The application of an HPLC bioactivity profiling/microtiter plate technique in conjunction with microprobe NMR instrumentation and access to the AntiMarin database has led to the isolation of a new 1. In this example, 1 was isolated from a cytotoxic fraction of an extract obtained from marine-derived Streptomyces sp. cultured on Starch Casein Agar (SCA) medium. The 1D and 2D (1)H NMR and ESIMS data obtained from 20 μg of compound 1 fully defined the structure. The known 2 was also isolated and readily dereplicated using this approach.
Matched MeSH terms: Drug Screening Assays, Antitumor/methods*
A novel series of 1,8-naphthalimide piperazinamide based benzenesulfonamides derivatives were designed and synthesized as carbonic anhydrase IX (CA IX) inhibitors and ferroptosis inducers for the treatment of triple-negative breast cancer (TNBC). The representative compound 9o exhibited more potent inhibitory activity and selective against CA IX over off-target CA II, compared with positive control SLC-0111. Molecular docking study was also performed to gain insights into the binding interactions of 9o in the binding pocket of CAIX. Moreover, compound 9o exhibited superior antitumor activities against breast cancer cells under hypoxia than that of normoxia conditions. Mechanism studies revealed that compound 9o could act as DNA intercalator and effectively suppressed cell migration, arrested the cell cycle at G1/S phase and induced apoptosis in MDA-MB-231 cells, while inducing ferroptosis accompanied by the dissipation of MMP and the elevation intracellular levels of ROS. Notably, in vivo studies demonstrated that 9o effectively inhibited tumor growth and metastasis in a highly metastatic murine breast cancer 4 T1 xenograft model. Taken together, this study suggests that compound 9o represents a potent and selective CA IX inhibitor and ferroptosis inducer for the treatment of TNBC.
Matched MeSH terms: Drug Screening Assays, Antitumor*
The current in vitro study was designed to investigate the anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A (BA), a chalcone derivative of known structure isolated from Boesenbergia rotunda. Human hepatocellular carcinoma (HepG2), colon adenocarcinoma (HT-29), non-small cell lung cancer (A549), prostate adenocarcinoma (PC3), and normal hepatic cells (WRL-68) were used to evaluate the cytotoxicity of BA using the MTT assay. The antioxidant activity of BA was assessed by the ORAC assay and compared to quercetin as a standard reference antioxidant. ORAC results are reported as the equivalent concentration of Trolox that produces the same level of antioxidant activity as the sample tested at 20 µg/mL. The toxic effect of BA on different cell types, reported as IC50, yielded 20.22 ± 3.15, 10.69 ± 2.64, 20.31 ± 1.34, 94.10 ± 1.19, and 9.324 ± 0.24 µg/mL for A549, PC3, HepG2, HT-29, and WRL-68, respectively. BA displayed considerable antioxidant activity, when the results of ORAC assay were reported as Trolox equivalents. BA (20 µg/mL) and quercetin (5 µg/mL) were equivalent to a Trolox concentration of 11.91 ± 0.23 and 160.32 ± 2.75 µM, respectively. Moreover, the anti-inflammatory activity of BA was significant at 12.5 to 50 µM and without any significant cytotoxicity for the murine macrophage cell line RAW 264.7 at 50 µM. The significant biological activities observed in this study indicated that BA may be one of the agents responsible for the reported biological activities of B. rotunda crude extract.
Matched MeSH terms: Drug Screening Assays, Antitumor/methods
A new xenicane diterpenoid, 15-deoxy-isoxeniolide-A (1) along with four known compounds 9-deoxy-isoxeniolide-A (2), isoxeniolide-A (3), xeniolide-A (4) and coraxeniolide-B (5) were isolated from the Bornean soft coral Xenia sp. The structures of these metabolites were elucidated on the basis of spectral analysis, NMR and HRESIMS. Compound 5 showed cytotoxic activity against ATL cell line, S1T.
Matched MeSH terms: Drug Screening Assays, Antitumor/methods
A series of 21 compounds isolated from Curcuma zedoaria was subjected to cytotoxicity test against MCF7; Ca Ski; PC3 and HT-29 cancer cell lines; and a normal HUVEC cell line. To rationalize the structure-activity relationships of the isolated compounds; a set of electronic; steric and hydrophobic descriptors were calculated using density functional theory (DFT) method. Statistical analyses were carried out using simple and multiple linear regressions (SLR; MLR); principal component analysis (PCA); and hierarchical cluster analysis (HCA). SLR analyses showed that the cytotoxicity of the isolated compounds against a given cell line depend on certain descriptors; and the corresponding correlation coefficients (R2) vary from 0%-55%. MLR results revealed that the best models can be achieved with a limited number of specific descriptors applicable for compounds having a similar basic skeleton. Based on PCA; HCA and MLR analyses; active compounds were classified into subgroups; which was in agreement with the cell based cytotoxicity assay.
Matched MeSH terms: Drug Screening Assays, Antitumor*
Polyethylene oxide (PEO)/chitosan (CS)/graphene oxide (GO) electrospun nanofibrous scaffolds were successfully developed via electrospinning process for controlled release of doxorubicin (DOX). The SEM analysis of nanofibrous scaffolds with different contents of GO (0.1, 0.2, 0.5 and 0.7wt.%) indicated that the minimum diameter of nanofibers was found to be 85nm for PEO/CS/GO 0.5% nanofibers. The π-π stacking interaction between DOX and GO with fine pores of nanofibrous scaffolds exhibited higher drug loading (98%) and controlled release of the DOX loaded PEO/CS/GO nanofibers. The results of DOX release from nanofibrous scaffolds at pH5.3 and 7.4 indicated strong pH dependence. The hydrogen bonding interaction between GO and DOX could be unstable under acidic conditions which resulted in faster drug release rate in pH5.3. The cell viability results indicated that DOX loaded PEO/CS/GO/DOX nanofibrous scaffold could be used as an alternative source of DOX compared with free DOX to avoid the side effects of free DOX. Thus, the prepared nanofibrous scaffold offers as a novel formulation for treatment of lung cancer.
Matched MeSH terms: Drug Screening Assays, Antitumor
Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.
Matched MeSH terms: Drug Screening Assays, Antitumor
Four new copper(II) complexes containing phosphonium substituted hydrazone (L) with the formulations [CuL]Cl(3), [Cu(phen)L]Cl(4), [Cu(bpy)L]Cl(5), [Cu(dbpy)L]Cl(6), (where L = doubly deprotonated hydrazone; phen = 1,10'-phenanthroline; bpy = 2,2'-bipyridine; dbpy = 5,5'-dimethyl-2,2'-bipyridine) have been synthesized. The compounds were characterized by elemental analysis, spectroscopic methods and in the case of crystalline products by X-ray crystallography. The cytotoxicity and topoisomerase I (topo I) inhibition activities of these compounds were studied. It is noteworthy that the addition of N,N-ligands to the copper(II) complex lead to the enhancement in the cytotoxicity of the compounds, especially against human prostate adenocarcinoma cell line (PC-3). Complex 4 exhibits the highest activity against PC-3 with the IC₅₀ value of 3.2 μΜ. The complexes can also inhibit topo I through the binding to DNA and the enzyme.
Matched MeSH terms: Drug Screening Assays, Antitumor
Resveratrol, a natural stilbene found in grapes and wines exhibits a wide range of pharmacological properties. Resveratrol is also known as a good chemopreventive agent for inhibiting carcinogenesis processes that target kinases, cyclooxygenases, ribonucleotide reductase and DNA polymerases. A total of 19 analogues with an amide moiety were synthesized and the cytotoxic effects of the analogues on a series of human cancer cell lines are reported. Three compounds 6d, 6i and 6n showed potent cytotoxicity against prostate cancer DU-145 (IC50=16.68 µM), colon cancer HT-29 (IC50=7.51 µM) and breast cancer MCF-7 (IC50=21.24 µM), respectively, which are comparable with vinblastine. The resveratrol analogues were synthesized using the Heck method.
Matched MeSH terms: Drug Screening Assays, Antitumor
A phytochemical investigation of the methanolic extract of the bark of Endiandra kingiana led to the isolation of seven new tetracyclic endiandric acid analogues, kingianic acids A-G (1-7), together with endiandric acid M (8), tsangibeilin B (9) and endiandric acid (10). Their structures were determined by 1D- and 2D-NMR analysis in combination with HRMS experiments. The structure of compounds 9 and 10 were confirmed by single-crystal X-ray diffraction analysis. These compounds were screened for Bcl-xL and Mcl-1 binding affinities and cytotoxic activity on various cancer cell lines. Compound 5 showed moderate cytotoxic activity against human colorectal adeno-carcinoma (HT-29) and lung adenocarcinoma epithelial (A549) cell lines, with IC50 values in the range 15-17 µM, and compounds 3, 6 and 9 exhibited weak binding affinity for the anti-apoptotic protein Mcl-1.
Matched MeSH terms: Drug Screening Assays, Antitumor
Andrographolide (Andro) is a diterpenoid that is isolated from Andrographis paniculata and reported to be active against several cancer cell lines. However, few in-depth studies have been carried out on its effects on ovarian cancer cell lines alone or in combination with cisplatin (Cis), which is commonly used to treat ovarian cancer. The aim of this study was to determine the anti-proliferative and apoptotic effects of Andro administered alone and in combination with Cis in the ovarian A2780 and A2780(cisR) cancer cell lines using five different sequences of administration (Cis/Andro h): 0/0h, 4/0 h, 0/4 h, 24/0 h and 0/24 h. The results were evaluated in terms of medium-effect dose (Dm) and combination indices (CI) using the CalcuSyn software. Unlike Cis, whose activity was lower in the resistant A2780(cisR) cell line than in the parent A2780 cell line, Andro was found to be three times more active in the A2780(cisR) cell line as compared to that in A2780 cell line. Synergism was observed when Cis and Andro were administered using the sequences 0/4 h and 4/0 h. The percentage of apoptotic cell death was found to be greater for the 0/4 h combination of Andro and Cis as compared to those values from single-drug treatments. The results may be clinically significant if confirmed in vivo.
Matched MeSH terms: Drug Screening Assays, Antitumor
A new furanodihydrobenzoxanthone, artomandin (1), together with three other flavonoid derivatives, artoindonesianin C, artonol B, and artochamin A, as well as β-sitosterol were isolated from the stem bark of Artocarpus kemando. The structures of these compounds were determined on the basis of spectral evidence. All of these compounds displayed inhibition effects to a very susceptible degree in cancer cell line tests. Compound 1 also exhibited significant antioxidant capacity in the free radical 1,1-diphenyl-2-picrylhydrazyl tests.
Matched MeSH terms: Drug Screening Assays, Antitumor
Liver cancer has become one of the major types of cancer with high mortality and liver cancer is not responsive to the current cytotoxic agents used in chemotherapy. The purpose of this study was to examine the in vitro cytotoxicity of goniothalamin on human hepatoblastoma HepG2 cells and normal liver Chang cells. The cytotoxicity of goniothalamin against HepG2 and liver Chang cell was tested using MTT cell viability assay, LDH leakage assay, cell cycle flow cytometry PI analysis, BrdU proliferation ELISA assay and trypan blue dye exclusion assay. Goniothalamin selectively inhibited HepG2 cells [IC₅₀ = 4.6 (±0.23) µM in the MTT assay; IC₅₀ = 5.20 (±0.01) µM for LDH assay at 72 hours], with less sensitivity in Chang cells [IC₅₀ = 35.0 (±0.09) µM for MTT assay; IC₅₀ = 32.5 (±0.04) µM for LDH assay at 72 hours]. In the trypan blue dye exclusion assay, the Viability Indexes were 52 ± 1.73% for HepG2 cells and 62 ± 4.36% for Chang cells at IC₅₀ after 72 hours. Cytotoxicity of goniothalamin was related to inhibition of DNA synthesis, as revealed by the reduction of BrdU incorporation. At 72 hours, the lowest concentration of goniothalamin (2.3 µL) retained 97.6% of normal liver Chang cells proliferation while it reduced HepG2 cell proliferation to 19.8% as compared to control. Besides, goniothalamin caused accumulation of hypodiploid apoptosis and different degree of G2/M arrested as shown in cell cycle analysis by flow cytometry. Goniothalamin selectively killed liver cancer cell through suppression of proliferation and induction of apoptosis. These results suggest that goniothalamin shows potential cytotoxicity against hepatoblastoma HepG2 cells.
Matched MeSH terms: Drug Screening Assays, Antitumor
Phytochemical and cytotoxicity investigations on organic solvent extracts of the aerial parts of Tinospora crispa have led to the isolation of 15 cis-clerodane-type furanoditerpenoids. Of these, nine compounds (1-9) were found to be new. Spectroscopic assignments of a previously reported compound, borapetoside A (13), were revised on the basis of HMQC and HMBC correlations. No discernible activity was observed when compounds 10-13 were subjected to evaluation in cytotoxicity assays against human prostate cancer (PC-3) and the normal mouse fibroblast (3T3) cell lines.
Matched MeSH terms: Drug Screening Assays, Antitumor
In our search for inhibitors of the antiapoptotic protein Bcl-xL, investigation of Xylopia caudata afforded a new diterpenoid, ent-trachyloban-4beta-ol (2), and five known ent-trachylobane or ent-atisane compounds. Only ent-trachyloban-18-oic acid (1) exhibited weak binding activity to Bcl-xL. These compounds exhibited cytotoxicity against KB and HCT-116 cell lines with IC(50) values between 10 and 30 microM. Bioconversion of compound 1 by Rhizopus arrhizus afforded new hydroxylated metabolites (3-7) of the ent-trachylobane and ent-kaurene type and compound 8, with a rearranged pentacyclic carbon framework that was named rhizopene. Compounds 3-8 were noncytotoxic to the two cancer cell lines, and compounds 3 and 5 exhibited only weak binding affinity for Bcl-xL.
Matched MeSH terms: Drug Screening Assays, Antitumor
A new resveratrol trimer, malaysianol A (1), five known resveratrol oligomers: laevifonol (2), ampelopsin E (3), α-viniferin (4), ε-viniferin (5), diptoindonesin A (6), and bergenin (7) have been isolated from the acetone extract of the stem bark of Dryobalanops aromatica by combination of vacuum and radial chromatography techniques. Their structures were established on the basis of their spectroscopic evidence and comparison with the published data. The cytotoxic activity of the compounds was tested against several cell lines in which compound 4 was found to inhibit strongly the growth of HL-60 cell line.
Matched MeSH terms: Drug Screening Assays, Antitumor
Seven new indole alkaloids of the Strychnos type, leuconicines A-G (1-7), and a new eburnan alkaloid, (-)-eburnamaline (8), were isolated from the stem-bark extract of two Malayan Leuconotis species. The structures of these alkaloids were established using NMR and MS analysis and in the case of 8 also by partial synthesis. Alkaloids 1-5 reversed multidrug resistance in vincristine-resistant KB cells.
Matched MeSH terms: Drug Screening Assays, Antitumor
Seven new indole alkaloids of the Aspidosperma type, jerantinines A-G (1-7), were isolated from a leaf extract of the Malayan Tabernaemontana corymbosa. The structures were established using NMR and MS analysis. Five of the alkaloids isolated and two derivatives (1-5, 8, 9) displayed pronounced in vitro cytotoxicity against human KB cells (IC50 < 1 microg/mL).
Matched MeSH terms: Drug Screening Assays, Antitumor
The cytotoxic structure-activity relationships among a series of xanthone derivatives from Mesua beccariana, Mesua ferrea and Mesua congestiflora were studied. Eleven xanthone derivatives identified as mesuarianone (1), mesuasinone (2), mesuaferrin A (3), mesuaferrin B (4), mesuaferrin C (5), 6-deoxyjacareubin (6), caloxanthone C (7), macluraxanthone (8), 1,5-dihydroxyxanthone (9), tovopyrifolin C (10) and α-mangostin (11) were isolated from the three Mesua species. The human cancer cell lines tested were Raji, SNU-1, K562, LS-174T, SK-MEL-28, IMR-32, HeLa, Hep G2 and NCI-H23. Mesuaferrin A (3), macluraxanthone (8) and α-mangostin (11) showed strong cytotoxicities as they possess significant inhibitory effects against all the cell lines. The structure-activity relationship (SAR) study revealed that the diprenyl, dipyrano and prenylated pyrano substituent groups of the xanthone derivatives contributed towards the cytotoxicities.
Matched MeSH terms: Drug Screening Assays, Antitumor
The present study reports a bioassay-guided isolation of β-caryophyllene from the essential oil of Aquilaria crassna. The structure of β-caryophyllene was confirmed using FT-IR, NMR and MS. The antimicrobial effect of β-caryophyllene was examined using human pathogenic bacterial and fungal strains. Its anti-oxidant properties were evaluated by DPPH and FRAP scavenging assays. The cytotoxicity of β-caryophyllene was tested against seven human cancer cell lines. The corresponding selectivity index was determined by testing its cytotoxicity on normal cells. The effects of β-caryophyllene were studied on a series of in vitro antitumor-promoting assays using colon cancer cells. Results showed that β-caryophyllene demonstrated selective antibacterial activity against S. aureus (MIC 3 ± 1.0 µM) and more pronounced anti-fungal activity than kanamycin. β-Caryophyllene also displayed strong antioxidant effects. Additionally, β-caryophyllene exhibited selective anti-proliferative effects against colorectal cancer cells (IC50 19 µM). The results also showed that β-caryophyllene induces apoptosis via nuclear condensation and fragmentation pathways including disruption of mitochondrial membrane potential. Further, β-caryophyllene demonstrated potent inhibition against clonogenicity, migration, invasion and spheroid formation in colon cancer cells. These results prompt us to state that β-caryophyllene is the active principle responsible for the selective anticancer and antimicrobial activities of A. crassnia. β-Caryophyllene has great potential to be further developed as a promising chemotherapeutic agent against colorectal malignancies.
Matched MeSH terms: Drug Screening Assays, Antitumor