Protein Pept Lett, 2018;25(1):34-41.
    PMID: 29237369 DOI: 10.2174/0929866525666171214111957
    BACKGROUND: Direct bio-monitoring essentially involves optical means since photon has insignificant effects over biomolecules. Over the years, laser induced surface Plasmon resonance method with various modifications as well as versatile localized Plasmon excited by incoherent light have facilitated in recording many nanobiological activities. Yet, monitoring interactions of small molecules including drugs requires signal amplification and improvement on signal-to-noise ratio.

    OBJECTIVES: This paper focused on how the refractive index based nanobio-sensoring gold platform can produce more efficient, adaptable and more practical detection techniques to observe molecular interactions at high degree of sensitivity. It discusses surface chemistry approach, optimisation of the refractive index of gold platform and manipulation of gold geometry augmenting signal quality.

    METHODS: In a normal-incidence reflectivity, r0 can be calculated using the Fresnel equation. Particularly at λ = 470 nm the ratio of r / r0 showed significant amplitude reduction mainly stemmed from the imaginary part of the Au refractive index. Hence, the fraction of reduction, Δr = 1 - r / r0. Experimentally, in a common reference frame reflectivity of a bare gold surface, R0 is compared with the reflectivity of gold surface in the presence of biolayer, R. The reduction rate (%) of reflectivity, ΔR = 1 - R / R0 is denoted as the AR signal. The method therefore enables quantitative measurement of the surface-bound protein by converting ΔR to the thickness, d, and subsequently the protein mass. We discussed four strategies to improve the AR signal by changing the effective refractive index of the biosensing platform. They are; a) Thickness optimisation of Au thin layer, b) Au / Ag bimetallic layer, c) composing alloy or Au composite, and d) Au thinlayer with nano or micro holes.

    RESULTS: As the result we successfully 'move' the refractive index, ε of the AR platform (gold only) to ε = -0.948 + 3.455i, a higher sensitivity platform. This was done by composing Au-Ag2O composite with ratio = 1:1. The results were compared to the potential sensitivity improvement of the AR substrate using other that could be done by further tailoring the ε advanced method.

    CONCLUSION: We suggested four strategies in order to realize this purpose. It is apparent that sensitivity has been improved through Au/Ag bimetallic layer or Au-Ag2O composite thin layer, This study is an important step towards fabrication of sensitive surface for detection of biomolecular interactions.

    Matched MeSH terms: Biosensing Techniques
  8. Ee R, Lim YL, Tee KK, Yin WF, Chan KG
    Sensors (Basel), 2014 Mar 12;14(3):5136-46.
    PMID: 24625739 DOI: 10.3390/s140305136
    Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola.
    Matched MeSH terms: Biosensing Techniques
  9. Mat Zaid MH, Che-Engku-Chik CEN, Yusof NA, Abdullah J, Othman SS, Issa R, et al.
    Molecules, 2020 Jul 24;25(15).
    PMID: 32722334 DOI: 10.3390/molecules25153373
    Death from tuberculosis has resulted in an increased need for early detection to prevent a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid (MPA-Fe3O4) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium bromide (NCC/CTAB) has been fabricated for the detection of Mycobacterium tuberculosis (MTB). In this study, a simple drop cast method was applied to deposit solution of MPA-Fe3O4/NCC/CTAB onto the surface of the screen-printed carbon electrode (SPCE). Then, a specific sequence of MTB DNA probe was immobilized onto a modified SPCE surface by using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling mechanism. For better signal amplification and electrochemical response, ruthenium bipyridyl Ru(bpy)32+ was assigned as labels of hybridization followed by the characteristic test using differential pulse voltammetry (DPV). The results of this biosensor enable the detection of target DNA until a concentration as low as 7.96 × 10-13 M with a wide detection range from 1.0 × 10-6 to 1.0 × 10-12 M. In addition, the developed biosensor has shown a differentiation between positive and negative MTB samples in real sampel analysis.
    Matched MeSH terms: Biosensing Techniques
  10. Muda NE, Abu Bakar MA, Majlis BY
    Malays J Med Sci, 1999 Jul;6(2):12-6.
    PMID: 22589683 MyJurnal
    The development of antibody-based biosensor has grown steadily during recent years, and their use as a routine instrument in clinical application is not far from reality. This study has demonstrated the capability of conductometric sensor to quantitate human Follicle Stimulating Hormone (hFSH) from urine samples. The principles are adopted from Enzyme Linked Immunosorbent Assay (ELISA) technique. Self fabricated gold coated electrode was dipped in the microtiter well containing antibody-antigen complex. Substrate was added to the system to initiate a secondary reaction, which produced electroactive species and change the conductivity of the solution. The changes were proportional with the concentration of the hormone present. The results obtained correlate well with the conventional ELISA technique. Inter and intra assay variation (%CV) were under 6% and the lowest detection limit is 0.75 mIU/ml which was well under the physiological range of the hormone. This system offered advantages such as simplicity, reliability, minimal addition of reagents, freedom from turbidity and color problem, probability of miniaturizing the electrode thus minimizing the sample volume and the ability of on line data analysis. This study proved that Antigen-Antibody reaction via EIA could be detected electronically and it has a potential to be used as one of the measuring mode in clinical analysis.
    Matched MeSH terms: Biosensing Techniques
  11. Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R, et al.
    Biosens Bioelectron, 2015 Jul 15;69:257-64.
    PMID: 25765434 DOI: 10.1016/j.bios.2015.02.034
    Electrospun polyhydroxybutyrate (PHB) fibers were dip-coated by polymethyl methacrylate-co-methacrylic acid, poly(MMA-co-MAA), which was synthesized in different molar ratios of the monomers via free-radical polymerization. Fabricated platfrom was employed for immobilization of the dengue antibody and subsequent detection of dengue enveloped virus in enzyme-linked immunosorbent assay (ELISA). There is a major advantage for combination of electrospun fibers and copolymers. Fiber structre of electrospun PHB provides large specific surface area available for biomolecular interaction. In addition, polymer coated parts of the platform inherited the premanent presence of surface carboxyl (-COOH) groups from MAA segments of the copolymer which can be effectively used for covalent and physical protein immobilization. By tuning the concentration of MAA monomers in polymerization reaction the concentration of surface -COOH groups can be carefully controlled. Therefore two different techniques have been used for immobilization of the dengue antibody aimed for dengue detection: physical attachment of dengue antibodies to the surface and covalent immobilization of antibodies through carbodiimide chemistry. In that perspective, several different characterization techniques were employed to investigate the new polymeric fiber platform such as scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA) measurement and UV-vis titration. Regardless of the immobilization techniques, substantially higher signal intensity was recorded from developed platform in comparison to the conventional ELISA assay.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  12. Chang CY, Krishnan T, Wang H, Chen Y, Yin WF, Chong YM, et al.
    Sci Rep, 2014;4:7245.
    PMID: 25430794 DOI: 10.1038/srep07245
    N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography-mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach.
    Matched MeSH terms: Biosensing Techniques/methods
  13. Shing WL, Heng LY, Surif S
    Sensors (Basel), 2013;13(5):6394-404.
    PMID: 23673679 DOI: 10.3390/s130506394
    Whole cell biosensors always face the challenge of low stability of biological components and short storage life. This paper reports the effects of poly(2-hydroxyethyl methacrylate) (pHEMA) immobilization on a whole cell fluorescence biosensor for the detection of heavy metals (Cu, Pb, Cd), and pesticides (dichlorophenoxyacetic acid (2,4-D), and chlorpyrifos). The biosensor was produced by entrapping the cyanobacterium Anabaena torulosa on a cellulose membrane, followed by applying a layer of pHEMA, and attaching it to a well. The well was then fixed to an optical probe which was connected to a fluorescence spectrophotometer and an electronic reader. The optimization of the biosensor using several factors such as amount of HEMA and drying temperature were undertaken. The detection limits of biosensor without pHEMA for Cu, Cd, Pb, 2,4-D and chlorpyrifos were 1.195, 0.027, 0.0100, 0.025 and 0.025 µg/L respectively. The presence of pHEMA increased the limits of detection to 1.410, 0.250, 0.500, 0.235 and 0.117 µg/L respectively. pHEMA is known to enhance the reproducibility of the biosensor with average relative standard deviation (RSD) of ±1.76% for all the pollutants tested, 48% better than the biosensor without pHEMA (RSD = ±3.73%). In storability test with Cu 5 µg/L, the biosensor with pHEMA performed 11.5% better than the test without pHEMA on day-10 and 5.2% better on day-25. pHEMA is therefore a good candidate to be used in whole cell biosensors as it increases reproducibility and enhances biosensor storability.
    Matched MeSH terms: Biosensing Techniques/methods*
  14. Mohd Zain Z, Ab Ghani S, O'Neill RD
    Amino Acids, 2012 Nov;43(5):1887-94.
    PMID: 22865247 DOI: 10.1007/s00726-012-1365-0
    This paper discusses the application of a reagentless, selective microbiosensor as a useful alternative tool for monitoring D-serine in neural samples. The main components of the 125-μm-diameter disk biosensor were D-amino acid oxidase for D-serine sensitivity (linear region slope, 61 ± 7 μA cm(-2) mM(-1); limit of detection, 20 nM), and poly-phenylenediamine for rejection of electroactive interference. The response time of the biosensor was of the order of 1 s, ideal for 'real-time' monitoring, and detection of systemically administered D-serine in brain extracellular fluid is demonstrated. Exploitation of this probe might resolve queries involving regulation of D-serine in excitotoxicity, and modulation of N-methyl-D-aspartate receptor function by D-serine and glycine in the central nervous system.
    Matched MeSH terms: Biosensing Techniques*
  15. Tan LL, Musa A, Lee YH
    Sensors (Basel), 2011;11(10):9344-60.
    PMID: 22163699 DOI: 10.3390/s111009344
    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH(4)(+)) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH(4)(+) ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH(4)(+) was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH(4)(+) ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH(4)(+) ion concentrations between 10-100 mM, with a detection limit of 0.18 mM NH(4)(+) ion. The reproducibility of the amperometrical NH(4)(+) biosensor yielded low relative standard deviations between 1.4-4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH(4)(+) ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH(4)(+) obtained from the biosensor and the Nessler spectrophotometric method.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  16. Yean CY, Kamarudin B, Ozkan DA, Yin LS, Lalitha P, Ismail A, et al.
    Anal Chem, 2008 Apr 15;80(8):2774-9.
    PMID: 18311943 DOI: 10.1021/ac702333x
    A general purpose enzyme-based amperometric electrochemical genosensor assay was developed wherein polymerase chain reaction (PCR) amplicons labeled with both biotin and fluorescein were detected with peroxidase-conjugated antifluorescein antibody on a screen-printed carbon electrode (SPCE). As a proof of principle, the response selectivity of the genosensor was evaluated using PCR amplicons derived from lolB gene of Vibrio cholerae. Factors affecting immobilization, hybridization, and nonspecific binding were optimized to maximize sensitivity and reduce assay time. On the basis of the background amperometry signals obtained from nonspecific organisms and positive signals obtained from known V. cholerae, a threshold point of 4.20 microA signal was determined as positive. Under the optimum conditions, the limit of detection (LOD) of the assay was 10 CFU/mL of V. cholerae. The overall precision of this assay was good, with the coefficient of variation (CV) being 3.7% using SPCE and intermittent pulse amperometry (IPA) as an electrochemical technique. The assay is sensitive, safe, and cost-effective when compared to conventional agarose gel electrophoresis, real-time PCR, and other enzyme-linked assays for the detection of PCR amplicons. Furthermore, the use of a hand-held portable reader makes it suitable for use in the field.
    Matched MeSH terms: Biosensing Techniques/methods
  17. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Anal Bioanal Chem, 2006 Nov;386(5):1285-92.
    PMID: 17031625
    The stacked-film immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and horseradish peroxidase (HRP) in chitosan, performed in order to allow the determination of phenolic compounds, was investigated via an optical method. The stacked films were deposited onto a microscope glass slide by a spin-coating technique. The quinone or free radical product formed by the enzymatic reactions of phenolic compounds interacts with MBTH to form azo-dye products, which can be measured spectrophotometrically at a wavelength of 500 nm. The color intensity of the product was found to increase in proportion to the phenolic concentration after 5 min of exposure. The response of the biosensor was linear over concentration ranges of 0.025-0.500, 0.010-0.070 and 0.050-0.300 mM for guaiacol, resorcinol and o-cresol, respectively, and gave detection limits of 0.010, 0.005 and 0.012 mM. The sensor exhibited good sensitivity and stability for at least two months.
    Matched MeSH terms: Biosensing Techniques/methods
  18. Nadzirah Sh, Azizah N, Hashim U, Gopinath SC, Kashif M
    PLoS One, 2015;10(10):e0139766.
    PMID: 26445455 DOI: 10.1371/journal.pone.0139766
    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  19. Sivasothy Y, Krishnan T, Chan KG, Abdul Wahab SM, Othman MA, Litaudon M, et al.
    Molecules, 2016 Mar 21;21(3):391.
    PMID: 27102164 DOI: 10.3390/molecules21030391
    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.
    Matched MeSH terms: Biosensing Techniques*
  20. Fani M, Rezayi M, Meshkat Z, Rezaee SA, Makvandi M, Abouzari-Lotf E, et al.
    J Cell Physiol, 2019 08;234(8):12433-12441.
    PMID: 30633358 DOI: 10.1002/jcp.28087
    BACKGROUND: Human T-lymphotropic virus Type 1 (HTLV-1) is a retrovirus that is endemic in some regions of the world. It is known to cause several diseases like adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Serology and molecular methods have been used to detect this virus. Of these, enzyme-linked immunosorbent assay (ELISA) is used as a primary screening method and this is usually followed by western blotting (WB) and polymerase chain reaction (PCR) methods as confirmatory tests. We conducted a systematic review of the different techniques used in the diagnosis of HTLV-1 infection.

    MATERIALS AND METHODS: Our search was limited to original papers in the English language from 2010 to 2018 using several databases including Pubmed, Scopus, Google Scholar, Iranmedex, and Scientific Information Database. A manual search of references provided in the included papers was also performed.

    RESULTS: Of 101 electronically searched citations, 43 met the inclusion criteria. ELISA is commonly used for qualitative and screening detection, and WB and PCR techniques are used to confirm infection.

    CONCLUSION: Among all the reported methods for detection of HTLV-1, only serological and molecular tests are used as the most common technical assays for HTLV-1. The ELISA assay, without a confirmatory test, has several limitations and affect the accuracy of the results. Owing to the prevalence of HTLV-1 and limitations of the current detection methods, further evaluation of the accuracy of these methods is needed. There are new opportunities for applying novel technological advances in microfluidics, biosensors, and lab-on-a-chip systems to perform HTLV-1 diagnostics.

    Matched MeSH terms: Biosensing Techniques/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links