Displaying publications 21 - 40 of 110 in total

Abstract:
Sort:
  1. Ahmad A, Ghufran R, Abd Wahid Z
    J Hazard Mater, 2011 Dec 30;198:40-8.
    PMID: 22047724 DOI: 10.1016/j.jhazmat.2011.10.008
    The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35°C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-CODg/l at an OLR of 4.5-12.5 kg-COD/m(3)d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.
    Matched MeSH terms: Calcium Compounds/chemistry*
  2. Wan Z, Hameed BH
    Bioresour Technol, 2011 Feb;102(3):2659-64.
    PMID: 21109428 DOI: 10.1016/j.biortech.2010.10.119
    In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190°C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.
    Matched MeSH terms: Calcium Compounds/chemistry*
  3. Boey PL, Maniam GP, Hamid SA
    J Oleo Sci, 2009;58(10):499-502.
    PMID: 19745576
    Aquaculture activity has increased the population of crab, hence increasing the generation of related wastes, particularly the shell. In addition, the number of molting process in crabs compounds further the amount of waste shell generated. As such, in the present work, the application of the waste crab shell as a source of CaO in transesterification of palm olein to biodiesel (methyl ester) was investigated. Preliminary XRD results revealed that thermally activated crab shell contains mainly CaO. Parametric study has been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 4 wt. %; and reaction temperature, 338 K. As compared to laboratory CaO, the catalyst from waste crab shell performs well, thus creating another low-cost catalyst source for producing biodiesel as well as adding value to the waste crab shell. Reusability of crab shell CaO has also been studied and the outcome confirmed that the catalyst is capable to be reutilized up to 11 times, without any major deterioration.
    Matched MeSH terms: Calcium Compounds/chemistry
  4. Hutagalung SD, Ying OL, Ahmad ZA
    PMID: 18276560 DOI: 10.1109/TUFFC.2007.582
    This paper presents the effects of calcination time and sintering temperature on the properties of CaCu(3)Ti(4)O(12). Electroceramic material of CaCu(3)Ti(4)O(12) was prepared using a modified mechanical alloying technique that covers several processes, which are preparation of raw material, mixing and ball milling for 5 hours, calcination, pellet forming and, sintering. The objective of this modified technique is to enable the calcination and sintering processes to be carried out at a shorter time and lower temperature. The x-ray diffraction (XRD) analysis result shows that a single-phase of CaCu(3)Ti(4)O(12) was completely formed by calcination at 750 degrees C for 12 hours. Meanwhile, the grain size of a sample sintered at 1050 degrees C for 24 hours is extremely large, in the range of 20-50 mum obtained from field emission scanning electron microscopy (FESEM) images. The dielectric constant value of 14,635 was obtained at 10 kHz by impedance (LCR) meter in the sintered sample at 1050 degrees C. However, the dielectric constant value of samples sintered at 900 and 950 degrees C is quite low, in the range of 52-119.
    Matched MeSH terms: Calcium Compounds/chemistry*
  5. Erfani M, Saion E, Soltani N, Hashim M, Abdullah WS, Navasery M
    Int J Mol Sci, 2012;13(11):14434-45.
    PMID: 23203073 DOI: 10.3390/ijms131114434
    Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB(2)O(4)) nanoparticles and tetraborate (CaB(4)O(7)) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.
    Matched MeSH terms: Calcium Compounds/chemistry*
  6. Maleki-Ghaleh H, Hafezi M, Hadipour M, Nadernezhad A, Aghaie E, Behnamian Y, et al.
    PLoS One, 2015;10(9):e0138454.
    PMID: 26383641 DOI: 10.1371/journal.pone.0138454
    In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.
    Matched MeSH terms: Calcium Compounds/chemistry*
  7. Salem A, Khandaker MM, Mahmud K, Alsufyani SJ, Majrashi AA, Rashid ZM, et al.
    Plant Physiol Biochem, 2024 Jan;206:108295.
    PMID: 38154296 DOI: 10.1016/j.plaphy.2023.108295
    The present study was conducted to investigate the effects of Trichoderma harzianum and Bacillus thuringiensis alone or with gradual levels of NPK on photosynthesis, growth, fruit quality, aroma improvement and reduced radionuclides of key lime fruits. The lemon seedlings were treated with (T0) without fertilizers as control, (T1) 100g of NPK at 100%, (T2) 5 g of Trichoderma. harzianum at 50% + 50 g of NPK at 50%, (T3) 5 g of Bacillus thuringiensis at 50% + 50 g of NPK at 50 %, (T4) 7.5 g of Trichoderma harzianum at 75% + 25 g of NPK at 25 %, (T5) 7.5 g of Bacillus thuringiensis at 75% + 25 g of NPK at 25 %, (T6) 10 g of Trichoderma harzianum at 100 % and (T7)10 g of Bacillus thuringiensis at 100 %. The results showed that T2 increased net photosynthetic rate, stomatal conductance, transpiration rate, internal CO2 concentration, fresh and dry root biomass by 209%, 74%, 56%, 376%, 69.4% and 71.6%, while, T5 increased root volume, root length, and root tip number by 27.1%, 167%, and 67%, respectively over the control trees. The microbial treatments developed cortex, vascular cylinder and tracheal elements of the root. Fruit number, length, diameter, weight, pulp thickness, pulp/peel ratio, juice, total soluble solids (TSS), pigment contents and antioxidant activity increased significantly in the T2 treatment. Vitamin C, total phenols, total flavonoids, and total sugar content increased by 1.59-, 1.66-, 1.44- and 2.07- fold in T5 treated fruits compared to the control. The two microbes increased volatile compounds and decreased radionucleotides in the fruit, moreover, 27 identified and 2 (two) unmatched volatile compounds were identified by GCMS analysis. It is concluded that T. harzianum and B. thuringiensis with 25-50 g NPK treatments improved photosynthesis, root structure, fruit growth, fruit quality, aroma and lessened radionuclides in key lime fruits.
    Matched MeSH terms: Calcium Compounds*
  8. Smran A, Abdullah M, Ahmad NA, Ben Yahia F, Fouda AM, Alturaiki SA, et al.
    PLoS One, 2024;19(3):e0299552.
    PMID: 38483853 DOI: 10.1371/journal.pone.0299552
    This research aimed to assess the stress distribution in lower premolars that were obturated with BioRoot RCS or AH Plus, with or without gutta percha (GP), and subjected to vertical and oblique forces. One 3D geometric model of a mandibular second premolar was created using SolidWorks software. Eight different scenarios representing different root canal filling techniques, single cone technique with GP and bulk technique with sealer only with occlusal load directions were simulated as follows: Model 1 (BioRoot RCS sealer and GP under vertical load [VL]), Model 2 (BioRoot RCS sealer and GP under oblique load [OL]), Model 3 (AH Plus sealer with GP under VL), Model 4 (AH Plus sealer with GP under OL), Model 5 (BioRoot RCS sealer in bulk under VL), Model 6 (BioRoot RCS in bulk under OL), Model 7 (AH Plus sealer in bulk under VL), and Model 8 (AH Plus sealer in bulk under OL). A static load of 200 N was applied at three occlusal contact points, with a 45° angle from lingual to buccal. The von Mises stresses in root dentin were higher in cases where AH Plus was used compared to BioRoot RCS. Furthermore, shifting the load to an oblique direction resulted in increased stress levels. Replacing GP with sealer material had no effect on the dentin maximum von Mises stress in BioRoot RCS cases. Presence of a core material resulted in lower stress in dentin for AH Plus cases, however, it did not affect the stress levels in dentin for cases filled with BioRoot RCS. Stress distribution in the dentin under oblique direction was higher regardless of sealer or technique used.
    Matched MeSH terms: Calcium Compounds*
  9. Salimi E, Asim MH, Abidin MNZ
    Sci Rep, 2024 May 11;14(1):10798.
    PMID: 38734777 DOI: 10.1038/s41598-024-61586-2
    The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.
    Matched MeSH terms: Calcium Compounds/chemistry
  10. Ullah S, Al-Sehemi AG, Mubashir M, Mukhtar A, Saqib S, Bustam MA, et al.
    Chemosphere, 2021 May;271:129504.
    PMID: 33445018 DOI: 10.1016/j.chemosphere.2020.129504
    This study reports the application of hydrated lime for the effective adsorption of the heavy mercury metal from the aqueous phase solutions. Initially, hydrated lime was subjected to structural characterization and thermal stability analysis. The FT-IR spectrum analysis revealed that the existence of the O-H bonds as a confirmation of hydrated lime formation. Subsequently, the XRD powder-based analysis demonstrated that most of the hydrated lime is pure crystalline material known as Portlandite while a small amount of calcite is also present in the structure of the hydrated lime. The thermal stability analysis revealed that the hydrated lime is highly thermally stable under harsh conditions without decomposing at higher temperatures up to 500 °C. Furthermore, the hydrated lime was subjected to the selective adsorption of heavy metal mercury to investigate the potential influence of the adsorbent particle size and loading on adsorption capacity. The results demonstrated that the decrease in the adsorbent particle size leads to the improvement in the mercury adsorption attributing to the rise in specific surface area. The enhancement in the loading of the adsorbent resulted in a reduction in mercury adsorption directing to the fact that already adsorbed metal ions onto the adsorbent surface lead to hindrance for the adsorption of other ions of heavy metal. These results lead to a significant impact on modern in inventing different adsorbents with promising water treatment efficiency for more industrial applications and the related recovery of mercury.
    Matched MeSH terms: Calcium Compounds
  11. Roberts MS, Gafni RI, Brillante B, Guthrie LC, Streit J, Gash D, et al.
    J. Bone Miner. Res., 2019 09;34(9):1609-1618.
    PMID: 31063613 DOI: 10.1002/jbmr.3747
    Autosomal dominant hypocalcemia type 1 (ADH1) is a rare form of hypoparathyroidism caused by heterozygous, gain-of-function mutations of the calcium-sensing receptor gene (CAR). Individuals are hypocalcemic with inappropriately low parathyroid hormone (PTH) secretion and relative hypercalciuria. Calcilytics are negative allosteric modulators of the extracellular calcium receptor (CaR) and therefore may have therapeutic benefits in ADH1. Five adults with ADH1 due to four distinct CAR mutations received escalating doses of the calcilytic compound NPSP795 (SHP635) on 3 consecutive days. Pharmacokinetics, pharmacodynamics, efficacy, and safety were assessed. Parallel in vitro testing with subject CaR mutations assessed the effects of NPSP795 on cytoplasmic calcium concentrations (Ca2+i ), and ERK and p38MAPK phosphorylation. These effects were correlated with clinical responses to administration of NPSP795. NPSP795 increased plasma PTH levels in a concentration-dependent manner up to 129% above baseline (p = 0.013) at the highest exposure levels. Fractional excretion of calcium (FECa) trended down but not significantly so. Blood ionized calcium levels remained stable during NPSP795 infusion despite fasting, no calcitriol supplementation, and little calcium supplementation. NPSP795 was generally safe and well-tolerated. There was significant variability in response clinically across genotypes. In vitro, all mutant CaRs were half-maximally activated (EC50 ) at lower concentrations of extracellular calcium (Ca2+o ) compared to wild-type (WT) CaR; NPSP795 exposure increased the EC50 for all CaR activity readouts. However, the in vitro responses to NPSP795 did not correlate with any clinical parameters. NPSP795 increased plasma PTH levels in subjects with ADH1 in a dose-dependent manner, and thus, serves as proof-of-concept that calcilytics could be an effective treatment for ADH1. Albeit all mutations appear to be activating at the CaR, in vitro observations were not predictive of the in vivo phenotype or the response to calcilytics, suggesting that other parameters impact the response to the drug. © 2019 American Society for Bone and Mineral Research.
    Matched MeSH terms: Calcium Compounds/adverse effects; Calcium Compounds/pharmacokinetics; Calcium Compounds/therapeutic use*
  12. Mohd-Hanif H, Shamsudin R, Adzahan NM
    Food Sci Biotechnol, 2016;25(Suppl 1):63-67.
    PMID: 30263487 DOI: 10.1007/s10068-016-0099-2
    Lime juice is in high demand due to a sour taste. Commercial thermal pasteurization extends juice shelf-life; however, fruit juice subjected to thermal pasteurization tends to change color and lose vitamin content. Lime juice was irradiated with ultraviolet-C (UVC) at dosages of 22.76, 30.19, and 44.24 mJ/cm2 to investigate effects on the physicochemical properties of lime juice. pH values of lime juice did not change while total soluble solids, turbidity, titratable acidity, sweetness, and color values of lime juice did change after UV treatments. Changes in quality index indicators were prominent at the highest UV dosage of 44.24 mJ/cm2. A low UVC dosage was effective for treatment of lime juice with minimal changes in juice properties.
    Matched MeSH terms: Calcium Compounds
  13. Tengku Yasmin Tengku Azam, Quah, Xin Ying, Ismail Ab Rahman, Sam’an Malik Masudi, Norhayati Luddin, Rashita Abd Rashid
    MyJurnal
    Glass ionomer cement (GIC) has theunique fluoride release property and able to formionic bond with tooth structure. However, the brittleness of the material results in low hardness. In the present study, a new approach in utilization of local waste materials as fillers for improvement of hardness of GIC is reported.The synthesized wollastonite and mine-silica by-product were individually incorporated into commercial GIC and the Vickers hardness were evaluated. The results shown that the incorporation of 1 % wollastonite into GIC gave ~ 6% increment in hardness compared to the control GIC (66.53H ±7.37 versus 62.66HV±2.98)but not for themine-silica. Thus, wollastonite could be a potential material to be utilized as fillersin dental restorative composite
    Matched MeSH terms: Calcium Compounds
  14. Tan, B.S., Rosman, A., Ng, K.H., Ahmad, N.
    Ann Dent, 2000;7(1):-.
    MyJurnal
    The aim of the study was to determine the characteristics and pattern of the betel/tobacco quid chewing habit in the estate Indian community. The study was conducted in 6 randomly selected estates. It involved oral mucosal examination and an interview to solicit personal data as well as history and details of oral habits. Of a total of 618 subjects studied, 19.3 % (n= 119; 89 females and 30 males) were betel !tobacco quid chewers. The youngest age of onset of betel quid chewing is 10 years. The mean frequency of chewing quid is 4.3 times/day and the mean duration of chewing is 8.1 minutes. Initiation to the habit occur at a young age and a major role is played by family and friends in initiation to the habit. Practises of adding tobacco and lime appear to have adverse effects and are associated with higher occurrences of precancer lesions in this study (p
    Matched MeSH terms: Calcium Compounds
  15. Dewi R, Ibrahim N, Talib I, Ibarahim Z
    Sains Malaysiana, 2008;37:233-237.
    Thin films of barium strontium titanate (Ba0.6Sr0.4TiO3) perovskite system are promising candidates for microelectronic devices that can be integrated with semiconductor technology. Ba0.6Sr0.4TiO3 thin films have been prepared onto BST/TiO2/RuO2/SiO2/Si substrate using the spin coating and sol-gel process. Then the samples were subsequently annealed at 600oC, 650oC and 700oC for 60 minutes in air. The microstructure and dielectric properties show that the crystallization improved as the annealing temperature was increased. All of the films have nanometer grain size. The average grain size of the films increased as the temperature was increased. The dielectric constant and ac conductivity of the films also increased as the average grain size increased. These results showed that the microstructure and dielectric properties depend on the annealing temperature.
    Matched MeSH terms: Calcium Compounds
  16. Shahiduzzaman M, Fukaya S, Muslih EY, Wang L, Nakano M, Akhtaruzzaman M, et al.
    Materials (Basel), 2020 May 11;13(9).
    PMID: 32403454 DOI: 10.3390/ma13092207
    Perovskite solar cells (PSCs) have appeared as a promising design for next-generation thin-film photovoltaics because of their cost-efficient fabrication processes and excellent optoelectronic properties. However, PSCs containing a metal oxide compact layer (CL) suffer from poor long-term stability and performance. The quality of the underlying substrate strongly influences the growth of the perovskite layer. In turn, the perovskite film quality directly affects the efficiency and stability of the resultant PSCs. Thus, substrate modification with metal oxide CLs to produce highly efficient and stable PSCs has drawn attention. In this review, metal oxide-based electron transport layers (ETLs) used in PSCs and their systemic modification are reviewed. The roles of ETLs in the design and fabrication of efficient and stable PSCs are also discussed. This review will guide the further development of perovskite films with larger grains, higher crystallinity, and more homogeneous morphology, which correlate to higher stable PSC performance. The challenges and future research directions for PSCs containing compact ETLs are also described with the goal of improving their sustainability to reach new heights of clean energy production.
    Matched MeSH terms: Calcium Compounds
  17. Nabgan W, Nabgan B, Ikram M, Jadhav AH, Ali MW, Ul-Hamid A, et al.
    Chemosphere, 2022 Mar;290:133296.
    PMID: 34914962 DOI: 10.1016/j.chemosphere.2021.133296
    The fatty acid methyl ester (FAME) production from dairy effluent scum as a sustainable energy source using CaO obtained from organic ash over titanium dioxide nanoparticles (TNPs) as the transesterification nano-catalyst has been studied. The physical and chemical properties of the synthesized catalysts were characterized, and the effect of different experimental factors on the biodiesel yield was studied. It was revealed that the CaO-TiO2 nano-catalyst displayed bifunctional properties, has both basic and acid phases, and leads to various effects on the catalyst activity in the transesterification process. These bifunctional properties are critical for achieving simultaneous transesterification of dairy scum oil feedstock. According to the reaction results, the catalyst without and with a low ratio of TNPs showed a low catalytic activity. In contrast, the 3Ca-3Ti nano-catalyst had the highest catalytic activity and a strong potential for reusability, producing a maximum biodiesel yield of 97.2% for a 3 wt% catalyst, 1:20 oil to methanol molar ratio for the dairy scum, and a reaction temperature of 70 °C for a period of 120 min under a 300 kPa pressure. The physical properties of the produced biodiesel are within the EN14214 standards.
    Matched MeSH terms: Calcium Compounds
  18. Ab. Karim, M.S., Nasouddin, S.S., Othman, M., Mohd Adzahan, N., Hussin, S.R., Khozirah, S.
    MyJurnal
    Melicope ptelefolia (MP) is one of the alternative herbal resources which have a great potential to be marketed worldwide. Because of its exploratory nature, this study used qualitative research methodology, which is natural and highly interpretive in order to gain consumer insights. This preliminary qualitative study used an in-depth personal interview approach for data collection. Informants for this study were 30 regular consumers of MP, aged from 18 years old and above. From the findings, it is reported that MP had a slightly bitter taste, crunchy young leaves, pungent, and lemon-lime aroma. In terms of its physical characteristics, it is said that MP has trifoliate, green, thick, broad leaves and has small white and greenish flowers. Respondents have varying levels of awareness and knowledge regarding MP but most of them believed that medicinal products can be produced from this herb. Respondents also stressed the importance of scientific research to properly develop MP into medicinal products and turn it into alternative treatment that has commercial values in the market.
    Matched MeSH terms: Calcium Compounds
  19. Zhang Y, Knibbe R, Sunarso J, Zhong Y, Zhou W, Shao Z, et al.
    Adv Mater, 2017 Dec;29(48).
    PMID: 28628239 DOI: 10.1002/adma.201700132
    Solid-oxide fuel cells (SOFCs) are electricity generators that can convert the chemical energy in various fuels directly to the electric power with high efficiency. Recent advances in materials and related key components for SOFCs operating at ≈500 °C are summarized here, with a focus on the materials, structures, and techniques development for low-temperature SOFCs, including the analysis of most of the critical parameters affecting the electrochemical performance of the electrolyte, anode, and cathode. New strategies, such as thin-film deposition, exsolution of nanoparticles from perovskites, microwave plasma heating, and finger-like channeled electrodes, are discussed. These recent developments highlight the need for electrodes with higher activity and electrolytes with greater conductivity to generate a high electrochemical performance at lower temperatures.
    Matched MeSH terms: Calcium Compounds
  20. Sharaf Aldeen EM, Jalil AA, Mim RS, Hatta AH, Hazril NIH, Chowdhury A, et al.
    Environ Res, 2023 Oct 01;234:116576.
    PMID: 37423362 DOI: 10.1016/j.envres.2023.116576
    Photocatalysis utilizing semiconductors offer a cost-effective and promising solution for the removal of pollutants. MXene and perovskites, which possess desirable properties such as a suitable bandgap, stability, and affordability, have emerged as a highly promising material for photocatalytic activity. However, the efficiency of MXene and perovskites is limited by their fast recombination rates and inadequate light harvesting abilities. Nonetheless, several additional modifications have been shown to enhance their performance, thereby warranting further exploration. This study delves into the fundamental principles of reactive species for MXene-perovskites. Various methods of modification of MXene-perovskite-based photocatalysts, including Schottky junction, Z-scheme and S-scheme are analyzed with regard to their operation, differences, identification techniques and reusability. The assemblance of heterojunctions is demonstrated to enhance photocatalytic activity while also suppressing charge carrier recombination. Furthermore, the separation of photocatalysts through magnetic-based methods is also investigated. Consequently, MXene-perovskite-based photocatalysts are seen as an exciting emerging technology that necessitates further research and development.
    Matched MeSH terms: Calcium Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links