Displaying publications 21 - 40 of 159 in total

Abstract:
Sort:
  1. Iqbal SZ, Usman S, Razis AFA, Basheir Ali N, Saif T, Asi MR
    Int J Environ Res Public Health, 2020 Aug 03;17(15).
    PMID: 32756472 DOI: 10.3390/ijerph17155602
    The main goal of the present research was to explore the seasonal variation of deoxynivalenol (DON) in wheat, corn, and their products, collected during 2018-2019. Samples of 449 of wheat and products and 270 samples of corn and their products were examined using reverse-phase liquid chromatography with a UV detector. The findings of the present work showed that 104 (44.8%) samples of wheat and products from the summer season, and 91 (41.9%) samples from winter season were contaminated with DON (concentration limit of detections (LOD) to 2145 µg/kg and LOD to 2050 µg/kg), from summer and winter seasons, respectively. In corn and products, 87 (61.2%) samples from summer and 57 (44.5%) samples from winter season were polluted with DON with levels ranging from LOD to 2967 µg/kg and LOD to 2490 µg/kg, from the summer and winter season, respectively. The highest dietary intake of DON was determined in wheat flour 8.84 µg/kg body weight/day from the summer season, and 7.21 µg/kg body weight/day from the winter season. The findings of the work argued the need to implement stringent guidelines and create awareness among farmers, stakeholders, and traders of the harmful effect of DON. It is mostly observed that cereal crops are transported and stockpiled in jute bags, which may absorb moisture from the environment and produce favorable conditions for fungal growth. Therefore, these crops must store in polyethylene bags during transportation and storage, and moisture should be controlled. It is highly desirable to use those varieties that are more resistant to fungi attack. Humidity and moisture levels need to be controlled during storage and transportation.
    Matched MeSH terms: Food Contamination/analysis
  2. Iqbal SZ, Rehman B, Selamat J, Akram N, Ahmad MN, Sanny M, et al.
    J Food Prot, 2020 Aug 01;83(8):1284-1288.
    PMID: 32678886 DOI: 10.4315/0362-028X.JFP-19-361
    ABSTRACT: A total of 133 samples of whole wheat and barley grains and wheat and barley flour collected from retail markets in the main cities of Punjab, Pakistan, were analyzed for the mycotoxin fumonisin B1 (FB1) using reverse phase high-performance liquid chromatography with fluorescence detection. Of these samples, 120 (90%) were positive for FB1, and 75 (63%) of the 120 positive samples had FB1 concentrations higher than the European Union maximum (200 μg/kg). The limit of detection was 4 μg/kg. The highest mean (±SD) concentration of FB1 was found in whole wheat samples, 980.5 ± 211.4 μg/kg. The calculated dietary intakes of FB1 from wheat and barley flours were 4,456 and 503.7 ng/g of body weight per day, respectively.
    Matched MeSH terms: Food Contamination/analysis
  3. Iqbal SZ, Rabbani T, Asi MR, Jinap S
    Food Chem, 2014 Aug 15;157:257-62.
    PMID: 24679779 DOI: 10.1016/j.foodchem.2014.01.129
    Aflatoxins (AFs), ochratoxin A (OTA) and zearalenone (ZEN) were analysed in 237 breakfast cereal samples collected from central areas of Punjab, Pakistan. According to the results, 41% of the samples were found contaminated with AFs, out of which 16% and 8% samples were found to be above the European Union (EU) maximum content for AFB1 and total AFs, respectively. About 48% samples were found contaminated with OTA and 30% samples were found to be above the EU maximum content. The results have shown that 53% samples of breakfast cereals were found contaminated with ZEN and 8% samples were found to be above the permissible limit of EU. The highest mean level of AFB1 and total AFs were found in semolina i.e. 3.60 and 4.55 μg/kg, respectively. Similarly, semolina was the highest contaminated breakfast cereal for OTA (3.90 μg/kg), while cornflakes (brand B) was found highest contaminated with ZEN (13.45 μg/kg).
    Matched MeSH terms: Food Contamination/analysis
  4. Muhamad Rosli SH, Lau MS, Khalid T, Maarof SK, Jeyabalan S, Sirdar Ali S, et al.
    PMID: 36947708 DOI: 10.1080/19440049.2023.2183068
    3-Monochloropropane-1,2-diol esters (3-MCPDE) are food contaminants commonly found in refined vegetable oils and fats, which have possible carcinogenic implications in humans. To investigate this clinically, we conducted an occurrence level analysis on eight categories of retail and cooked food commonly consumed in Malaysia. This was used to estimate the daily exposure level, through a questionnaire-based case-control study involving 77 subjects with renal cancer, with 80 matching controls. Adjusted Odds Ratio (AOR) was calculated using the multiple logistic regression model adjusted for confounding factors. A pooled estimate of total 3-MCPDE intake per day was compared between both groups, to assess exposure and disease outcome. Among the food categories analysed, vegetable fats and oils recorded the highest occurrence levels (mean: 1.91 ± 1.90 mg/kg), significantly more than all other food categories (p food safety measures.
    Matched MeSH terms: Food Contamination/analysis
  5. Tan MS, Wang Y, Dykes GA
    Foodborne Pathog Dis, 2013 Nov;10(11):992-4.
    PMID: 23941519 DOI: 10.1089/fpd.2013.1536
    This study aimed to establish, as a proof of concept, whether bacterial cellulose (BC)-derived plant cell wall models could be used to investigate foodborne bacterial pathogen attachment. Attachment of two strains each of Salmonella enterica and Listeria monocytogenes to four BC-derived plant cell wall models (namely, BC, BC-pectin [BCP], BC-xyloglucan [BCX], and BC-pectin-xyloglucan [BCPX]) was investigated. Chemical analysis indicated that the BCPX composite (31% cellulose, 45.6% pectin, 23.4% xyloglucan) had a composition typical of plant cell walls. The Salmonella strains attached in significantly (p<0.05) higher numbers (~6 log colony-forming units [CFU]/cm(2)) to the composites than the Listeria strains (~5 log CFU/cm(2)). Strain-specific differences were also apparent with one Salmonella strain, for example, attaching in significantly (p<0.05) higher numbers to the BCX composite than to the other composites. This study highlights the potential usefulness of these composites to understand attachment of foodborne bacteria to fresh produce.
    Matched MeSH terms: Food Contamination/analysis
  6. Rohman A, Ariani R
    ScientificWorldJournal, 2013;2013:740142.
    PMID: 24319381 DOI: 10.1155/2013/740142
    Fourier transform infrared spectroscopy (FTIR) combined with multivariate calibration of partial least square (PLS) was developed and optimized for the analysis of Nigella seed oil (NSO) in binary and ternary mixtures with corn oil (CO) and soybean oil (SO). Based on PLS modeling performed, quantitative analysis of NSO in binary mixtures with CO carried out using the second derivative FTIR spectra at combined frequencies of 2977-3028, 1666-1739, and 740-1446 cm(-1) revealed the highest value of coefficient of determination (R (2), 0.9984) and the lowest value of root mean square error of calibration (RMSEC, 1.34% v/v). NSO in binary mixtures with SO is successfully determined at the combined frequencies of 2985-3024 and 752-1755 cm(-1) using the first derivative FTIR spectra with R (2) and RMSEC values of 0.9970 and 0.47% v/v, respectively. Meanwhile, the second derivative FTIR spectra at the combined frequencies of 2977-3028 cm(-1), 1666-1739 cm(-1), and 740-1446 cm(-1) were selected for quantitative analysis of NSO in ternary mixture with CO and SO with R (2) and RMSEC values of 0.9993 and 0.86% v/v, respectively. The results showed that FTIR spectrophotometry is an accurate technique for the quantitative analysis of NSO in binary and ternary mixtures with CO and SO.
    Matched MeSH terms: Food Contamination/analysis*
  7. Leong SS, Korel F, King JH
    Microb Pathog, 2023 Dec;185:106418.
    PMID: 37866551 DOI: 10.1016/j.micpath.2023.106418
    "Fried rice syndrome" originated from the first exposure to a fried rice dish contaminated with Bacillus cereus. This review compiles available data on the prevalence of B. cereus outbreak cases that occurred between 1984 and 2019. The outcome of B. cereus illness varies dramatically depending on the pathogenic strain encounter and the host's immune system. B. cereus causes a self-limiting, diarrheal illness caused by heat-resistant enterotoxin proteins, and an emetic illness caused by the deadly toxin named cereulide. The toxins together with their extrinsic factors are discussed. The possibility of more contamination of B. cereus in protein-rich food has also been shown. Therefore, the aim of this review is to summarize the available data, focusing mainly on B. cereus physiology as the causative agent for "fried rice syndrome." This review emphasizes the prevalence of B. cereus in starchy food contamination and outbreak cases reported, the virulence of both enterotoxins and emetic toxins produced, and the possibility of contaminated in protein-rich food. The impact of emetic or enterotoxin-producing B. cereus on public health cannot be neglected. Thus, it is essential to constantly monitor for B. cereus contamination during food handling and hygiene practices for food product preparation.
    Matched MeSH terms: Food Contamination/analysis
  8. Nasyitah Sobihah N, Ahmad Zaharin A, Khairul Nizam M, Ley Juen L, Kyoung-Woong K
    Chemosphere, 2018 Apr;197:318-324.
    PMID: 29360594 DOI: 10.1016/j.chemosphere.2017.12.187
    Mariculture fish contains a rich source of protein, but some species may bioaccumulate high levels of heavy metals, making them unsafe for consumption. This study aims to identify heavy metal concentration in Lates calcarifer (Barramudi), Lutjanus campechanus (Red snapper) and Lutjanus griseus (Grey snapper). Three species of mariculture fish, namely, L. calcarifer, L. campechanus and L. griseus were collected for analyses of heavy metals. The concentration of heavy metal (As, Cd, Cu, Cr, Fe, Pb, Mn, Ni, Se, and Zn) was determined using inductive coupled plasma mass spectrometry (ICP-MS). The distribution of heavy metals mean concentration in muscle is Zn > Fe > As > Se > Cr > Cu > Mn > Pb > Ni > Cd for L. calcarifer, Fe > Zn > Cr > As > Ni > Mn > Se > Cu > Pb > Cd for L. campechanus and Fe > Zn > Cr > Ni > Se > Cu > As > Mn > Pb > Cd for L. griseus. Among all of the species under investigation, the highest concentration of Fe was found in the muscle tissue of L. campechanus (19.985 ± 1.773 mg kg-1) and liver tissue of L. griseus (58.248 ± 8.736 mg kg-1). Meanwhile, L. calcarifer has the lowest concentration of Cd in both muscle (0.007 ± 0.004 mg kg-1) and liver tissue (0.027 ± 0.016 mg kg-1). The heavy metal concentration in muscle tissue is below the permissible limit guidelines stipulated by the Food & Agriculture Organization, 1983 and Malaysia Food Act, 1983. The concentration of heavy metals varies significantly among fish species and tissues. L. campechanus was found to have a higher ability to accumulate heavy metals as compared to the other two species (p food intoxication.
    Matched MeSH terms: Food Contamination/analysis
  9. Ahmed ASS, Sultana S, Habib A, Ullah H, Musa N, Hossain MB, et al.
    PLoS One, 2019;14(10):e0219336.
    PMID: 31622361 DOI: 10.1371/journal.pone.0219336
    The Karnaphuli River estuary, located in southeast coast of Bangladesh, is largely exposed to heavy metal contamination as it receives a huge amount of untreated industrial effluents from the Chottagram City. This study aimed to assess the concentrations of five heavy metals (As, Pb, Cd, Cr and Cu) and their bioaccumulation status in six commercially important fishes, and also to evaluate the potential human health risk for local consumers. The hierarchy of the measured concentration level (mg/kg) of the metals was as follows: Pb (13.88) > Cu (12.10) > As (4.89) > Cr (3.36) > Cd (0.39). The Fulton's condition factor denoted that fishes were in better 'condition' and most of the species were in positive allometric growth. The bioaccumulation factors (BAFs) of the contaminants observed in the species were in the following orders: Cu (1971.42) > As (1042.93) > Pb (913.66) > Cr (864.99) > Cd (252.03), and among the specimens, demersal fish, Apocryptes bato appeared to be the most bioaccumulative organism. Estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI) and carcinogenic risk (CR) assessed for potential human health risk implications suggest that the values were within the acceptable threshold for both adults and children. However, calculated CR values indicated that both age groups were not far from the risk, and HI values demonstrated that children were nearly 6 times more susceptible to non-carcinogenic and carcinogenic health effects than adults.
    Matched MeSH terms: Food Contamination/analysis*
  10. Syed MA, Arshad JH, Mat S
    J Environ Sci Health B, 1992 Aug;27(4):347-54.
    PMID: 1527358
    Paddy (unmilled rice), milled rice and maize-bound 14C residues were prepared using 14C-succinate-labelled malathion at 10 and 152 ppm. After 3 months, the bound residues accounted for 12%, 6.5% and 17.7% of the applied dose in paddy, milled rice and maize respectively in the grains treated at 10 ppm. The corresponding values for the 152 ppm were 16.6%, 8.5% and 18.8%. Rats fed milled rice - bound 14C-residues eliminated 61% of the 14C in the faeces and 28% in the urine. The corresponding percentages for paddy and maize were 72%, 9% and 53%, 41% respectively; indicating that bound residues from milled rice and maize were moderately bioavailable. When rice-bound malathion residues (0.65 ppm in feed) were administered to rats in a 5 week feeding study, no signs of toxicity were observed. Plasma and RBC cholinesterase activities were slightly inhibited: blood urea nitrogen was significantly elevated in the test animals. Other parameters examined showed no or marginal changes.
    Matched MeSH terms: Food Contamination/analysis
  11. Meliana C, Liu J, Show PL, Low SS
    Bioengineered, 2024 Dec;15(1):2310908.
    PMID: 38303521 DOI: 10.1080/21655979.2024.2310908
    The burden of food contamination and food wastage has significantly contributed to the increased prevalence of foodborne disease and food insecurity all over the world. Due to this, there is an urgent need to develop a smarter food traceability system. Recent advancements in biosensors that are easy-to-use, rapid yet selective, sensitive, and cost-effective have shown great promise to meet the critical demand for onsite and immediate diagnosis and treatment of food safety and quality control (i.e. point-of-care technology). This review article focuses on the recent development of different biosensors for food safety and quality monitoring. In general, the application of biosensors in agriculture (i.e. pre-harvest stage) for early detection and routine control of plant infections or stress is discussed. Afterward, a more detailed advancement of biosensors in the past five years within the food supply chain (i.e. post-harvest stage) to detect different types of food contaminants and smart food packaging is highlighted. A section that discusses perspectives for the development of biosensors in the future is also mentioned.
    Matched MeSH terms: Food Contamination/analysis
  12. Ismail NAH, Wee SY, Aris AZ
    Mar Pollut Bull, 2018 Feb;127:536-540.
    PMID: 29475693 DOI: 10.1016/j.marpolbul.2017.12.043
    Endocrine disrupting compound (EDC) contamination in food is a global concern. Concerning potential environmental and human health exposed to EDCs via food intake, an experiment was conducted on the selected EDCs concentration in the mariculture fish, Trachinotus blochii (golden pomfret), Lutjanus campechanus (snapper), and Lates calcarifer (sea bass) at Pulau Kukup, Johor. Mariculture activity at Pulau Kukup involves active export of fishes to Singapore and Indonesia. The recovery of BPA (bisphenol A), 4OP (4-octylphenol), and 4NP (4-nonylphenol) were 61.54%-93.00%, 16.79%-17.13%, and 61.24%-71.49%, respectively. Relatively high concentration of BPA was recorded in T. blochii (0.322ng/g), followed by L. calcarifer (0.124ng/g) and L. campechanus (0.023ng/g). Furthermore, 4OP and 4NP were detected only in T. blochii at concentrations of 0.084ng/g and 0.078ng/g, respectively. The results of the present study provide insights on monitoring and managing mariculture activity in relation to environmental protection and food safety.
    Matched MeSH terms: Food Contamination/analysis
  13. Suleiman M, Jelip J, Rundi C, Chua TH
    Am J Trop Med Hyg, 2017 Dec;97(6):1731-1736.
    PMID: 29016314 DOI: 10.4269/ajtmh.17-0589
    During the months of January-February and May-June 2013 coinciding with the red tide occurrence in Kota Kinabalu, Sabah, Malaysia, six episodes involving 58 cases of paralytic shellfish poisoning (PSP) or saxitoxin (STX) poisoning and resulting in four deaths were reported. Many of them were intoxicated from consuming shellfish purchased from the markets, whereas others were intoxicated from eating shellfish collected from the beach. Levels of STX in shellfish collected from the affected areas were high (mean 2,920 ± 780 and 360 ± 140 µg STX equivalents/100 g shellfish meat respectively for the two periods). The count of toxic dinoflagellates (Pyrodinium bahamense var compressum) of the sea water sampled around the coast was also high (mean 34,200 ± 10,300 cells/L). Species of shellfish containing high levels of STX were Atrina fragilis, Perna viridis, and Crassostrea belcheri. The age of victims varied from 9 to 67 years. Symptoms presented were typical of PSP, such as dizziness, numbness, vomiting, and difficulty in breathing. Recommended steps to prevent or reduce PSP in future red tide season include better monitoring of red tide occurrence, regular sampling of shellfish for determination of STX level, wider dissemination of information on the danger of eating contaminated shellfish among the communities, fishermen, and fishmongers.
    Matched MeSH terms: Food Contamination/analysis
  14. Basri KN, Hussain MN, Bakar J, Sharif Z, Khir MFA, Zoolfakar AS
    Spectrochim Acta A Mol Biomol Spectrosc, 2017 Feb 15;173:335-342.
    PMID: 27685001 DOI: 10.1016/j.saa.2016.09.028
    Short wave near infrared spectroscopy (NIR) method was used to detect the presence of lard adulteration in palm oil. MicroNIR was set up in two different scan modes to study the effect of path length to the performance of spectral measurement. Pure and adulterated palm oil sample were classified using soft independent modeling class analogy (SIMCA) algorithm with model accuracy more than 0.95 reported for both transflectance and transmission modes. Additionally, by employing partial least square (PLS) regression, the coefficient of determination (R2) of transflectance and transmission were 0.9987 and 0.9994 with root mean square error of calibration (RMSEC) of 0.5931 and 0.6703 respectively. In order to remove the uninformative variables, variable selection using cumulative adaptive reweighted sampling (CARS) has been performed. The result of R2 and RMSEC after variable selection for transflectance and transmission were improved significantly. Based on the result of classification and quantification analysis, the transmission mode has yield better prediction model compared to the transflectance mode to distinguish the pure and adulterated palm oil.
    Matched MeSH terms: Food Contamination/analysis*
  15. Goh KM, Wong YH, Ang MY, Yeo SCM, Abas F, Lai OM, et al.
    Food Res Int, 2019 07;121:553-560.
    PMID: 31108780 DOI: 10.1016/j.foodres.2018.12.013
    The detection of 3- and 2-MCPD ester and glycidyl ester was transformed from selected ion monitoring (SIM) mode to multiple reaction monitoring (MRM) mode by gas chromatography triple quadrupole spectrometry. The derivatization process was adapted from AOCS method Cd 29a-13. The results showed that the coefficient of determination (R2) of all detected compounds obtained from both detection mode was comparable, which falls between 0.997 and 0.999. The limit of detection and quantification (LOD and LOQ) were improved in MRM mode as compared to SIM mode. In MRM mode, the LOD of 3- and 2-MCPD ester was achieved 0.01 mg/kg while the LOQ was 0.05 mg/kg. Besides, LOD and LOQ of glycidyl ester were 0.024 and 0.06 mg/kg respectively. A blank spiked with MCPD esters (0.03, 0.10 and 0.50 mg/kg) and GE (0.06, 0.24 and 1.20 mg/kg) were chosen for repeatability and recovery tests. MRM mode showed better repeatability in area ratio and recovery with relative standard deviation (RSD %) food samples from different category were performed by repeated injections in both detection modes. Briefly, the contaminants from crude palm oil, mustard and olive oil were present in minute amount which below the LOD or LOQ in both detection modes. Sample from chocolate and infant formula products showed certain level of MCPD esters and GE, and their detection was more precisely quantitated based on MRM mode. Besides, margarine products showed a higher level of contaminations due to the high fat content in these products. MRM mode detection was proven to provide precise data with low RSD % in different food matrices. MRM mode detection was robust and selective for MCPD esters and GE analyses, it should be applied to determine the concentration of MCPD esters and GE contaminations in food.
    Matched MeSH terms: Food Contamination/analysis
  16. Kin CM, Huat TG
    J Chromatogr Sci, 2009 Sep;47(8):694-9.
    PMID: 19772747
    A headspace single-drop microextraction (HS-SDME) procedure is optimized for the analysis of organochlorine and organophosphorous pesticide residues in food matrices, namely cucumbers and strawberries by gas chromatography with an electron capture detector. The parameters affecting the HS-SDME performance, such as selection of the extraction solvent, solvent drop volume, extraction time, temperature, stirring rate, and ionic strength, were studied and optimized. Extraction was achieved by exposing 1.5 microL toluene drop to the headspace of a 5 mL aqueous solution in a 15-mL vial and stirred at 800 rpm. The analytical parameters, such as linearity, correlation coefficients, precision, limits of detection (LOD), limits of quantification (LOQ), and recovery, were compared with those obtained from headspace solid-phase microextraction (HS-SPME) and solid-phase extraction. The mean recoveries for all three methods were all above 70% and below 104%. HS-SPME was the best method with the lowest LOD and LOQ values. Overall, the proposed HS-SDME method is acceptable in the analysis of pesticide residues in food matrices.
    Matched MeSH terms: Food Contamination/analysis*
  17. Baki MA, Hossain MM, Akter J, Quraishi SB, Haque Shojib MF, Atique Ullah AKM, et al.
    Ecotoxicol Environ Saf, 2018 Sep 15;159:153-163.
    PMID: 29747150 DOI: 10.1016/j.ecoenv.2018.04.035
    A contaminated aquatic environment may end up in the food chain and pose risks to tourist health in a tourist destination. To assess the health risk for tourists that visit St. Martine Island, which is a popular domestic and foreign tourist destination in Bangladesh, a study is undertaken to analyse the level of heavy metal contamination from chromium (Cr), manganese (Mn), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg) and iron (Fe) in six of the most consumed fish (L. fasciatus, R. kanagurta, H. nigrescens, P. cuneatus, P. annularis and S. rubrum) and five crustacean species, which consist of a shrimp (P. sculptilis), a lobster (P. versicolor) and three crabs (P. sanguinolentus, T. crenata and M. victor) captured. The samples were analysed for trace metals using atomic absorption spectrometer, and the concentrations of the metals were interpreted using the United State Environmental Protection Agency (USEPA) health risk model. The muscle and carapace/exoskeleton of shrimp, lobster and crabs were analysed and contained various concentrations of Pb, Hg, As, Cr, Cd, Fe, Cu, Zn and Mn. The hierarchy of the heavy metal in marine fish is Fe > Cd > Zn > Pb > Cu > Cr > Mn > Hg. The concentrations of Pb in the species R. kanagurta, H. nigresceus and S. rubrum were above the food safety guideline by Australia, New Zealand and other legislations in most marine fish and crustaceans. Crabs showed higher mean heavy metal concentrations than shrimp and lobster. Acceptable carcinogen ranges were observed in three fish species (R. kanagurata, H. nigresceus and S. rubrum) and one crustacean species (P. sculptilis) samples.
    Matched MeSH terms: Food Contamination/analysis*
  18. Leong YH, Chiang PN, Jaafar HJ, Gan CY, Majid MI
    PMID: 24392728 DOI: 10.1080/19440049.2014.880519
    A total of 126 food samples, categorised into three groups (seafood and seafood products, meat and meat products, as well as milk and dairy products) from Malaysia were analysed for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The concentration of PCDD/Fs that ranged from 0.16 to 0.25 pg WHO05-TEQ g(-1) fw was found in these samples. According to the food consumption data from the Global Environment Monitoring System (GEMS) of the World Health Organization (WHO), the dietary exposures to PCDD/F from seafood and seafood products, meat and meat products, as well as milk and dairy products for the general population in Malaysia were 0.064, 0.183 and 0.736 pg WHO05-TEQ kg(-1) bw day(-1), respectively. However, the exposure was higher in seafood and seafood products (0.415 pg WHO05-TEQ kg(-1) bw day(-1)) and meat and meat products (0.317 pg WHO05-TEQ kg(-1) bw day(-1)) when the data were estimated using the Malaysian food consumption statistics. The lower exposure was observed in dairy products with an estimation of 0.365 pg WHO05-TEQ kg(-1) bw day(-1). Overall, these dietary exposure estimates were much lower than the tolerable daily intake (TDI) as recommended by WHO. Thus, it is suggested that the dietary exposure to PCDD/F does not represent a risk for human health in Malaysia.
    Matched MeSH terms: Food Contamination/analysis*
  19. Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I
    Food Chem, 2020 Sep 15;324:126664.
    PMID: 32380410 DOI: 10.1016/j.foodchem.2020.126664
    Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.
    Matched MeSH terms: Food Contamination/analysis*
  20. Raja Nhari RMH, Muhammad Zailani AN, Khairil Mokhtar NF, Hanish I
    PMID: 32027553 DOI: 10.1080/19440049.2020.1717645
    The usage of porcine pepsin or other porcine derivatives in food products is a common practice in European, American and certain Asian countries although it creates issues in religious and personnel health concerns. In this study, porcine pepsin was detected using indirect ELISA that involved the anti-pep80510 polyclonal antibody raised against a specific peptide of porcine pepsin, pep80510. The sensitivity of the assay for standard porcine pepsin was 0.008 µg/g. The immunoassay did not cross-react to other animal rennet and milk proteins except for microbial coagulant from Mucor miehie. The recovery of porcine pepsin in spiked cheese curd within the range of CV < 20% while for porcine pepsin in spiked cheese whey the recovery is also within the range of CV% < 20%.
    Matched MeSH terms: Food Contamination/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links