Displaying publications 21 - 40 of 536 in total

Abstract:
Sort:
  1. Loke YH, Phang HC, Mohamad N, Kee PE, Chew YL, Lee SK, et al.
    Planta Med, 2024 Sep;90(11):824-833.
    PMID: 39043195 DOI: 10.1055/a-2359-8097
    For decades, cocoa butter has been extensively used in food industries, particularly in the production of chocolate confectioneries. The composition of fats within cocoa butter, such as stearic acid, palmitic acid, and oleic acid, determines its properties. Studies have indicated the existence of at least six polymorphic forms of cocoa butter, each possessing distinct characteristics and melting points. Recently, cocoa butter has garnered attention for its potential as a delivery system for pharmaceutical products. This review thoroughly explores cocoa butter, encompassing its production process, composition, properties, and polymorphism. It delves into its diverse applications across various industries including food, cosmetics, and pharmaceuticals. Additionally, the review investigates cocoa butter alternatives aiming to substitute cocoa butter and their roles in different drug delivery systems. The unique properties of cocoa butter have sparked interest in pharmaceutical industries, particularly since its introduction as a drug delivery system and excipient. This has prompted researchers and industry stakeholders to explore novel formulations and delivery methods, thereby expanding the range of options available to consumers in the pharmaceutical market.
    Matched MeSH terms: Drug Delivery Systems*
  2. Kusnadi K, Herdiana Y, Rochima E, Putra ON, Mohd Gazzali A, Muchtaridi M
    Int J Nanomedicine, 2024;19:11321-11341.
    PMID: 39524919 DOI: 10.2147/IJN.S485588
    BACKGROUND: Conventional wound dressings often adhere to wounds and can cause secondary injury due to their lack of anti-inflammatory and antibacterial properties. In contrast, collagen-based nanoparticles (NPs) as drug delivery systems exhibit both biocompatibility and biodegradability, presenting a promising avenue for accelerating wound healing processes.

    AIMS OF STUDY: This review aims to provide a comprehensive overview of the mechanisms involved in wound healing, description of the attributes of ideal wound dressings, understanding of wound healing efficacy of collagen, exploring NPs-mediated drug delivery mechanisms in wound therapy, detailing the synthesis and fabrication techniques of collagen-based NPs, and delineating the applications of various collagen-based NPs infused wound dressings on wound healing.

    METHODOLOGY: This review synthesizes relevant literature from reputable databases such as Scopus, Science Direct, Google Scholar, and PubMed.

    RESULTS: A diverse array of collagen-based NPs, including nanopolymers, metal NPs, nanoemulsions, nanoliposomes, and nanofibers, demonstrate pronounced efficacy in promoting wound closure and tissue regeneration. The incorporation of collagen-based NPs has not only become an agent for the delivery of therapeutics but also actively contributes to the wound healing cascade.

    CONCLUSION: In conclusion, In brief, the use of collagen-based NPs presents a compelling strategy for expediting wound healing processes.

    Matched MeSH terms: Drug Delivery Systems/methods
  3. Aziz MS, Jukgoljan B, Daud S, Tan TS, Ali J, Yupapin PP
    Artif Cells Nanomed Biotechnol, 2013 Jun;41(3):178-83.
    PMID: 22991944 DOI: 10.3109/10731199.2012.715087
    This paper presents the use of a modified add/drop optical filter incorporating with microring resonators known as a PANDA microring resonator system which can fabricate on small chip. By using an optical tweezer, the required molecules can be trapped and moved to the required destinations at the add/drop ports. The novelty is that the stored molecules in the designed chip can transport via the optical waveguide and can also be used to form molecular filter, which is an important technique for drug delivery, drug targeting, and molecular electronics. Results have shown that the multivariable filter can be obtained by tunable trapping control.
    Matched MeSH terms: Drug Delivery Systems/instrumentation; Drug Delivery Systems/methods
  4. Kumar Singla S, Muthuraman A, Sahai D, Mangal N, Dhamodharan J
    Front Biosci (Elite Ed), 2021 01 01;13:158-184.
    PMID: 33048780
    Transdermal drug-delivery systems (TDDS) offer an attractive alternative to the oral route for delivery of biotherapeutics. Technological advancements in the past few decades have revolutionized the fabrication of micro-structured devices including creation of microneedles (MC). These devices are used for delivering peptides, macromolecules such as proteins and DNA, and other therapeutics through the skin. Here, we review the current use of MCs as a cost effective method for the self-administration of therapeutics. We will then review the current and common use of MCs as an effective treatment strategy for a broad range of diseases and their utility in the generation of effective vaccination delivery platforms. Finally, we will summarize the currently FDA approved MCs and their applications, along with the ongoing clinical trials that use such devices.
    Matched MeSH terms: Drug Delivery Systems/instrumentation; Drug Delivery Systems/methods
  5. Kumbhar P, Kolekar K, Vishwas S, Shetti P, Kumbar V, Andreoli Pinto TJ, et al.
    Ageing Res Rev, 2024 Jul;98:102322.
    PMID: 38723753 DOI: 10.1016/j.arr.2024.102322
    Age-related macular degeneration (AMD) is a significant factor contributing to serious vision loss in adults above 50. The presence of posterior segment barriers serves as chief roadblocks in the delivery of drugs to treat AMD. The conventional treatment strategies use is limited due to its off-targeted distribution in the eye, shorter drug residence, poor penetration and bioavailability, fatal side effects, etc. The above-mentioned downside necessitates drug delivery using some cutting-edge technology including diverse nanoparticulate systems and microneedles (MNs) which provide the best therapeutic delivery alternative to treat AMD efficiently. Furthermore, cutting-edge treatment modalities including gene therapy and stem cell therapy can control AMD effectively by reducing the boundaries of conventional therapies with a single dose. This review discusses AMD overview, conventional therapies for AMD and their restrictions, repurposed therapeutics and their anti-AMD activity through different mechanisms, and diverse barriers in drug delivery for AMD. Various nanoparticulate-based approaches including polymeric NPs, lipidic NPs, exosomes, active targeted NPs, stimuli-sensitive NPs, cell membrane-coated NPs, inorganic NPs, and MNs are explained. Gene therapy, stem cell therapy, and therapies in clinical trials to treat AMD are also discussed. Further, bottlenecks of cutting-edge (nanoparticulate) technology-based drug delivery are briefed. In a nutshell, cutting-edge technology-based therapies can be an effective way to treat AMD.
    Matched MeSH terms: Drug Delivery Systems/methods; Drug Delivery Systems/trends
  6. Ali Khan A, Mudassir J, Mohtar N, Darwis Y
    Int J Nanomedicine, 2013;8:2733-44.
    PMID: 23926431 DOI: 10.2147/IJN.S41521
    The delivery of drugs and bioactive compounds via the lymphatic system is complex and dependent on the physiological uniqueness of the system. The lymphatic route plays an important role in transporting extracellular fluid to maintain homeostasis and in transferring immune cells to injury sites, and is able to avoid first-pass metabolism, thus acting as a bypass route for compounds with lower bioavailability, ie, those undergoing more hepatic metabolism. The lymphatic route also provides an option for the delivery of therapeutic molecules, such as drugs to treat cancer and human immunodeficiency virus, which can travel through the lymphatic system. Lymphatic imaging is useful in evaluating disease states and treatment plans for progressive diseases of the lymph system. Novel lipid-based nanoformulations, such as solid lipid nanoparticles and nanostructured lipid carriers, have unique characteristics that make them promising candidates for lymphatic delivery. These formulations are superior to colloidal carrier systems because they have controlled release properties and provide better chemical stability for drug molecules. However, multiple factors regulate the lymphatic delivery of drugs. Prior to lymphatic uptake, lipid-based nanoformulations are required to undergo interstitial hindrance that modulates drug delivery. Therefore, uptake and distribution of lipid-based nanoformulations by the lymphatic system depends on factors such as particle size, surface charge, molecular weight, and hydrophobicity. Types of lipid and concentration of the emulsifier are also important factors affecting drug delivery via the lymphatic system. All of these factors can cause changes in intermolecular interactions between the lipid nanoparticle matrix and the incorporated drug, which in turn affects uptake of drug into the lymphatic system. Two lipid-based nanoformulations, ie, solid lipid nanoparticles and nanostructured lipid carriers, have been administered via multiple routes (subcutaneous, pulmonary, and intestinal) for targeting of the lymphatic system. This paper provides a detailed review of novel lipid-based nanoformulations and their lymphatic delivery via different routes, as well as the in vivo and in vitro models used to study drug transport in the lymphatic system. Physicochemical properties that influence lymphatic delivery as well as the advantages of lipid-based nanoformulations for lymphatic delivery are also discussed.
    Matched MeSH terms: Drug Delivery Systems*
  7. Jalil MA, Tasakorn M, Suwanpayak N, Ali J, Yupapin PP
    IEEE Trans Nanobioscience, 2011 Jun;10(2):106-12.
    PMID: 21518667 DOI: 10.1109/TNB.2011.2142421
    A novel design of nanoscopic volume transmitter and receiver for drug delivery system using a PANDA ring resonator is proposed. By controlling some suitable parameters, the optical vortices (gradient optical fields/wells) can be generated and used to form the trapping tools in the same way as the optical tweezers. By using the intense optical vortices generated within the PANDA ring resonator, the nanoscopic volumes (drug) can be trapped and moved (transport) dynamically within the wavelength router or network. In principle, the trapping force is formed by the combination between the gradient field and scattering photons, which is reviewed. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system (device), which is called a transceiver, which is available for nanoscopic volume (drug volume) trapping and transportation (delivery).
    Matched MeSH terms: Drug Delivery Systems/methods*
  8. Khalin I, Alyautdin R, Kocherga G, Bakar MA
    Int J Nanomedicine, 2015;10:3245-67.
    PMID: 25995632 DOI: 10.2147/IJN.S77480
    Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood-retinal barrier and blood-cochlear barrier, which have a comparable structure to the blood-brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration.
    Matched MeSH terms: Drug Delivery Systems*
  9. John AA, Subramanian AP, Vellayappan MV, Balaji A, Mohandas H, Jaganathan SK
    Int J Nanomedicine, 2015;10:4267-77.
    PMID: 26170663 DOI: 10.2147/IJN.S83777
    Neuroregeneration is the regrowth or repair of nervous tissues, cells, or cell products involved in neurodegeneration and inflammatory diseases of the nervous system like Alzheimer's disease and Parkinson's disease. Nowadays, application of nanotechnology is commonly used in developing nanomedicines to advance pharmacokinetics and drug delivery exclusively for central nervous system pathologies. In addition, nanomedical advances are leading to therapies that disrupt disarranged protein aggregation in the central nervous system, deliver functional neuroprotective growth factors, and change the oxidative stress and excitotoxicity of affected neural tissues to regenerate the damaged neurons. Carbon nanotubes and graphene are allotropes of carbon that have been exploited by researchers because of their excellent physical properties and their ability to interface with neurons and neuronal circuits. This review describes the role of carbon nanotubes and graphene in neuroregeneration. In the future, it is hoped that the benefits of nanotechnologies will outweigh their risks, and that the next decade will present huge scope for developing and delivering technologies in the field of neuroscience.
    Matched MeSH terms: Drug Delivery Systems*
  10. Raychaudhuri R, Pandey A, Hegde A, Abdul Fayaz SM, Chellappan DK, Dua K, et al.
    Expert Opin Drug Deliv, 2020 12;17(12):1737-1765.
    PMID: 32878492 DOI: 10.1080/17425247.2020.1819237
    Introduction: In this review, we aim to highlight the impact of various processes and formulation variables influencing the characteristics of certain surfactant-based nanoconstructs for drug delivery. Areas covered: The review includes the discussion on processing parameters for the preparation of nanoconstructs, especially those made up of surfactants. Articles published in last 15 years (437) were reviewed, 381 articles were selected for data review and most appropriate articles (215) were included in article. Effect of variables such as surfactant concentration and type, membrane additives, temperature, and pH-dependent transitions on morphology has been highlighted along with effect of shape on nanoparticle uptake by cells. Various characterization techniques explored for these nanostructures with respect to size, morphology, lamellarity, distribution, etc., and a separate section on polymeric vesicles and the influence of block copolymers, type of block copolymer, control of block length, interaction of multiple block copolymers on the structure of polymersomes and chimeric nanostructures have been discussed. Finally, applications, modification, degradation, and toxicological aspects of these drug delivery systems have been highlighted. Expert opinion: Parameters influencing the morphology of micelles and vesicles can directly or indirectly affect the efficacy of small molecule cellular internalization as well as uptake in the case of biologicals.[Figure: see text].
    Matched MeSH terms: Drug Delivery Systems*
  11. Pandey M, Choudhury H, Fern JLC, Kee ATK, Kou J, Jing JLJ, et al.
    Drug Deliv Transl Res, 2020 08;10(4):986-1001.
    PMID: 32207070 DOI: 10.1007/s13346-020-00737-0
    The involvement of recent technologies, such as nanotechnology and three-dimensional printing (3DP), in drug delivery has become the utmost importance for effective and safe delivery of potent therapeutics, and thus, recent advancement for oral drug delivery through 3DP technology has been expanded. The use of computer-aided design (CAD) in 3DP technology allows the manufacturing of drug formulation with the desired release rate and pattern. Currently, the most applicable 3DP technologies in the oral drug delivery system are inkjet printing method, fused deposition method, nozzle-based extrusion system, and stereolithographic 3DP. In 2015, the first 3D-printed tablet was approved by the US Food and Drug Administration (FDA), and since then, it has opened up more opportunities in the discovery of formulation for the development of an oral drug delivery system. 3DP allows the production of an oral drug delivery device that enables tailor-made formulation with customizable size, shape, and release rate. Despite the advantages offered by 3DP technology in the drug delivery system, there are challenges in terms of drug stability, safety as well as applicability in the clinical sector. Nonetheless, 3DP has immense potential in the development of drug delivery devices for future personalized medicine. This article will give the recent advancement along with the challenges of 3DP techniques for the development of oral drug delivery. Graphical abstract.
    Matched MeSH terms: Drug Delivery Systems*
  12. Shrivastava G, Bakshi HA, Aljabali AA, Mishra V, Hakkim FL, Charbe NB, et al.
    Curr Drug Deliv, 2020;17(2):101-111.
    PMID: 31906837 DOI: 10.2174/1567201817666200106104332
    BACKGROUND: Nucleus targeted drug delivery provides several opportunities for the treatment of fatal diseases such as cancer. However, the complex nucleocytoplasmic barriers pose significant challenges for delivering a drug directly and efficiently into the nucleus. Aptamers representing singlestranded DNA and RNA qualify as next-generation highly advanced and personalized medicinal agents that successfully inhibit the expression of certain proteins; possess extraordinary gene-expression for manoeuvring the diseased cell's fate with negligible toxicity. In addition, the precisely directed aptamers to the site of action present a tremendous potential to reach the nucleus by escaping the ensuing barriers to exhibit a better drug activity and gene expression.

    OBJECTIVE: This review epigrammatically highlights the significance of targeted drug delivery and presents a comprehensive description of the principal barriers faced by the nucleus targeted drug delivery paradigm and ensuing complexities thereof. Eventually, the progress of nucleus targeting with nucleic acid aptamers and success achieved so far have also been reviewed.

    METHODS: Systematic literature search was conducted of research published to date in the field of nucleic acid aptamers.

    CONCLUSION: The review specifically points out the contribution of individual aptamers as the nucleustargeting agent rather than aptamers in conjugated form.

    Matched MeSH terms: Drug Delivery Systems*
  13. Gupta G, Chellappan DK, Singh SK, Gupta PK, Kesari KK, Jha NK, et al.
    Nanomedicine (Lond), 2021 10;16(25):2243-2247.
    PMID: 34547920 DOI: 10.2217/nnm-2021-0254
    Matched MeSH terms: Drug Delivery Systems*
  14. Chandran R, Mohd Tohit ER, Stanslas J, Salim N, Tuan Mahmood TM
    Tissue Eng Part C Methods, 2022 10;28(10):545-556.
    PMID: 35485888 DOI: 10.1089/ten.TEC.2022.0045
    Caffeine is therapeutically effective for treating apnea, cellulite formation, and pain management. It also exhibits neuroprotective and antioxidant activities in different models of Parkinson's disease and Alzheimer's disease. However, caffeine administration in a minimally invasive and sustainable manner through the transdermal route is challenging owing to its hydrophilic nature. Therefore, this study demonstrated a transdermal delivery approach for caffeine by utilizing hydrogel microneedle (MN) as a permeation enhancer. The influence of formulation parameters such as molecular weight (MW) of PMVE/MA (polymethyl vinyl ether/maleic anhydride) copolymer and sodium bicarbonate (NaHCO3) concentration on the swelling kinetics and mechanical integrity of the hydrogel MNs was investigated. In addition, the effect of different MN application methods and needle densities of hydrogel MN on the skin insertion efficiency and penetration depth was also evaluated. The swelling degree at equilibrium percentage (% Seq) recorded for hydrogels fabricated with Gantrez S-97 (MW = 1,500,000 Da) was significantly higher than formulation with Gantrez AN-139 (MW = 1,080,000 Da). Increasing the concentration of NaHCO3 also significantly increased the % Seq. Moreover, a 100% penetration was recorded for both the applicator and combination of applicator and thumb pressure compared with only 11% for thumb pressure alone. The average diameter of micropores created by the applicator method was 62.94 μm, which was significantly lower than the combination of both applicator and thumb pressure MN application (100.53 μm). Based on histological imaging, the penetration depth of hydrogel MN increased as the MN density per array decreased. The hydrogel MN with the optimized formulation and skin insertion parameters was tested for caffeine delivery in an in vitro Franz diffusion cell setup. Approximately 2.9 mg of caffeine was delivered within 24 h, and the drug release profile was best fitted to the Korsmeyer-Peppas model, displaying Super Case II kinetics. In conclusion, a combination of thumb and impact application methods and reduced needle density improved the skin penetration efficiency of hydrogel MNs. The results also show that hydrogel MNs fabricated from 3% w/w NaHCO3 and high MW of copolymer exhibit optimum physical and swelling properties for enhanced transdermal delivery.
    Matched MeSH terms: Drug Delivery Systems/methods
  15. Wen MM, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, et al.
    J Control Release, 2017 01 10;245:95-107.
    PMID: 27889394 DOI: 10.1016/j.jconrel.2016.11.025
    Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from 'paper to clinic' and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management.
    Matched MeSH terms: Drug Delivery Systems*
  16. Bashir MA, Khan A, Shah SI, Ullah M, Khuda F, Abbas M, et al.
    Drug Des Devel Ther, 2023;17:261-272.
    PMID: 36726738 DOI: 10.2147/DDDT.S377686
    BACKGROUND: Self-emulsifying drug-delivery systems (SEDDSs) are designed to improve the oral bioavailability of poorly water-soluble drugs. This study aimed at formulating and characterization of SEDDS-based tablets for simvastatin using castor and olive oils as solvents and Tween 60 as surfactant.

    METHODS: The liquids were adsorbed on microcrystalline cellulose, and all developed formulations were compressed using 10.5 mm shallow concave round punches.

    RESULTS: The resulting tablets were evaluated for different quality-control parameters at pre- and postcompression levels. Simvastatin showed better solubility in a mixture of oils and Tween 60 (10:1). All the developed formulations showed lower self-emulsification time (˂200 seconds) and higher cloud point (˃60°C). They were free of physical defects and had drug content within the acceptable range (98.5%-101%). The crushing strength of all formulations was in the range of 58-96 N, and the results of the friability test were within the range of USP (≤1). Disintegration time was within the official limits (NMT 15 min), and complete drug release was achieved within 30 min.

    CONCLUSION: Using commonly available excipients and machinery, SEDDS-based tablets with better dissolution profile and bioavailability can be prepared by direct compression. These S-SEDDSs could be a better alternative to conventional tablets of simvastatin.

    Matched MeSH terms: Drug Delivery Systems/methods
  17. Mishra D, Gade S, Glover K, Sheshala R, Singh TRR
    Curr Eye Res, 2023 Feb;48(2):208-218.
    PMID: 36036478 DOI: 10.1080/02713683.2022.2119254
    Purpose: Intravitreal administration of drug molecules is one of the most common routes for treating posterior segment eye diseases. However, the properties of vitreous humour changes with the time. A number of ocular complications such as liquefaction of the vitreous humour, solidification of the vitreous humour in the central vitreous cavity and detachment of the limiting membrane due to the shrinking of vitreous humour are some of the factors that can drastically affect the efficacy of therapeutics delivered via intravitreal route. Although significant research has been conducted for studying the properties of vitreous humour and its changes during the ageing process, there have been limited work to understand the effect of these changes on therapeutic efficacy of intravitreal drug delivery systems. Therefore, in this review we discussed both the coomposition and characteristics of the vitreous humour, and their subsequent influence on intravitreal drug delivery.Methods: Articles were searched on Scopus, PubMed and Web of Science up to March 2022.Results: In this review, we discussed the biological composition and biomechanical properties of vitreous humour, methods to study the properties of vitreous humour and the changes in these properties and their relevance in ocular drug delivery field, with the aim to provide a useful insight into these aspects which can aid the process of development of novel intravitreal drug delivery systems.Conclusions: The composition and characteristics of the vitreous humour, and how these change during natural aging processes, directly influence intravitreal drug delivery. This review therefore highlights the importance of understanding the properties of the vitreous and identifies the need to achieve greater understanding of how changing properties of the vitreous affect the therapeutic efficacy of drugs administered for the treatment of posterior eye diseases.
    Matched MeSH terms: Drug Delivery Systems/methods
  18. Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, et al.
    Macromol Rapid Commun, 2024 May;45(9):e2300687.
    PMID: 38430068 DOI: 10.1002/marc.202300687
    Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
    Matched MeSH terms: Drug Delivery Systems*
  19. Sharma AK, Prasher P, Aljabali AA, Mishra V, Gandhi H, Kumar S, et al.
    Drug Deliv Transl Res, 2020 Oct;10(5):1171-1190.
    PMID: 32504410 DOI: 10.1007/s13346-020-00789-2
    Over the past two decades, polymersomes have been widely investigated for the delivery of diagnostic and therapeutic agents in cancer therapy. Polymersomes are stable polymeric vesicles, which are prepared using amphiphilic block polymers of different molecular weights. The use of high molecular weight amphiphilic copolymers allows for possible manipulation of membrane characteristics, which in turn enhances the efficiency of drug delivery. Polymersomes are more stable in comparison with liposomes and show less toxicity in vivo. Furthermore, their ability to encapsulate both hydrophilic and hydrophobic drugs, significant biocompatibility, robustness, high colloidal stability, and simple methods for ligands conjugation make polymersomes a promising candidate for therapeutic drug delivery in cancer therapy. This review is focused on current development in the application of polymersomes for cancer therapy and diagnosis. Graphical abstract.
    Matched MeSH terms: Drug Delivery Systems*
  20. Gholap AD, Uddin MJ, Faiyazuddin M, Omri A, Gowri S, Khalid M
    Comput Biol Med, 2024 Aug;178:108702.
    PMID: 38878397 DOI: 10.1016/j.compbiomed.2024.108702
    Artificial intelligence (AI) has emerged as a powerful tool to revolutionize the healthcare sector, including drug delivery and development. This review explores the current and future applications of AI in the pharmaceutical industry, focusing on drug delivery and development. It covers various aspects such as smart drug delivery networks, sensors, drug repurposing, statistical modeling, and simulation of biotechnological and biological systems. The integration of AI with nanotechnologies and nanomedicines is also examined. AI offers significant advancements in drug discovery by efficiently identifying compounds, validating drug targets, streamlining drug structures, and prioritizing response templates. Techniques like data mining, multitask learning, and high-throughput screening contribute to better drug discovery and development innovations. The review discusses AI applications in drug formulation and delivery, clinical trials, drug safety, and pharmacovigilance. It addresses regulatory considerations and challenges associated with AI in pharmaceuticals, including privacy, data security, and interpretability of AI models. The review concludes with future perspectives, highlighting emerging trends, addressing limitations and biases in AI models, and emphasizing the importance of collaboration and knowledge sharing. It provides a comprehensive overview of AI's potential to transform the pharmaceutical industry and improve patient care while identifying further research and development areas.
    Matched MeSH terms: Drug Delivery Systems*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links