Displaying publications 21 - 40 of 460 in total

Abstract:
Sort:
  1. Lau NS, Matsui M, Abdullah AA
    Biomed Res Int, 2015;2015:754934.
    PMID: 26199945 DOI: 10.1155/2015/754934
    Cyanobacteria are widely distributed Gram-negative bacteria with a long evolutionary history and the only prokaryotes that perform plant-like oxygenic photosynthesis. Cyanobacteria possess several advantages as hosts for biotechnological applications, including simple growth requirements, ease of genetic manipulation, and attractive platforms for carbon neutral production process. The use of photosynthetic cyanobacteria to directly convert carbon dioxide to biofuels is an emerging area of interest. Equipped with the ability to degrade environmental pollutants and remove heavy metals, cyanobacteria are promising tools for bioremediation and wastewater treatment. Cyanobacteria are characterized by the ability to produce a spectrum of bioactive compounds with antibacterial, antifungal, antiviral, and antialgal properties that are of pharmaceutical and agricultural significance. Several strains of cyanobacteria are also sources of high-value chemicals, for example, pigments, vitamins, and enzymes. Recent advances in biotechnological approaches have facilitated researches directed towards maximizing the production of desired products in cyanobacteria and realizing the potential of these bacteria for various industrial applications. In this review, the potential of cyanobacteria as sources of energy, bioactive compounds, high-value chemicals, and tools for aquatic bioremediation and recent progress in engineering cyanobacteria for these bioindustrial applications are discussed.
    Matched MeSH terms: Fermentation
  2. Omar FN, Hafid HS, Samsu Baharuddin A, Mohammed MAP, Abdullah J
    Planta, 2017 Sep;246(3):567-577.
    PMID: 28620814 DOI: 10.1007/s00425-017-2717-5
    MAIN CONCLUSION: X-ray microtomography results revealed that delignification process damaged the oil palm fibers, which correlated well with reduction of lignin components and increase of the phenolic content. Biodegradation investigation of natural fibers normally focuses on physico-chemical analysis, with less emphasis on physical aspect like fiber structures affect from microbial activity. In this work, the performance of Pycnoporus sanguineus to delignify oil palm empty fruit bunch fibers through solid-state fermentation utilizing various ratio of POME sludge was reported. In addition to tensile testing, physico-chemical and X-ray microtomography (µ-CT) analyses on the oil palm fibers were conducted to determine the effectiveness of the degradation process. The best ratio of fiber to fungi (60:40) was chosen based on the highest lignin loss and total phenolic content values and further investigation was performed to obtain fermentation kinetics data of both laccase and manganese peroxidase. µ-CT results revealed that delignification process damaged the pre-treated and untreated fibers structure, as evident from volume reduction after degradation process. This is correlated with reduction of lignin component and increase of the phenolic content, as well as lower stress-strain curves of the pre-treated fibers compared to the untreated ones (from tensile testing). It is suggested that P. sanguineus preferred to consume the outer layer of the fiber, before it penetrates through the cellular structure of the inner fiber.
    Matched MeSH terms: Fermentation
  3. Eissazadeh S, Moeini H, Dezfouli MG, Heidary S, Nelofer R, Abdullah MP
    Braz J Microbiol, 2017 Apr-Jun;48(2):286-293.
    PMID: 27998673 DOI: 10.1016/j.bjm.2016.10.017
    This study was carried out to express human epidermal growth factor (hEGF) in Pichia pastoris GS115. For this aim, the hEGF gene was cloned into the pPIC9K expression vector, and then integrated into P. pastoris by electroporation. ELISA-based assay showed that the amount of hEGF secreted into the medium can be affected by the fermentation conditions especially by culture medium, pH and temperature. The best medium for the optimal hEGF production was BMMY buffered at a pH range of 6.0 and 7.0. The highest amount of hEGF with an average yield of 2.27μg/mL was obtained through an induction of the culture with 0.5% (v/v) methanol for 60h. The artificial neural network (ANN) analysis revealed that changes in both pH and temperature significantly affected the hEGF production with the pH change had slightly higher impact on hEGF production than variations in the temperature.
    Matched MeSH terms: Fermentation
  4. Lau BF, Aminudin N, Abdullah N
    J Microbiol Methods, 2011 Oct;87(1):56-63.
    PMID: 21801760 DOI: 10.1016/j.mimet.2011.07.005
    Mushrooms are considered as important source of biologically active compounds which include low-molecular-mass protein/peptides (LMMP). In this study, we attempted to profile the LMMP from Lignosus rhinocerus, a wild medicinal mushroom, grown by static cultures (SC) and in stirred tank reactor (STR). Crude water extract (CWE) and protein fractions were profiled using H50 ProteinChip® arrays and SELDI-TOF-MS. Three protein peaks of 5.8, 6.9 and 9.1 kDa were found to be common to spectra of L. rhinocerus CWE from both culture conditions. Partial protein purification has resulted in detection of more peaks in the spectra of protein fractions. For protein fractions of L. rhinocerus cultured in STR, most peaks were observed in the range of 3-8 kDa whereas some peaks with molecular mass up to 14.3 kDa were noted in spectra of protein fractions from SC. Our results have demonstrated the optimization of profiling method using SELDI-TOF-MS for fungal LMMP.
    Matched MeSH terms: Fermentation*
  5. Tijani H, Yuzir A, Abdullah N
    Waste Manag, 2018 Aug;78:770-780.
    PMID: 32559969 DOI: 10.1016/j.wasman.2018.06.045
    In this study, a two-stage domesticated shear-loop anaerobic contact stabilization (SLACS) system is introduced as a new reactor design to enhance methane productivity with significant reduction in hydrogen sulphide (H2S) synthesis. Due to the rich sulfate content in industrial wastewaters, the initial fermentation phase of anaerobic digestion is highly acidifying and often leads to severe performance losses, digester's instability, and even culture crash. The SLACS system functions as a dissimilatory sulfate reduction - methanogenic reactor consisting of two compartments, a shear-loop anaerobic bed (SLAB) unit and an anaerobic plug flow (APF) unit. The functional role of the SLAB unit is not limited to acidogenesis but also sulfidogenic processes, which curtails H2S generation in the APF unit (methanogenic stage). Experimental observations indicated that pH serves a critical role in the cohabitation of acidogenic and sulfidogenic microbes in the SLAB unit. Although acidogenesis was not influenced by pH within the range of 4.5-6.0, it is vital to stabilize the pH of this unit at 5.4 to establish a steady sulfate reduction of above 75%. The highest desulfurization achieved in this compartment was 88% under a hydraulic retention time (HRT) of 4 h. With an average methane productivity of 256 mL g-1 VS, the methanogenic performance of the two-stage domesticated SLACS system shows a 32% methanogenic proficiency higher than that of the one-stage digestion system. Microbial community structure within the system carried out via Next Generation Sequencing (NGS) provided qualitative data on the sludge's sulfidogenic and methanogenic performance.
    Matched MeSH terms: Fermentation
  6. Abdul Rahman N, Abd Halim MR, Mahawi N, Hasnudin H, Al-Obaidi JR, Abdullah N
    Biomed Res Int, 2017;2017:2038062.
    PMID: 28503566 DOI: 10.1155/2017/2038062
    Corn was inoculated with Lactobacillus plantarum and Propionibacterium freudenreichii subsp. shermanii either independently or as a mixture at ensiling, in order to determine the effect of bacterial additives on corn silage quality. Grain corn was harvested at 32-37% of dry matter and ensiled in a 4 L laboratory silo. Forage was treated as follows: bacterial types: B0 (without bacteria-control), B1 (L. plantarum), B2 (P. freudenreichii subsp. shermanii), and B3 (combination of L. plantarum and P. freudenreichii subsp. shermanii). Each 2 kg of chopped forage was treated with 10 mL of bacterial culture and allowed to ferment for 27 days. The first experiment determined the most suitable wavelength for detection of bacteria (490 nm and 419 nm for B1 and B2, resp.) and the preferable inoculation size (1 × 105 cfu/g). The second experiment analysed the effect of B1 and B2 applied singly or as a mixture on the fermentation characteristics and quality of corn silage. L. plantarum alone increased crude protein (CP) and reduced pH rapidly. In a mixture with P. freudenreichii, the final pH was the lowest compared to other treatments. As a mixture, inclusion of bacteria resulted in silage with lower digestibility than control. Corn silage treated with L. plantarum or P. freudenreichii either alone or mixed together produced desirable silage properties; however, this was not significantly better than untreated silage.
    Matched MeSH terms: Fermentation
  7. Zain MM, Kofli NT, Rozaimah S, Abdullah S
    Pak J Biol Sci, 2011 May 01;14(9):526-32.
    PMID: 22032081
    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.
    Matched MeSH terms: Fermentation
  8. Mohamad, N.L., Mustapa Kamal, S.M., Abdullah, A.G.L.
    MyJurnal
    Xylitol can be obtained from lignocellulosic materials containing xylose. However, the fraction of lignocellulose converted through dilute acid hydrolysis contains compounds that inhibit the fermenting micro-organisms. These inhibitors can be removed from the hydrolysate by detoxification method, prior to fermentation. This study describes effectiveness of overliming process to reduce the toxicity of hydrolysates generated from pre-treatment of sago trunk for xylitol production. The overliming pH 9 and 10 was studied and the results showed that pH 9 was showed 20% of sugar loss, which is low compared to pH 10. Candida tropicalis strain was used to evaluate the fermentability of overlimed sago trunk hydrolysate at pH 9 and non-overlimed hydrolysate medium. Meanwhile, Xylitol accumulation and productivity in the overlimed medium was found to be higher than the non-treated medium. The maximum production of xylitol was increased up to 74% and converted within 76 h. The results obtained improved the fermentation process when compared with the nontreated medium.
    Matched MeSH terms: Fermentation
  9. Khadijah, O., Lee, K.K., Abdullah, M.F.F.
    ASM Science Journal, 2010;4(2):103-112.
    MyJurnal
    Two sequential statistical experimental designs were used to screen and investigate the dependence of the amount of biodegradation of Procion Red MX-8B (PR-MX8B) on the fermentation variables. Fourteen factors were screened using the Plackett-Burman design. Among these factors, the most significant variables which included yeast extract, corn steep solids and starch influencing PR-MX8B decolourisation were statistically elucidated for optimization. The optimum concentrations of 5.00 g/l yeast extract, 2.99 g/l starch and 1.89 g/l corn steep solids were predicted by applying the Box-Behnken design to the second order polynomial model fitted to the results obtained. The best predicted optimal conditions verified experimentally yielded 72.11% while the predicted value from the polynomial model was 79.17%. The experimental values were in good agreement with the predicted values with a 90.81% degree of accuracy.
    Matched MeSH terms: Fermentation
  10. Ghorbani M, Kianmehr MH, Sarlaki E, Angelidaki I, Yang Y, Tabatabaei M, et al.
    Sci Total Environ, 2023 Sep 20;892:164526.
    PMID: 37257609 DOI: 10.1016/j.scitotenv.2023.164526
    The livestock industry needs to use crop straws that are highly digestible to improve feed productivity and reduce ruminal methane emissions. Hence, this study aimed to use the ozonation and pelleting processes to enhance the digestibility and reduce the ruminal methane emissions of wheat straw enriched with two nitrogen sources (i.e., urea and heat-processed broiler litter). Various analyses were conducted on the pellets, including digestibility indicators, mechanical properties, surface chemistry functionalization, chemical-spectral-structural features, and energy requirements. For comparison, loose forms of the samples were also analyzed. The nitrogen-enriched ozonated wheat straw pellets had 43.06 % lower lignin, 28.30 % higher gas production for 24 h, 12.28 % higher metabolizable energy, 13.78 % higher in vitro organic matter digestibility for 24 h, and 28.81 % higher short-chain fatty acid content than the nitrogen-enriched loose sample. The reduction of methane emissions by rumen microorganisms of nitrogen-enriched wheat straw by ozonation, pelleting, and ozonation-pelleting totaled 89.15 %, 23.35 %, and 66.98 %, respectively. The ozonation process resulted in a 64 % increase in the particle density, a 5.5-time increase in the tensile strength, and a 75 % increase in the crushing energy of nitrogen-enriched wheat straw. In addition, ozone treatment could also reduce the specific and thermal energy consumption required in the pelleting process by 15.10 % and 7.61 %, respectively.
    Matched MeSH terms: Fermentation
  11. Norsyahida A, Rahmah N, Ahmad RM
    Lett Appl Microbiol, 2009 Nov;49(5):544-50.
    PMID: 19832937 DOI: 10.1111/j.1472-765X.2009.02694.x
    To investigate the effects of feeding and induction strategies on the production of BmR1 recombinant antigen.
    Matched MeSH terms: Fermentation
  12. Venil CK, Zakaria ZA, Ahmad WA
    Acta Biochim. Pol., 2015;62(2):185-90.
    PMID: 25979288 DOI: 10.18388/abp.2014_870
    Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497.
    Matched MeSH terms: Fermentation
  13. Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu'datt MH, Kubow S, et al.
    Food Chem, 2024 Jun 15;443:138574.
    PMID: 38309026 DOI: 10.1016/j.foodchem.2024.138574
    This study aimed to assess the technique of natural fermentation by applying water kefir to the casein protein. The diverse microorganisms and their enzymes found naturally in the water kefir can influence casein's characteristics. The fermented casein's protein quality (digestibility and secondary protein structure) and composition (total soluble solids and nutritive and non-nutritive substances) were investigated. Our findings revealed that the fermented casein's protein digestibility and total phenolic content increased from 82.46 to 88.60 % and 7.6 to 8.0 mg gallic acid equivalent/100 g, respectively. In addition, their surface charge and hydrophobicity changed from -30.06 to -34.93 mV and 286.9 to 213.7, respectively. Furthermore, the fermented casein's secondary protein components, α-helix (decreased from 13.66 to 8.21 %) and random coil (increased from 16.88 to 19.61 %), were also altered during the fermentation. Based on these findings, the water kefir fermentation approach could be an effective, practical, non-thermal approach for improving casein's protein quality and composition.
    Matched MeSH terms: Fermentation
  14. Olorunnisola KS, Jamal P, Alam MZ
    3 Biotech, 2018 Oct;8(10):429.
    PMID: 30305998 DOI: 10.1007/s13205-018-1452-3
    Kinetic analysis of solid-state fermentation (SSF) of fruit peels with Phanerochaete chrysosporium and Schizophyllum commune mixed culture was studied in flask and 7 kg capacity reactor. Modified Monod kinetic model suggested by Haldane sufficiently described microbial growth with co-efficient of determination (R2) reaching 0.908 at increased substrate concentration than the classical Monod model (R2 = 0.932). Leudeking-Piret model adequately described product synthesis in non-growth-dependent manner (R2 = 0.989), while substrate consumption by P. chrysosporium and S. commune fungal mixed culture was growth-dependent (R2 = 0.938). Hanes-Woolf model sufficiently represented α-amylase and cellulase enzymes synthesis (R2 = 0.911 and 0.988); α-amylase had enzyme maximum velocity (Vmax) of 25.19 IU/gds/day and rate constant (Km) of 11.55 IU/gds/day, while cellulase enzyme had Vmax of 3.05 IU/gds/day and Km of 57.47 IU/gds/day. Product yield in the reactor increased to 32.65 mg/g/day compared with 28.15 mg/g/day in shake flask. 2.5 cm media thickness was adequate for product formation within a 6 day SSF in the tray reactor.
    Matched MeSH terms: Fermentation
  15. Khan MH, Ali S, Fakhru'l-Razi A, Alam Z
    J Environ Sci Health B, 2007 May;42(4):381-6.
    PMID: 17474017
    Cellulase production was carried out by solid state bioconversion (SSB) method using rice straw, a lignocellulosic material and agricultural waste, as the substrate of three Trichoderma spp. and Phanerochaete chrysosporium in lab-scale experiments. The results were compared to select the best fungi among them for the production of cellulase. Phanerochaete chrysosporium was found to be the best among these species of fungi, which produced the highest cellulase enzyme of 1.43 IU/mL of filter paper activity (FPase) and 2.40 IU/mL of carboxymethylcellulose activity (CMCase). The "glucosamine" and "reducing sugar" parameters were observed to evaluate the growth and substrate utilization in the experiments. In the case of Phanerochaete Chrysosporium, the highest glucosamine concentration was 1.60 g/L and a high concentration of the release of reducing sugar was measured as 2.58 g/L obtained on the 4th day of fermentation. The pH values were also recorded. The range of the pH was about 5.15 to 5.56 in the case of Phanerochaete Chrysosporium.
    Matched MeSH terms: Fermentation
  16. Alalayah WM, Kalil MS, Kadhum AA, Jahim JM, Jaapar SZ, Alauj NM
    Pak J Biol Sci, 2009 Nov 15;12(22):1462-7.
    PMID: 20180320
    A two-stage fermentation process consisting of dark and photo-fermentation periods was carried out in a batch reactor. In the first stage, glucose was fermented in the dark stage using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564; CSN1-4) to produce acetate, CO2 and H2. The acetate produced in the first stage is fermented to H2 and CO2 by Rhodobacter sphaeroides NCIMB 8253 for further hydrogen production in the second, illuminated stage. The yield of hydrogen in the first stage was about 3.10 mol H2 (mol glucose)(-1) at a glucose concentration of 10 g L(-1), pH 6 +/- 0.2 and 37 degrees C and the second stage yield was about 1.10-1.25 mol H2 (mol acetic acid)(-1) at pH 6.8 +/- 0.2 and 32 degrees C, without removal of the Clostridium CSN1-4. The overall yield of hydrogen in the two-stage process, with glucose as the main substrate was higher than single-stage fermentation.
    Matched MeSH terms: Fermentation/physiology*
  17. El-Sharkawy S, Yusuf Z, Pihie AH, Ali AM
    Boll Chim Farm, 1996 Jan;135(1):35-40.
    PMID: 9004738
    Of the twenty microorganisms screened for metabolism of goniothalamin only Streptomyces aurofaciens ATCC 10762 and Nocardia species NRRL 5646 produced two metabolites, 3,4-dihydrogoniothalamin and 3,4,7,8 tetrahydrogoniothalamin. The identity of the isolated metabolites were established using TLC, HPLC, MS, IR, and 1H- and 13C-NMR spectroscopy. In addition, the substrate had been transformed into two unknown metabolites by Aspergillus niger ATCC 11394 and Septomyxa affinis ATCC 6737 in low yield. Three of the metabolites were also detected and identified in the urine and blood samples of the goniothalamin-treated Sprague-Dawley rats. The obtained results are in agreement with and support the principle of microbial models of mammalian metabolism.
    Matched MeSH terms: Fermentation
  18. Mohamad NE, Keong Yeap S, Beh BK, Romli MF, Yusof HM, Kristeen-Teo YW, et al.
    J Sci Food Agric, 2018 Jan;98(2):534-540.
    PMID: 28631270 DOI: 10.1002/jsfa.8491
    BACKGROUND: Vinegar is widely used as a food additive, in food preparation and as a food supplement. This study compared the phenolic acid profiles and in vivo toxicities, and antioxidant and immunomodulatory effects of coconut, nipah and pineapple juice vinegars, which were respectively prepared via a two-step fermentation using Saccharomyces cerevisiae 7013 INRA and Acetobacter aceti vat Europeans.

    RESULTS: Pineapple juice vinegar, which had the highest total phenolic acid content, also exhibited the greatest in vitro antioxidant capacity compared to coconut juice and nipah juice vinegars. Following acute and sub-chronic in vivo toxicity evaluation, no toxicity and mortality were evident and there were no significant differences in the serum biochemical profiles between mice administered the vinegars versus the control group. In the sub-chronic toxicity evaluation, the highest liver antioxidant levels were found in mice fed with pineapple juice vinegar, followed by coconut juice and nipah juice vinegars. However, compared to the pineapple juice and nipah juice vinegars, the mice fed with coconut juice vinegar, exhibited a higher population of CD4+ and CD8+ T-lymphocytes in the spleen, which was associated with greater levels of serum interleukin-2 and interferon-γ cytokines.

    CONCLUSIONS: Overall, the data suggested that not all vinegar samples cause acute and sub-chronic toxicity in vivo. Moreover, the in vivo immunity and organ antioxidant levels were enhanced, to varying extents, by the phenolic acids present in the vinegars. The results obtained in this study provide appropriate guidelines for further in vivo bioactivity studies and pre-clinical assessments of vinegar consumption. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Fermentation
  19. Mohd Yusof H, Ali NM, Yeap SK, Ho WY, Beh BK, Koh SP, et al.
    PMID: 24058369 DOI: 10.1155/2013/274274
    Recently, soybean tempeh has received great attention due to many advantages such as higher nutritional value, lower production cost, and shorter fermentation time. In this study, the in vivo hepatoprotective and antioxidant effects of nutrient enriched soybean tempeh (NESTE) were determined. NESTE fermentation process which involved anaerobic incubation was previously proclaimed to increase the content of amino acids and antioxidant properties remarkably. The evaluation of histological sections, serum biochemical markers (aspartate aminotransferase (AST), alanine aminotransferase (ALT), and cholesterol and triglycerides (TG)), liver immune response level (nitric oxide (NO)) and liver antioxidant level (superoxide dismutase (SOD), ferric reducing antioxidant power (FRAP), and malondialdehyde (MDA)) was conducted in order to compare the effects of nonfermented soybean extract (SBE) and fermented soybean extract (NESTE) on alcohol-induced liver damage in mice. Results demonstrated that 1000 mg/kg of NESTE can significantly reduce the levels of AST, ALT, cholesterol, TG, MDA, and NO. On the other hand, it also raised the level of SOD and FRAP. Furthermore, the histological examination on 1000 mg/kg NESTE treatment group showed that this extract was capable of recovering the damaged hepatocytes to their normal structures. Thus, it can be concluded that NESTE produced through fermentation process was able to enhance hepatoprotective and antioxidant effects in vivo.
    Matched MeSH terms: Fermentation
  20. Alrosan M, Tan TC, Koh WY, Easa AM, Gammoh S, Alu'datt MH
    Crit Rev Food Sci Nutr, 2023;63(25):7677-7691.
    PMID: 35266840 DOI: 10.1080/10408398.2022.2049200
    Demands for high nutritional value-added food products and plant-based proteins have increased over the last decade, in line with the growth of the human population and consumer health awareness. The quality of the plant-based proteins depends on their digestibility, amino acid content, and residues of non-nutritive compounds, such as phenolic compounds, anti-nutritional compounds, antioxidants, and saponins. The presence of these non-nutritive compounds could have detrimental effects on the quality of the proteins. One of the solutions to address these shortcomings of plant-based proteins is fermentation, whereby enzymes that present naturally in microorganisms used during fermentation are responsible for the cleavage of the bonds between proteins and non-nutritive compounds. This mechanism has pronounced effects on the non-nutritive compounds, resulting in the enhancement of protein digestibility and functional properties of plant-based proteins. We assert that the types of plant-based proteins and microorganisms used during fermentation must be carefully addressed to truly enhance the quality, functional properties, and health functionalities of plant-based proteins.Supplemental data for this article is available online at here. show.
    Matched MeSH terms: Fermentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links