Displaying publications 21 - 40 of 143 in total

Abstract:
Sort:
  1. Prow NA, Setoh YX, Biron RM, Sester DP, Kim KS, Hobson-Peters J, et al.
    J Virol, 2014 Sep 1;88(17):9947-62.
    PMID: 24942584 DOI: 10.1128/JVI.01304-14
    The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II.
    Matched MeSH terms: Brain/pathology
  2. Yap JKY, Pickard BS, Chan EWL, Gan SY
    Mol Neurobiol, 2019 Nov;56(11):7741-7753.
    PMID: 31111399 DOI: 10.1007/s12035-019-1638-7
    The innate immune system and inflammatory response in the brain have critical impacts on the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). In the central nervous system (CNS), the innate immune response is primarily mediated by microglia. However, non-glial cells such as neurons could also partake in inflammatory response independently through inflammasome signalling. The NLR family pyrin domain-containing 1 (NLRP1) inflammasome in the CNS is primarily expressed by pyramidal neurons and oligodendrocytes. NLRP1 is activated in response to amyloid-β (Aβ) aggregates, and its activation subsequently cleaves caspase-1 into its active subunits. The activated caspase-1 proteolytically processes interleukin-1β (IL-1β) and interleukin-18 (IL-18) into maturation whilst co-ordinately triggers caspase-6 which is responsible for apoptosis and axonal degeneration. In addition, caspase-1 activation induces pyroptosis, an inflammatory form of programmed cell death. Studies in murine AD models indicate that the Nlrp1 inflammasome is indeed upregulated in AD and neuronal death is observed leading to cognitive decline. However, the mechanism of NLRP1 inflammasome activation in AD is particularly elusive, given its structural and functional complexities. In this review, we examine the implications of the human NLRP1 inflammasome and its signalling pathways in driving neuroinflammation in AD.
    Matched MeSH terms: Brain/pathology*
  3. Voon SM, Ng KY, Chye SM, Ling APK, Voon KGL, Yap YJ, et al.
    CNS Neurol Disord Drug Targets, 2020;19(10):725-740.
    PMID: 32881676 DOI: 10.2174/1871527319666200902134129
    1-Methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol, commonly known as salsolinol, is a compound derived from dopamine. It was first discovered in 1973 and has gained attention for its role in Parkinson's disease. Salsolinol and its derivatives were claimed to play a role in the pathogenesis of Parkinson's disease as a neurotoxin that induces apoptosis of dopaminergic neurons due to its structural similarity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its ability to induce Parkinsonism. In this article, we discussed the biosynthesis, distribution and blood-brain barrier permeability of salsolinol. The roles of salsolinol in a healthy brain, particularly the interactions with enzymes, hormone and catecholamine, were reviewed. Finally, we discussed the involvement of salsolinol and its derivatives in the pathogenesis of Parkinson's disease.
    Matched MeSH terms: Brain/pathology*
  4. Bukhari SN, Jantan I
    Mini Rev Med Chem, 2015;15(13):1110-21.
    PMID: 26420724
    There is a crucial need to develop new effective drugs for Alzheimer's disease (AD) as the currently available AD treatments provide only momentary and incomplete symptomatic relief. Amongst natural products, curcumin, a major constituent of turmeric, has been intensively investigated for its neuroprotective effect against β-amyloid (Aβ)-induced toxicity in cultured neuronal cells. The ability of curcumin to attach to Aβ peptide and prevent its accumulation is attributed to its three structural characteristics such as the presence of two aromatic end groups and their co-planarity, the length and rigidity of the linker region and the substitution conformation of these aromatics. However, curcumin failed to reach adequate brain levels after oral absorption in AD clinical trials due to its low water solubility and poor oral bioavailability. A number of new curcumin analogs that mimic the active site of the compound along with analogs that mimic the curcumin anti-amyloid effect combined with anticholinesterase effect have been developed to enhance the bioavailability, pharmacokinetics, water solubility, stability at physiological conditions and delivery of curcumin. In this article, we have summarized all reported synthetic analogs of curcumin showing effects on β-amyloid and discussed their potential as therapeutic and diagnostic agents for AD.
    Matched MeSH terms: Brain/pathology
  5. Tay CG, Ariffin H, Yap S, Rahmat K, Sthaneshwar P, Ong LC
    J Child Neurol, 2015 Jun;30(7):927-31.
    PMID: 25122112 DOI: 10.1177/0883073814540523
    Succinic semialdehyde dehydrogenase deficiency is a rare autosomal recessive disorder affecting catabolism of the neurotransmitter gamma-aminobutyric acid (GABA), with a wide range of clinical phenotype. We report a Malaysian Chinese boy with a severe early onset phenotype due to a previously unreported mutation. Urine organic acid chromatogram revealed elevated 4-hydroxybutyric acid. Magnetic resonance imaging (MRI) of the brain demonstrated cerebral atrophy with atypical putaminal involvement. Molecular genetic analysis showed a novel homozygous 3-bp deletion at the ALDH5A1 gene c.1501_1503del (p.Glu501del). Both parents were confirmed to be heterozygotes for the p.Glu501del mutation. The clinical course was complicated by the development of subdural hemorrhage probably as a result of rocking the child to sleep for erratic sleep-wake cycles. This case illustrates the need to recognize that trivial or unintentional shaking of such children, especially in the presence of cerebral atrophy, can lead to subdural hemorrhage.
    Matched MeSH terms: Brain/pathology
  6. Intan HI, Zubaidah CD, Norazah A, Norlijah O
    Singapore Med J, 2008 Jul;49(7):e186-9.
    PMID: 18695854
    Subdural collections caused by Salmonella infection are rarely encountered in children. We present two cases caused by non-typhi Salmonella, one a four-and-a-half-month-old boy presenting with subdural effusion, and the other, a 16-month-old boy with empyema. The diagnosis was confirmed on blood and subdural pus cultures. One patient had status epilepticus following focal fit, and the other had prolonged fever without any localising signs of infection on admission. They responded well to prompt surgical drainage and prolonged systemic antibiotic therapy. Contrary to previous reports, both patients showed favourable outcome in terms of neurological sequelae.
    Matched MeSH terms: Brain/pathology
  7. Sabetghadam A, Ramanathan S, Sasidharan S, Mansor SM
    J Ethnopharmacol, 2013 Apr 19;146(3):815-23.
    PMID: 23422336 DOI: 10.1016/j.jep.2013.02.008
    ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa is a popular medicinal plant in Southeast Asia which is commonly used for its morphine-like effects. Although the analgesic properties of Mitragyna speciosa and its ability to ameliorate withdrawal signs after abrupt cessation of opioid abuse are well known, information about the long-term safety of the plant's active compounds is lacking. In this work, we evaluated the effects of sub-chronic exposure to mitragynine, the principal alkaloid of Mitragyna speciosa leaves in rats.

    MATERIALS AND METHODS: Male and female Sprague-Dawley rats received three doses of mitragynine (1, 10, 100mg/kg, p.o) for 28 days respectively. Food intake and relative body weight were measured during the experiment. After completion of drug treatment biochemical, hematological, and histological analyses were performed.

    RESULTS: No mortality was observed in any of the treatment groups. The groups of rats treated with the lower and intermediate doses showed no toxic effects during the study. However, the relative body weight of the group of female rats treated with the 100mg/kg dose was decreased significantly. Food intake also tended to decrease in the same group. Only relative liver weight increased after treatment with the high dose of mitragynine (100mg/ kg) in both the male and female treatment groups of rats. Biochemical and hematological parameters were also altered especially in high dose treatment group which corresponds to the histopathological changes.

    CONCLUSIONS: The study demonstrated that mitragynine is relatively safe at lower sub-chronic doses (1-10mg/kg) but exhibited toxicity at a highest dose (sub-chronic 28 days: 100mg/kg). This was confirmed by liver, kidney, and brain histopathological changes, as well as hematological and biochemical changes.

    Matched MeSH terms: Brain/pathology
  8. Amal MNA, Ismail A, Saad MZ, Md Yasin IS, Nasruddin NS, Mastor SS, et al.
    Microb Pathog, 2019 Jun;131:47-52.
    PMID: 30940607 DOI: 10.1016/j.micpath.2019.03.034
    This study determines the median lethal dose, and describes the clinico-pathological changes and disease development following Streptococcus agalactiae infection in Javanese medaka model. Javanese medakas were infected with S. agalactiae via intraperitoneal (IP) from 104 to 108 CFU/mL, and immersion (IM) route from 103 to 107 CFU/mL. The LD50-240h and clinico-pathological changes of the fish was determined until 240 h post infection (hpi). Next, the disease development was determined for 96 hpi in the fish following IP and IM infection at 103 CFU/mL and 104 CFU/mL, respectively. The LD50-240h of S. agalactiae in Javanese medaka was lower following IP injection (4.5 × 102 CFU/mL), compared to IM route (3.5 × 103 CFU/mL). The clinical signs included separating from the schooling group, swimming at the surface of water column, lethargy, erratic swimming pattern, corneal opacity and exophthalmia. Histopathological examinations revealed generalized congestion in almost all internal organs, particularly in liver and brain, while the kidney displayed tubular necrosis. Both IP and IM routes showed significant positive correlation (p 
    Matched MeSH terms: Brain/pathology
  9. Seriramulu VP, Suppiah S, Lee HH, Jang JH, Omar NF, Mohan SN, et al.
    Med J Malaysia, 2024 Jan;79(1):102-110.
    PMID: 38287765
    INTRODUCTION: Magnetic resonance spectroscopy (MRS) has an emerging role as a neuroimaging tool for the detection of biomarkers of Alzheimer's disease (AD). To date, MRS has been established as one of the diagnostic tools for various diseases such as breast cancer and fatty liver, as well as brain tumours. However, its utility in neurodegenerative diseases is still in the experimental stages. The potential role of the modality has not been fully explored, as there is diverse information regarding the aberrations in the brain metabolites caused by normal ageing versus neurodegenerative disorders.

    MATERIALS AND METHODS: A literature search was carried out to gather eligible studies from the following widely sourced electronic databases such as Scopus, PubMed and Google Scholar using the combination of the following keywords: AD, MRS, brain metabolites, deep learning (DL), machine learning (ML) and artificial intelligence (AI); having the aim of taking the readers through the advancements in the usage of MRS analysis and related AI applications for the detection of AD.

    RESULTS: We elaborate on the MRS data acquisition, processing, analysis, and interpretation techniques. Recommendation is made for MRS parameters that can obtain the best quality spectrum for fingerprinting the brain metabolomics composition in AD. Furthermore, we summarise ML and DL techniques that have been utilised to estimate the uncertainty in the machine-predicted metabolite content, as well as streamline the process of displaying results of metabolites derangement that occurs as part of ageing.

    CONCLUSION: MRS has a role as a non-invasive tool for the detection of brain metabolite biomarkers that indicate brain metabolic health, which can be integral in the management of AD.

    Matched MeSH terms: Brain/pathology
  10. Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB, Chew NK, et al.
    Ann Neurol, 2002 Jun;51(6):703-8.
    PMID: 12112075
    An outbreak of infection with the Nipah virus, a novel paramyxovirus, occurred among pig farmers between September 1998 and June 1999 in Malaysia, involving 265 patients with 105 fatalities. This is a follow-up study 24 months after the outbreak. Twelve survivors (7.5%) of acute encephalitis had recurrent neurological disease (relapsed encephalitis). Of those who initially had acute nonencephalitic or asymptomatic infection, 10 patients (3.4%) had late-onset encephalitis. The mean interval between the first neurological episode and the time of initial infection was 8.4 months. Three patients had a second neurological episode. The onset of the relapsed or late-onset encephalitis was usually acute. Common clinical features were fever, headache, seizures, and focal neurological signs. Four of the 22 relapsed and late-onset encephalitis patients (18%) died. Magnetic resonance imaging typically showed patchy areas of confluent cortical lesions. Serial single-photon emission computed tomography showed the evolution of focal hyperperfusion to hypoperfusion in the corresponding areas. Necropsy of 2 patients showed changes of focal encephalitis with positive immunolocalization for Nipah virus antigens but no evidence of perivenous demyelination. We concluded that a unique relapsing and remitting encephalitis or late-onset encephalitis may result as a complication of persistent Nipah virus infection in the central nervous system.
    Matched MeSH terms: Brain/pathology
  11. Chew KM, Sudirman R, Seman N, Yong CY
    Biomed Mater Eng, 2014;24(1):199-207.
    PMID: 24211899 DOI: 10.3233/BME-130800
    The study was conducted based on two objectives as framework. The first objective is to determine the point of microwave signal reflection while penetrating into the simulation models and, the second objective is to analyze the reflection pattern when the signal penetrate into the layers with different relative permittivity, εr. Thus, several microwave models were developed to make a close proximity of the in vivo human brain. The study proposed two different layers on two different characteristics models. The radii on the second layer and the corresponding antenna positions are the factors for both models. The radii for model 1 is 60 mm with an antenna position of 10 mm away, in contrast, model 2 is 10 mm larger in size with a closely adapted antenna without any gap. The layers of the models were developed with different combination of materials such as Oil, Sandy Soil, Brain, Glycerin and Water. Results show the combination of Glycerin + Brain and Brain + Sandy Soil are the best proximity of the in vivo human brain grey and white matter. The results could benefit subsequent studies for further enhancement and development of the models.
    Matched MeSH terms: Brain/pathology*
  12. Zhang L, Feng XK, Ng YK, Li SC
    BMC Genomics, 2016 Aug 18;17 Suppl 4:430.
    PMID: 27556418 DOI: 10.1186/s12864-016-2791-2
    BACKGROUND: Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues.

    RESULTS: In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors.

    CONCLUSION: By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.

    Matched MeSH terms: Brain/pathology
  13. Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, et al.
    J Virol, 2006 Aug;80(16):7929-38.
    PMID: 16873250
    Nipah virus (NiV), of the family Paramyxoviridae, was isolated in 1999 in Malaysia from a human fatality in an outbreak of severe human encephalitis, when human infections were linked to transmission of the virus from pigs. Consequently, a swine vaccine able to abolish virus shedding is of veterinary and human health interest. Canarypox virus-based vaccine vectors carrying the gene for NiV glycoprotein (ALVAC-G) or the fusion protein (ALVAC-F) were used to intramuscularly immunize four pigs per group, either with 10(8) PFU each or in combination. Pigs were boosted 14 days postvaccination and challenged with 2.5 x 10(5) PFU of NiV two weeks later. The combined ALVAC-F/G vaccine induced the highest levels of neutralization antibodies (2,560); despite the low neutralizing antibody levels in the F vaccinees (160), all vaccinated animals appeared to be protected against challenge. Virus was not isolated from the tissues of any of the vaccinated pigs postchallenge, and a real-time reverse transcription (RT)-PCR assay detected only small amounts of viral RNA in several samples. In challenge control pigs, virus was isolated from a number of tissues (10(4.4) PFU/g) or detected by real-time RT-PCR. Vaccination of the ALVAC-F/G vaccinees appeared to stimulate both type 1 and type 2 cytokine responses. Histopathological findings indicated that there was no enhancement of lesions in the vaccinees. No virus shedding was detected in vaccinated animals, in contrast to challenge control pigs, from which virus was isolated from the throat and nose (10(2.9) PFU/ml). Based on the data presented, the combined ALVAC-F/G vaccine appears to be a very promising vaccine candidate for swine.
    Matched MeSH terms: Brain/pathology
  14. Yoneda M, Georges-Courbot MC, Ikeda F, Ishii M, Nagata N, Jacquot F, et al.
    PLoS One, 2013;8(3):e58414.
    PMID: 23516477 DOI: 10.1371/journal.pone.0058414
    Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.
    Matched MeSH terms: Brain/pathology
  15. Tang WH, Alip A, Saad M, Phua VC, Chandran H, Tan YH, et al.
    Asian Pac J Cancer Prev, 2015;16(5):1901-6.
    PMID: 25773842
    BACKGROUND: Brain metastases occur in about 20-40% of patients with non-small-cell lung carcinoma (NSCLC), and are usually associated with a poor outcome. Whole brain radiotherapy (WBRT) is widely used but increasingly, more aggressive local treatments such as surgery or stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) are being employed. In our study we aimed to describe the various factors affecting outcomes in NSCLC patients receiving local therapy for brain metastases.

    MATERIALS AND METHODS: The case records of 125 patients with NSCLC and brain metastases consecutively treated with radiotherapy at two tertiary centres from January 2006 to June 2012 were analysed for patient, tumour and treatment-related prognostic factors. Patients receiving SRS/SRT were treated using Cyberknife. Variables were examined in univariate and multivariate testing.

    RESULTS: Overall median survival was 3.4 months (95%CI: 1.7-5.1). Median survival for patients with multiple metastases receiving WBRT was 1.5 months, 1-3 metastases receiving WBRT was 3.6 months and 1-3 metastases receiving surgery or SRS/SRT was 8.9 months. ECOG score (≤2 vs >2, p=0.001), presence of seizure (yes versus no, p=0.031), treatment modality according to number of brain metastases (1-3 metastases+surgery or SRS/SRT±WBRT vs 1-3 metastases+WBRT only vs multiple metastases+WBRT only, p=0.007) and the use of post-therapy systemic treatment (yes versus no, p=0.001) emerged as significant on univariate analysis. All four factors remained statistically significant on multivariate analysis.

    CONCLUSIONS: ECOG ≤2, presence of seizures, oligometastatic disease treated with aggressive local therapy (surgery or SRS/SRT) and the use of post-therapy systemic treatment are favourable prognostic factors in NSCLC patients with brain metastases.

    Matched MeSH terms: Brain/pathology
  16. Tan JR, Chakravarthi S, Judson JP, Haleagrahara N, Segarra I
    Naunyn Schmiedebergs Arch Pharmacol, 2013 Jul;386(7):619-33.
    PMID: 23552887 DOI: 10.1007/s00210-013-0861-4
    Sunitinib is a tyrosine kinase inhibitor for GIST and advanced renal cell carcinoma. Diclofenac is used in cancer pain management. Coadministration may mediate P450 toxicity. We evaluate their interaction, assessing biomarkers ALT, AST, BUN, creatinine, and histopathological changes in the liver, kidney, heart, brain, and spleen. ICR mice (male, n = 6 per group/dose) were administered saline (group A) or 30 mg/kg diclofenac ip (group B), or sunitinib po at 25, 50, 80, 100, 140 mg/kg (group C) or combination of diclofenac (30 mg/kg, ip) and sunitinib (25, 50, 80, 100, 140 mg/kg po). Diclofenac was administered 15 min before sunitinib, mice were euthanized 4 h post-sunitinib dose, and biomarkers and tissue histopathology were assessed. AST was 92.2 ± 8.0 U/L in group A and 159.7 ± 14.6 U/L in group B (p < 0.05); in group C, it the range was 105.1-152.6 U/L, and in group D, it was 156.0-209.5 U/L (p < 0.05). ALT was 48.9 ± 1.6 U/L (group A), 95.1 ± 4.5 U/L (p < 0.05) in group B, and 50.5-77.5 U/L in group C and 82.3-115.6 U/L after coadministration (p < 0.05). Renal function biomarker BUN was 16.3 ± 0.6 mg/dl (group A) and increased to 29.9 ± 2.6 mg/dl in group B (p < 0.05) and it the range was 19.1-33.3 mg/dl (p < 0.05) and 26.9-40.8 mg/dl in groups C and D, respectively. Creatinine was 5.9 pmol/ml in group A; 6.2 pmol/ml in group B (p < 0.01), and the range was 6.0-6.2 and 6.2-6.4 pmol/ml in groups C and D, respectively (p < 0.05 for D). Histopathological assessment (vascular and inflammation damages) showed toxicity in group B (p < 0.05) and mild toxicity in group C. Damage was significantly lesser in group D than group B (p < 0.05). Spleen only showed toxicity after coadministration. These results suggest vascular and inflammation protective effects of sunitinib, not shown after biomarker analysis.
    Matched MeSH terms: Brain/pathology
  17. Seth EA, Lee HC, Yusof HHBM, Nordin N, Cheah YK, Ho ETW, et al.
    PLoS One, 2020;15(7):e0236826.
    PMID: 32730314 DOI: 10.1371/journal.pone.0236826
    Down syndrome (DS), is the most common cause of intellectual disability, and is characterized by defective neurogenesis during perinatal development. To identify metabolic aberrations in early neurogenesis, we profiled neurospheres derived from the embryonic brain of Ts1Cje, a mouse model of Down syndrome. High-throughput phenotypic microarray revealed a significant decrease in utilisation of 17 out of 367 substrates and significantly higher utilisation of 6 substrates in the Ts1Cje neurospheres compared to controls. Specifically, Ts1Cje neurospheres were less efficient in the utilisation of glucose-6-phosphate suggesting a dysregulation in the energy-producing pathway. T Cje neurospheres were significantly smaller in diameter than the controls. Subsequent preliminary study on supplementation with 6-phosphogluconic acid, an intermediate of glucose-6-phosphate metabolism, was able to rescue the Ts1Cje neurosphere size. This study confirmed the perturbed pentose phosphate pathway, contributing to defects observed in Ts1Cje neurospheres. We show for the first time that this comprehensive energetic assay platform facilitates the metabolic characterisation of Ts1Cje cells and confirmed their distinguishable metabolic profiles compared to the controls.
    Matched MeSH terms: Brain/pathology*
  18. Lim KS, Cheong KL, Tan CT
    Lupus, 2010 May;19(6):748-52.
    PMID: 20133346 DOI: 10.1177/0961203309351539
    A 13-year-old girl with a known diagnosis of systemic lupus erythematosus presented with seizures and psychosis. An electroencephalogram (EEG) revealed continuous, non-evolving periodic lateralized epileptiform discharges (PLEDs) in the left temporal region, which did not resolve with benzodiazepine. A magnetic resonance imaging (MRI) brain scan demonstrated a focal hyperintensity in the left medial temporal and left occipital lobes, left thalamus and bilateral cerebellar white matter, with evidence of vasculitis in the magnetic resonance angiography. Intravenous immunoglobulin was given because of failed steroid therapy, which resulted in a full resolution of clinical, EEG and MRI abnormalities. Lupus cerebritis should be considered as a possible aetiology in PLEDs, and immunoglobulin can be effective in neuropsychiatric lupus.
    Matched MeSH terms: Brain/pathology
  19. Aye SM, Lim KS, Ramli NM, Tan CT
    Lupus, 2013 Apr;22(5):510-4.
    PMID: 23358870 DOI: 10.1177/0961203312474705
    This is a case report on an uncommon correlation between periodic lateralized epileptiform discharges (PLEDs) and white-matter lesions in cerebral lupus, and with a reduced cerebral blood flow (CBF) in single-photon emission computed tomography (SPECT). A 47-year-old woman with a long-term history of systemic lupus erythematosus (SLE) presented with a seizure followed by frontal lobe dysfunction clinically. An electroencephalogram (EEG) showed bilateral independent PLEDs in the frontal region. A magnetic resonance image of the brain showed white-matter changes in the frontal periventricular region. Cerebral angiogram did not reveal any evidence of vasculitis. A cerebral SPECT with tracer injected during the EEG showing PLEDs showed a reduction in CBF in the frontal regions. Clinical recovery was observed with intravenous immunoglobulin. This case shows that PLEDs can be seen with white-matter changes in SLE.
    Matched MeSH terms: Brain/pathology*
  20. Ong KC, Badmanathan M, Devi S, Leong KL, Cardosa MJ, Wong KT
    J. Neuropathol. Exp. Neurol., 2008 Jun;67(6):532-42.
    PMID: 18520772 DOI: 10.1097/NEN.0b013e31817713e7
    We describe a model of Enterovirus 71 encephalomyelitis in 2-week-old mice that shares many features with the human central nervous system (CNS) disease. Mice were infected via oral and parenteral routes with a murine-adapted virus strain originally from a fatal human case. The mice succumbed to infection after 2 to 5 days. Vacuolated and normal-appearing CNS neurons showed viral RNA and antigens and virions by in situ hybridization, immunohistochemistry, and electron microscopy; inflammation was minimal. The most numerous infected neurons were in anterior horns, motor trigeminal nuclei, and brainstem reticular formation; fewer neurons in the red nucleus, lateral cerebellar nucleus, other cranial nerve nuclei, motor cortex, hypothalamus, and thalamus were infected. Other CNS regions, dorsal root, and autonomic ganglia were spared. Intramuscular-inoculated mice killed 24 to 36 hours postinfection had viral RNA and antigens in ipsilateral lumbar anterior horn cells and adjacent axons. Upper cord motor neurons, brainstem, and contralateral motor cortex neurons were infected from 48-72 hours. Viral RNA and antigens were abundant in skeletal muscle and adjacent tissues but not in other organs. The distinct, stereotypic viral distribution in this model suggests that the virus enters the CNS via peripheral motor nerves after skeletal muscle infection, and spread within the CNS involves motor and other neural pathways. This model may be useful for further studies on pathogenesis and for testing therapies.
    Matched MeSH terms: Brain/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links