Displaying publications 21 - 40 of 41 in total

Abstract:
Sort:
  1. Tan FHP, Azzam G
    Malays J Med Sci, 2017 Mar;24(2):6-20.
    PMID: 28894399 MyJurnal DOI: 10.21315/mjms2017.24.2.2
    Alzheimer's disease (AD) is the most widespread neurodegenerative disorder worldwide. Its pathogenesis involves two hallmarks: aggregation of amyloid beta (Aβ) and occurrence of neurofibrillary tangles (NFTs). The mechanism behind the disease is still unknown. This has prompted the use of animal models to mirror the disease. The fruit fly, Drosophila melanogaster has garnered considerable attention as an organism to recapitulate human disorders. With the ability to monopolise a multitude of traditional and novel genetic tools, Drosophila is ideal for studying not only cellular aspects but also physiological and behavioural traits of human neurodegenerative diseases. Here, we discuss the use of the Drosophila model in understanding AD pathology and the insights gained in discovering drug therapies for AD.
    Matched MeSH terms: Drosophila; Drosophila melanogaster
  2. Hee AK, Ooi YS, Wee SL, Tan KH
    Zookeys, 2015.
    PMID: 26798265 DOI: 10.3897/zookeys.540.6099
    Males of certain species belonging to the Bactrocera dorsalis complex are strongly attracted to, and readily feed on methyl eugenol (ME), a plant secondary compound that is found in over 480 plant species worldwide. Amongst those species is one of the world's most severe fruit pests the Oriental fruit fly, Bactrocera dorsalis s.s., and the former taxonomic species Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis. The latter species have been recently synonymised with Bactrocera dorsalis based on their very similar morphology, mating compatibility, molecular genetics and identical sex pheromones following consumption of ME. Previous studies have shown that male fruit fly responsiveness to lures is a unique phenomenon that is dose species-specific, besides showing a close correlation to sexual maturity attainment. This led us to use ME sensitivity as a behavioural parameter to test if Bactrocera dorsalis and the three former taxonomic species had similar sensitivity towards odours of ME. Using Probit analysis, we estimated the median dose of ME required to elicit species' positive response in 50% of each population tested (ED50). ED50 values were compared between Bactrocera dorsalis and the former species. Our results showed no significant differences between Bactrocera dorsalis s.s., and the former Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis in their response to ME. We consider that the Bactrocera males' sensitivity to ME may be a useful behavioural parameter for species delimitation and, in addition to other integrative taxonomic tools used, provides further supportive evidence that the four taxa belong to one and the same biological species, Bactrocera dorsalis.
    Matched MeSH terms: Drosophila
  3. Yu H, Wang W, Fang S, Zhang YP, Lin FJ, Geng ZC
    Mol Phylogenet Evol, 1999 Dec;13(3):556-65.
    PMID: 10620413
    The sequences of the mitochondrial ND4 gene (1339 bp) and the ND4L gene (290 bp) were determined for all the 14 extant taxa of the Drosophila nasuta subgroup. The average A + T content of ND4 genes is 76.5% and that of ND4L genes is 83.5%. A total of 114 variable sites were scored. The ND4 gene sequence divergence ranged from 0 to 5.4% within the subgroup. The substitution rate of the ND4 gene is about 1.25% per million years. The base substitution of the genes is strongly transition biased. Neighbor-joining and parsimony were used to construct a phylogeny based on the resultant sequence data set. According to these trees, five distinct mtDNA clades can be identified. D. niveifrons represents the most diverged lineage. D. sulfurigaster bilimbata and D. kepulauana form two independent lineages. The other two clades are the kohkoa complex and the albomicans complex. The kohkoa complex consists of D. sulfurigaster sulfurigaster, D. pulaua, D. kohkoa, and Taxon-F. The albomicans complex can be divided into two groups: D. nasuta, D. sulfurigaster neonasuta, D. sulfurigaster albostrigata, and D. albomicans from Chiangmai form one group; and D. pallidifrons, Taxon-I, Taxon-J, and D. albomicans from China form the other group. High genetic differentiation was found among D. albomicans populations. Based on our phylogenetic results, we hypothesize that D. niveifrons diverged first from the D. nasuta subgroup in Papua New Guinea about 3.5 Mya. The ancestral population spread to the north and when it reached Borneo, it diversified sequentially into the kohkoa complex, D. s. bilimbata, and D. kepulauana. About 1 Mya, another radiation occurred when the ancestral populations reached the Indo-China Peninsula, forming the albomicans complex. Discrepancy between morphological groupings and phylogenetic results suggests that the male morphological traits may not be orthologous.
    Matched MeSH terms: Drosophila/classification; Drosophila/genetics; Drosophila/physiology*
  4. Takeda K, Yamauchi J, Miki A, Kim D, Leong XY, Doggett SL, et al.
    Sci Rep, 2019 04 24;9(1):6500.
    PMID: 31019205 DOI: 10.1038/s41598-019-42844-0
    The insect male accessory gland (MAG) is an internal reproductive organ responsible for the synthesis and secretion of seminal fluid components, which play a pivotal role in the male reproductive strategy. In many species of insects, the effective ejaculation of the MAG products is essential for male reproduction. For this purpose, the fruit fly Drosophila has evolved binucleation in the MAG cells, which causes high plasticity of the glandular epithelium, leading to an increase in the volume of seminal fluid that is ejaculated. However, such a binucleation strategy has only been sporadically observed in Dipteran insects, including fruit flies. Here, we report the discovery of binucleation in the MAG of the common bed bug, Cimex lectularius, which belongs to hemimetabolous Hemiptera phylogenetically distant from holometabolous Diptera. In Cimex, the cell morphology and timing of synchrony during binucleation are quite different from those of Drosophila. Additionally, in Drosophila, the position of the two nuclei in the adult stage changes as a result of the mating history or the nutrient conditions; however, it remains stable in Cimex. These differences suggest that binucleation in the Cimex MAG plays a unique role in the male reproductive system that is distinct from that of Drosophila.
    Matched MeSH terms: Drosophila
  5. Paparazzo F, Tellier A, Stephan W, Hutter S
    PLoS One, 2015;10(7):e0132129.
    PMID: 26154519 DOI: 10.1371/journal.pone.0132129
    The ability to cope with infection by a parasite is one of the major challenges for any host species and is a major driver of evolution. Parasite pressure differs between habitats. It is thought to be higher in tropical regions compared to temporal ones. We infected Drosophila melanogaster from two tropical (Malaysia and Zimbabwe) and two temperate populations (the Netherlands and North Carolina) with the generalist entomopathogenic fungus Beauveria bassiana to examine if adaptation to local parasite pressures led to differences in resistance. Contrary to previous findings we observed increased survival in temperate populations. This, however, is not due to increased resistance to infection per se, but rather the consequence of a higher general vigor of the temperate populations. We also assessed transcriptional response to infection within these flies eight and 24 hours after infection. Only few genes were induced at the earlier time point, most of which are involved in detoxification. In contrast, we identified more than 4,000 genes that changed their expression state after 24 hours. This response was generally conserved over all populations with only few genes being uniquely regulated in the temperate populations. We furthermore found that the American population was transcriptionally highly diverged from all other populations concerning basal levels of gene expression. This was particularly true for stress and immune response genes, which might be the genetic basis for their elevated vigor.
    Matched MeSH terms: Drosophila melanogaster/genetics*; Drosophila melanogaster/microbiology*
  6. Mitchell CL, Yeager RD, Johnson ZJ, D'Annunzio SE, Vogel KR, Werner T
    PLoS One, 2015;10(5):e0127569.
    PMID: 25978397 DOI: 10.1371/journal.pone.0127569
    Insect resistance to toxins exerts not only a great impact on our economy, but also on the ecology of many species. Resistance to one toxin is often associated with cross-resistance to other, sometimes unrelated, chemicals. In this study, we investigated mushroom toxin resistance in the fruit fly Drosophila melanogaster (Meigen). This fruit fly species does not feed on mushrooms in nature and may thus have evolved cross-resistance to α-amanitin, the principal toxin of deadly poisonous mushrooms, due to previous pesticide exposure. The three Asian D. melanogaster stocks used in this study, Ama-KTT, Ama-MI, and Ama-KLM, acquired α-amanitin resistance at least five decades ago in their natural habitats in Taiwan, India, and Malaysia, respectively. Here we show that all three stocks have not lost the resistance phenotype despite the absence of selective pressure over the past half century. In response to α-amanitin in the larval food, several signs of developmental retardation become apparent in a concentration-dependent manner: higher pre-adult mortality, prolonged larva-to-adult developmental time, decreased adult body size, and reduced adult longevity. In contrast, female fecundity nearly doubles in response to higher α-amanitin concentrations. Our results suggest that α-amanitin resistance has no fitness cost, which could explain why the resistance has persisted in all three stocks over the past five decades. If pesticides caused α-amanitin resistance in D. melanogaster, their use may go far beyond their intended effects and have long-lasting effects on ecosystems.
    Matched MeSH terms: Drosophila melanogaster/drug effects*; Drosophila melanogaster/genetics
  7. Savall J, Ho ET, Huang C, Maxey JR, Schnitzer MJ
    Nat. Methods, 2015 Jul;12(7):657-60.
    PMID: 26005812 DOI: 10.1038/nmeth.3410
    We present a robot that enables high-content studies of alert adult Drosophila by combining operations including gentle picking; translations and rotations; characterizations of fly phenotypes and behaviors; microdissection; or release. To illustrate, we assessed fly morphology, tracked odor-evoked locomotion, sorted flies by sex, and dissected the cuticle to image neural activity. The robot's tireless capacity for precise manipulations enables a scalable platform for screening flies' complex attributes and behavioral patterns.
    Matched MeSH terms: Drosophila melanogaster/anatomy & histology; Drosophila melanogaster/physiology*
  8. Najat Dzaki, Ghows Azzam
    Trop Life Sci Res, 2019;30(2):191-200.
    MyJurnal
    In Drosophila, the Glycerol-3-phosphate dehydrogenase (Gpdh) enzyme plays an active role in many pathways, including the glycerol metabolic pathway and the alphaglycerophosphate cycle. It is also important for ethanol metabolism, as well as flight muscle development. Recent years have exposed small RNAs as a major posttranscriptional regulator of multiple metabolic-pathway genes. Of the many kinds of these RNAs at work, micro RNAs (miRNAs) are the most widely implicated and well understood. However, the roles they may play in regulating Gpdh has never been shown in any model organism. In this study, a pasha-mutant D. melanogaster strain was found to express only 25% of the Gpdh levels typical of their wild type counterparts. Such mutants lack the ability to produce pasha, a protein integral during miRNA-processing, and as a consequence do not produce mature miRNAs. As miRNA-centric regulation often culminates in the depletion of their targets, the concurrent downregulation of Gpdh observed in their absence here therefore alludes to two possibilities: one, that rather than being explicitly bound and repressed by miRNAs, Gpdh expression relies on their action upon an upstream Gpdh-antagonist; or two, that Gpdh may come under the regulation of another class of miRNA-like elements called mirtrons, which do not require pasha to be processed into their functional form. The preliminary findings in this study further highlights the imperative nature of miRNAs in regulating metabolic processes and subsequently, ensuring proper organismal development and its continued survival.
    Matched MeSH terms: Drosophila; Drosophila melanogaster; Drosophila Proteins
  9. Yoong LF, Lim HK, Tran H, Lackner S, Zheng Z, Hong P, et al.
    Neuron, 2020 05 06;106(3):452-467.e8.
    PMID: 32155441 DOI: 10.1016/j.neuron.2020.02.002
    Dendrite arbor pattern determines the functional characteristics of a neuron. It is founded on primary branch structure, defined through cell intrinsic and transcription-factor-encoded mechanisms. Developing arbors have extensive acentrosomal microtubule dynamics, and here, we report an unexpected role for the atypical actin motor Myo6 in creating primary branch structure by specifying the position, polarity, and targeting of these events. We carried out in vivo time-lapse imaging of Drosophila adult sensory neuron differentiation, integrating machine-learning-based quantification of arbor patterning with molecular-level tracking of cytoskeletal remodeling. This revealed that Myo6 and the transcription factor Knot regulate transient surges of microtubule polymerization at dendrite tips; they drive retrograde extension of an actin filament array that specifies anterograde microtubule polymerization and guides these microtubules to subdivide the tip into multiple branches. Primary branches delineate functional compartments; this tunable branching mechanism is key to define and diversify dendrite arbor compartmentalization.
    Matched MeSH terms: Drosophila melanogaster; Drosophila Proteins/metabolism
  10. Subramanian P, Jayapalan JJ, Abdul-Rahman PS, Arumugam M, Hashim OH
    PeerJ, 2016;4:e2080.
    PMID: 27257555 DOI: 10.7717/peerj.2080
    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock.
    Matched MeSH terms: Drosophila; Drosophila melanogaster
  11. Inaba T, Murate M, Tomishige N, Lee YF, Hullin-Matsuda F, Pollet B, et al.
    Sci Rep, 2019 04 09;9(1):5812.
    PMID: 30967612 DOI: 10.1038/s41598-019-42247-1
    Ceramide phosphoethanolamine (CPE), a major sphingolipid in invertebrates, is crucial for axonal ensheathment in Drosophila. Darkfield microscopy revealed that an equimolar mixture of bovine buttermilk CPE (milk CPE) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (diC18:1 PC) tends to form tubules and helical ribbons, while pure milk CPE mainly exhibits amorphous aggregates and, at low frequency, straight needles. Negative staining electron microscopy indicated that helices and tubules were composed of multilayered 5-10 nm thick slab-like structures. Using different molecular species of PC and CPE, we demonstrated that the acyl chain length of CPE but not of PC is crucial for the formation of tubules and helices in equimolar mixtures. Incubation of the lipid suspensions at the respective phase transition temperature of CPE facilitated the formation of both tubules and helices, suggesting a dynamic lipid rearrangement during formation. Substituting diC18:1 PC with diC18:1 PE or diC18:1 PS failed to form tubules and helices. As hydrated galactosylceramide (GalCer), a major lipid in mammalian myelin, has been reported to spontaneously form tubules and helices, it is believed that the ensheathment of axons in mammals and Drosophila is based on similar physical processes with different lipids.
    Matched MeSH terms: Drosophila/metabolism*
  12. Laurent SJ, Werzner A, Excoffier L, Stephan W
    Mol Biol Evol, 2011 Jul;28(7):2041-51.
    PMID: 21300986 DOI: 10.1093/molbev/msr031
    Southeast Asian populations of the fruit fly Drosophila melanogaster differ from ancestral African and derived European populations by several morphological characteristics. It has been argued that this morphological differentiation could be the result of an early colonization of Southeast Asia that predated the migration of D. melanogaster to Europe after the last glacial period (around 10,000 years ago). To investigate the colonization process of Southeast Asia, we collected nucleotide polymorphism data for more than 200 X-linked fragments and 50 autosomal loci from a population of Malaysia. We analyzed this new single nucleotide polymorphism data set jointly with already existing data from an African and a European population by employing an Approximate Bayesian Computation approach. By contrasting different demographic models of these three populations, we do not find any evidence for an early divergence between the African and the Asian populations. Rather, we show that Asian and European populations of D. melanogaster share a non-African most recent common ancestor that existed about 2,500 years ago.
    Matched MeSH terms: Drosophila melanogaster/genetics*
  13. Subramanian P, Prasanna V, Jayapalan JJ, Abdul Rahman PS, Hashim OH
    J Insect Physiol, 2014 Jun;65:37-44.
    PMID: 24780191 DOI: 10.1016/j.jinsphys.2014.04.005
    Accruing evidences imply that circadian organization of biochemical, endocrinological, cellular and physiological processes contribute to wellness of organisms and in the development of pathologies such as malignancy, sleep and endocrine disorders. Oxidative stress is known to mediate a number of diseases and it is notable to comprehend the orchestration of circadian clock of a model organism of circadian biology, Drosophila melanogaster, under oxidative stress. We investigated the nexus between circadian clock and oxidative stress susceptibility by exposing D. melanogaster to hydrogen peroxide (H2O2) or rotenone; the reversibility of rhythms following exposure to Bacopa monnieri extract (ayurvedic medicine rich in antioxidants) was also investigated. Abolishment of 24h rhythms in physiological response (negative geotaxis), oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances) and antioxidants (superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione) were observed under oxidative stress. Furthermore, abolishment of per mRNA rhythm in H2O2 treated wild type flies and augmented susceptibility to oxidative stress in clock mutant (cry(b)) flies connotes the role of circadian clock in reactive oxygen species (ROS) homeostasis. Significant reversibility of rhythms was noted following B. monnieri treatment in wild type flies than cry(b) flies. Our experimental approach revealed a relationship involving oxidative stress and circadian clock in fruit fly and the utility of Drosophila model in screening putative antioxidative phytomedicines prior to their use in mammalian systems.
    Matched MeSH terms: Drosophila melanogaster/genetics*; Drosophila melanogaster/physiology*
  14. Mancini MV, Herd CS, Ant TH, Murdochy SM, Sinkins SP
    PLoS Negl Trop Dis, 2020 Mar;14(3):e0007926.
    PMID: 32155143 DOI: 10.1371/journal.pntd.0007926
    The global incidence of arboviral diseases transmitted by Aedes mosquitoes, including dengue, chikungunya, yellow fever, and Zika, has increased dramatically in recent decades. The release of Aedes aegypti carrying the maternally inherited symbiont Wolbachia as an intervention to control arboviruses is being trialled in several countries. However, these efforts are compromised in many endemic regions due to the co-localization of the secondary vector Aedes albopictus, the Asian tiger mosquito. Ae. albopictus has an expanding global distribution following incursions into a number of new territories. To date, only the wMel and wPip strains of Wolbachia have been reported to be transferred into and characterized in this vector. A Wolbachia strain naturally infecting Drosophila simulans, wAu, was selected for transfer into a Malaysian Ae. albopictus line to create a novel triple-strain infection. The newly generated line showed self-compatibility, moderate fitness cost and complete resistance to Zika and dengue infections.
    Matched MeSH terms: Drosophila/microbiology
  15. Tan FHP, Liu G, Lau SA, Jaafar MH, Park YH, Azzam G, et al.
    Benef Microbes, 2020 Feb 19;11(1):79-89.
    PMID: 32066253 DOI: 10.3920/BM2019.0086
    Alzheimer's disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia's relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson's, Huntington's and Alzheimer's diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7's ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.
    Matched MeSH terms: Drosophila melanogaster
  16. Zulazmi NA, Arulsamy A, Ali I, Zainal Abidin SA, Othman I, Shaikh MF
    CNS Neurosci Ther, 2021 Apr;27(4):381-402.
    PMID: 33539662 DOI: 10.1111/cns.13590
    Traumatic brain injury (TBI) is the leading cause of death and disability worldwide and has complicated underlying pathophysiology. Numerous TBI animal models have been developed over the past decade to effectively mimic the human TBI pathophysiology. These models are of mostly mammalian origin including rodents and non-human primates. However, the mammalian models demanded higher costs and have lower throughput often limiting the progress in TBI research. Thus, this systematic review aims to discuss the potential benefits of non-mammalian TBI models in terms of their face validity in resembling human TBI. Three databases were searched as follows: PubMed, Scopus, and Embase, for original articles relating to non-mammalian TBI models, published between January 2010 and December 2019. A total of 29 articles were selected based on PRISMA model for critical appraisal. Zebrafish, both larvae and adult, was found to be the most utilized non-mammalian TBI model in the current literature, followed by the fruit fly and roundworm. In conclusion, non-mammalian TBI models have advantages over mammalian models especially for rapid, cost-effective, and reproducible screening of effective treatment strategies and provide an opportunity to expedite the advancement of TBI research.
    Matched MeSH terms: Drosophila melanogaster
  17. Miyake N, Fukai R, Ohba C, Chihara T, Miura M, Shimizu H, et al.
    Am J Hum Genet, 2016 Oct 06;99(4):950-961.
    PMID: 27666374 DOI: 10.1016/j.ajhg.2016.08.005
    We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and β-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy.
    Matched MeSH terms: Drosophila melanogaster/genetics
  18. Roslan R, Othman RM, Shah ZA, Kasim S, Asmuni H, Taliba J, et al.
    Comput Biol Med, 2010 Jun;40(6):555-64.
    PMID: 20417930 DOI: 10.1016/j.compbiomed.2010.03.009
    Protein-protein interactions (PPIs) play a significant role in many crucial cellular operations such as metabolism, signaling and regulations. The computational methods for predicting PPIs have shown tremendous growth in recent years, but problem such as huge false positive rates has contributed to the lack of solid PPI information. We aimed at enhancing the overlap between computational predictions and experimental results in an effort to partially remove PPIs falsely predicted. The use of protein function predictor named PFP() that are based on shared interacting domain patterns is introduced in this study with the purpose of aiding the Gene Ontology Annotations (GOA). We used GOA and PFP() as agents in a filtering process to reduce false positive pairs in the computationally predicted PPI datasets. The functions predicted by PFP() were extracted from cross-species PPI data in order to assign novel functional annotations for the uncharacterized proteins and also as additional functions for those that are already characterized by the GO (Gene Ontology). The implementation of PFP() managed to increase the chances of finding matching function annotation for the first rule in the filtration process as much as 20%. To assess the capability of the proposed framework in filtering false PPIs, we applied it on the available S. cerevisiae PPIs and measured the performance in two aspects, the improvement made indicated as Signal-to-Noise Ratio (SNR) and the strength of improvement, respectively. The proposed filtering framework significantly achieved better performance than without it in both metrics.
    Matched MeSH terms: Drosophila Proteins
  19. Shao YM, Ma X, Paira P, Tan A, Herr DR, Lim KL, et al.
    PLoS One, 2018;13(1):e0188212.
    PMID: 29304113 DOI: 10.1371/journal.pone.0188212
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM), hepatotoxicity (up to 30 μM) or cardiotoxicity (up to 30 μM).
    Matched MeSH terms: Drosophila/genetics; Drosophila/metabolism
  20. Tan FHP, Ting ACJ, Leow BG, Najimudin N, Watanabe N, Azzam G
    J Ethnopharmacol, 2021 Oct 28;279:114389.
    PMID: 34217797 DOI: 10.1016/j.jep.2021.114389
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen water extract (DWE), obtained from the Salvia miltiorrhiza Bunge (Family Lamiaceae) root, is usually employed in Chinese traditional medicine as treatment to cardiovascular ailments and cerebrovascular diseases. Intriguingly, the extract was also found to contain vast beneficial properties in Alzheimer's disease (AD) treatment.

    AIM OF THE STUDY: Alzheimer's disease is the most significant type of neurodegenerative disorder plaguing societies globally. Its pathogenesis encompasses the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 is the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aβ42's toxic effects.

    METHODS: The composition of DWE was determined via Ultra-Performance Liquid Chromatography (UPLC). DWE, SalA and SalB were first verified for their capability to diminish Aβ42 fibrillation using an in vitro activity assay. Since Aβ42 aggregation results in neuronal degeneration, the potential Aβ42 inhibitors were next evaluated on Aβ42-exposed PC12 neuronal cells. The Drosophila melanogaster AD model was then employed to determine the effects of DWE, SalA and SalB.

    RESULTS: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aβ42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aβ42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. The UPLC analysis showed that SalA and SalB were present in the brains and bodies of Drosophila after DWE feeding. When human Aβ42 was expressed, the AD Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila.

    CONCLUSION: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.

    Matched MeSH terms: Drosophila melanogaster
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links