Displaying publications 21 - 40 of 146 in total

Abstract:
Sort:
  1. Nordin AH, Yusoff AH, Husna SMN, Noor SFM, Norfarhana AS, Paiman SH, et al.
    Int J Biol Macromol, 2024 Nov;280(Pt 2):135799.
    PMID: 39307484 DOI: 10.1016/j.ijbiomac.2024.135799
    The long-term presence of pharmaceutical pollution in water bodies has raised public awareness. Nanocellulose is often used in adsorption to remove pollutants from wastewater since it is an abundant, green and sustainable material. This paper offers an extensive overview of the recent works reporting the potential of nanocellulose-based adsorbents to treat pharmaceutical wastewater. This study distinguishes itself by not only summarizing recent research findings but also critically integrating discussions on the improvements in nanocellulose production and sorts of alterations based on the type of pharmaceutical contaminants. Commonly, charged, or hydrophobic characteristics are introduced onto nanocellulose surfaces to accelerate and enhance the removal of pharmaceutical compounds. Although adsorbents based on nanocellulose have considerable potential, several significant challenges impede their practical application, particularly concerning cost and scalability. Large-scale synthesis of nanocellulose is technically challenging and expensive, which prevents its widespread use in wastewater treatment plants. Continued innovation in this area could lead to breakthroughs in the practical application of nanocellulose as a superior adsorbent. The prospects of utilization of nanocellulose are explained, providing a sustainable way to address the existing restriction and maximize the application of the modified nanocellulose in the field of pharmaceutical pollutants removal.
    Matched MeSH terms: Nanostructures/chemistry
  2. Mahmoudian MR, Basirun WJ, Woi PM, Sookhakian M, Yousefi R, Ghadimi H, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:500-508.
    PMID: 26652401 DOI: 10.1016/j.msec.2015.10.055
    The present study examines the synthesis of Co3O4 ultra-nanosheets (Co3O4 UNSs) and Co3O4 ultra-nanosheet-Ni(OH)2 (Co3O4 UNS-Ni(OH)2) via solvothermal process and their application as non-enzymatic electrochemical sensors for glucose detection. X-ray diffraction and transmission electron microscopy results confirmed the Co3O4 UNS deposition on Ni(OH)2 surface. The presence of Co3O4 UNSs on Ni (OH) 2 surface improved the sensitivity of glucose detection, from the increase of glucose oxidation peak current at the Co3O4 UNS-Ni(OH)2/glassy carbon electrode (current density: 2000μA·cm(-2)), compared to the Co3O4 UNSs. These results confirmed that Ni(OH)2 on glassy carbon electrode is a sensitive material for glucose detection, moreover the Co3O4 UNSs can increase the interaction and detection of glucose due to their high surface area. The estimated limit of detection (S/N=3) and limit of quantification (S/N=10) of the linear segment (5-40μM) are 1.08μM and 3.60μM respectively. The reproducibility experiments confirmed the feasibility of Co3O4 UNS-Ni(OH)2 for the quantitative detection of certain concentration ranges of glucose.
    Matched MeSH terms: Nanostructures/chemistry*
  3. Kianfar AH, Mahmood WA, Dinari M, Azarian MH, Khafri FZ
    PMID: 24637279 DOI: 10.1016/j.saa.2014.02.089
    The [Co(Me(2)Salen)(PBu(3))(OH(2))]BF4 and [Co(Me(2)Salen)(PPh(3))(Solv)]BF(4), complexes were synthesized and characterized by FT-IR, UV-Vis, (1)H NMR spectroscopy and elemental analysis techniques. The coordination geometry of [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) was determined by X-ray crystallography. It has been found that the complex is containing [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) and [Co(Me(2)Salen)(PPh(3))(EtOH)]BF(4) hexacoordinate species in the solid state. Cobalt atom exhibits a distorted octahedral geometry and the Me(2)Salen ligand has the N2O2 coordinated environment in the equatorial plane. The [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) complex shows a dimeric structure via hydrogen bonding between the phenolate oxygen and hydrogens of coordinated H2O molecule. These complexes were incorporated into Montmorillonite-K10 nanoclay. The modified clays were identified by FT-IR, XRD, EDX, TGA/DTA, SEM and TEM techniques. According to the XRD results of the new nanohybrid materials, the Schiff base complexes are intercalated in the interlayer spaces of the clay. SEM and TEM micrographs show that the resulting hybrid nanomaterials have layer structures. Also, TGA/DTG results show that the intercalation reaction was taken place successfully.
    Matched MeSH terms: Nanostructures/chemistry*
  4. Dehzangi A, Larki F, Hutagalung SD, Goodarz Naseri M, Majlis BY, Navasery M, et al.
    PLoS One, 2013;8(6):e65409.
    PMID: 23776479 DOI: 10.1371/journal.pone.0065409
    In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (10(15) cm(-3)) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity.
    Matched MeSH terms: Nanostructures/chemistry
  5. Sin JC, Lam SM, Lee KT, Mohamed AR
    J Colloid Interface Sci, 2013 Jul 1;401:40-9.
    PMID: 23618322 DOI: 10.1016/j.jcis.2013.03.043
    A novel samarium-doped spherical-like ZnO hierarchical nanostructure (Sm/ZnO) was synthesized via a facile and surfactant-free chemical solution route. The as-synthesized products were characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, field emission scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The results revealed that Sm ion was successfully doped into ZnO. It was also observed that the Sm doping increased the visible light absorption ability of Sm/ZnO and a red shift for Sm/ZnO appeared when compared to pure ZnO. The photocatalytic studies revealed that the Sm/ZnO exhibited excellent photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) compared with the pure ZnO and commercial TiO2 under visible light irradiation. The photocatalytic enhancement of Sm/ZnO products was attributed to their high charge separation efficiency and ·OH generation ability as evidenced by the photoluminescence spectra. The photocatalytic investigation also showed that various parameters exerted their individual influence on the degradation rate of 2,4-DCP. By using a certain of radical scavengers, ·OH was determined to play a pivotal role for the 2,4-DCP degradation. Moreover, the Sm/ZnO could be easily separated and reused, indicating great potential for practical applications in environmental cleanup.
    Matched MeSH terms: Nanostructures/chemistry*
  6. Tang SY, Shridharan P, Sivakumar M
    Ultrason Sonochem, 2013 Jan;20(1):485-97.
    PMID: 22633626 DOI: 10.1016/j.ultsonch.2012.04.005
    In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200-600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50-70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.
    Matched MeSH terms: Nanostructures/chemistry*
  7. Hussein MZ, Rahman NS, Sarijo SH, Zainal Z
    Int J Mol Sci, 2012;13(6):7328-42.
    PMID: 22837696 DOI: 10.3390/ijms13067328
    Herbicides, namely 4-(2,4-dichlorophenoxy) butyrate (DPBA) and 2-(3-chlorophenoxy) propionate (CPPA), were intercalated simultaneously into the interlayers of zinc layered hydroxide (ZLH) by direct reaction of zinc oxide with both anions under aqueous environment to form a new nanohybrid containing both herbicides labeled as ZCDX. Successful intercalation of both anions simultaneously into the interlayer gallery space of ZLH was studied by PXRD, with basal spacing of 28.7 Å and supported by FTIR, TGA/DTG and UV-visible studies. Simultaneous release of both CPPA and DPBA anions into the release media was found to be governed by a pseudo second-order equation. The loading and percentage release of the DPBA is higher than the CPPA anion, which indicates that the DPBA anion was preferentially intercalated into and released from the ZLH interlayer galleries. This work shows that layered single metal hydroxide, particularly ZLH, is a suitable host for the controlled release formulation of two herbicides simultaneously.
    Matched MeSH terms: Nanostructures/chemistry*
  8. Manickam S, Sivakumar K, Pang CH
    Ultrason Sonochem, 2020 Dec;69:105258.
    PMID: 32702637 DOI: 10.1016/j.ultsonch.2020.105258
    O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.
    Matched MeSH terms: Nanostructures/chemistry*
  9. Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E
    Int J Nanomedicine, 2020;15:9961-9974.
    PMID: 33324057 DOI: 10.2147/IJN.S276355
    Vitamin E belongs to the family of lipid-soluble vitamins and can be divided into two groups, tocopherols and tocotrienols, with four isomers (alpha, beta, gamma and delta). Although vitamin E is widely known as a potent antioxidant, studies have also revealed that vitamin E possesses anti-inflammatory properties. These crucial properties of vitamin E are beneficial in various aspects of health, especially in neuroprotection and cardiovascular, skin and bone health. However, the poor bioavailability of vitamin E, especially tocotrienols, remains a great limitation for clinical applications. Recently, nanoformulations that include nanovesicles, solid-lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and polymeric nanoparticles have shown promising outcomes in improving the efficacy and bioavailability of vitamin E. This review focuses on the pharmacological properties and pharmacokinetics of vitamin E and current advances in vitamin E nanoformulations for future clinical applications. The limitations and future recommendations are also discussed in this review.
    Matched MeSH terms: Nanostructures/chemistry*
  10. Kamal Eddin FB, Fen YW
    Molecules, 2020 Jun 15;25(12).
    PMID: 32549390 DOI: 10.3390/molecules25122769
    For a healthy life, the human biological system should work in order. Scheduled lifestyle and lack of nutrients usually lead to fluctuations in the biological entities levels such as neurotransmitters (NTs), proteins, and hormones, which in turns put the human health in risk. Dopamine (DA) is an extremely important catecholamine NT distributed in the central nervous system. Its level in the body controls the function of human metabolism, central nervous, renal, hormonal, and cardiovascular systems. It is closely related to the major domains of human cognition, feeling, and human desires, as well as learning. Several neurological disorders such as schizophrenia and Parkinson's disease are related to the extreme abnormalities in DA levels. Therefore, the development of an accurate, effective, and highly sensitive method for rapid determination of DA concentrations is desired. Up to now, different methods have been reported for DA detection such as electrochemical strategies, high-performance liquid chromatography, colorimetry, and capillary electrophoresis mass spectrometry. However, most of them have some limitations. Surface plasmon resonance (SPR) spectroscopy was widely used in biosensing. However, its use to detect NTs is still growing and has fascinated impressive attention of the scientific community. The focus in this concise review paper will be on the principle of SPR sensors and its operation mechanism, the factors that affect the sensor performance. The efficiency of SPR biosensors to detect several clinically related analytes will be mentioned. DA functions in the human body will be explained. Additionally, this review will cover the incorporation of nanomaterials into SPR biosensors and its potential for DA sensing with mention to its advantages and disadvantages.
    Matched MeSH terms: Nanostructures/chemistry
  11. Yahya N, Al Habashi RM, Koziol K, Borkowski RD, Akhtar MN, Kashif M, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2652-6.
    PMID: 21449447
    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.
    Matched MeSH terms: Nanostructures/chemistry*
  12. Singh L, Rana S, Thakur S, Pant D
    Trends Biotechnol, 2020 05;38(5):469-473.
    PMID: 31932067 DOI: 10.1016/j.tibtech.2019.12.017
    Recent bioinspired efforts of designing novel nanoenzyme-based electrocatalysts are driven by the urgency of making bioelectrofuels more affordable and efficient. Unlike natural enzymes, nanoenzyme-modified electrodes with large surface areas enclose numerous biomimicking active sites to facilitate enhanced microbial growth followed by increased reactant-to-bioelectrofuel conversion.
    Matched MeSH terms: Nanostructures/chemistry*
  13. Azmi ID, Wibroe PP, Wu LP, Kazem AI, Amenitsch H, Moghimi SM, et al.
    J Control Release, 2016 Oct 10;239:1-9.
    PMID: 27524284 DOI: 10.1016/j.jconrel.2016.08.011
    Non-lamellar liquid crystalline aqueous nanodispersions, known also as ISAsomes (internally self-assembled 'somes' or nanoparticles), are gaining increasing interest in drug solubilisation and bio-imaging, but they often exhibit poor hemocompatibility and induce cytotoxicity. This limits their applications in intravenous drug delivery and targeting. Using a binary mixture of citrem and soy phosphatidylcholine (SPC) at different weight ratios, we describe a library of colloidally stable aqueous and hemocompatible nanodispersions of diverse nanoarchitectures (internal self-assembled nanostructures). This engineered library is structurally stable in human plasma as well as being hemocompatible (non-hemolytic, and poor activator of the complement system). By varying citrem to lipid weight ratio, the nanodispersion susceptibility to macrophage uptake could also be modulated. Finally, the formation of nanodispersions comprising internally V2 (inverse bicontinuous cubic) and H2 (inverse hexagonal) nanoarchitectures was achieved without the use of an organic solvent, a secondary emulsifier, or high-energy input. The tunable binary citrem/SPC nanoplatform holds promise for future development of hemocompatible and immune-safe nanopharmaceuticals.
    Matched MeSH terms: Nanostructures/chemistry*
  14. Fathil MF, Md Arshad MK, Ruslinda AR, Nuzaihan M N M, Gopinath SC, Adzhri R, et al.
    Anal Chim Acta, 2016 Sep 07;935:30-43.
    PMID: 27543013 DOI: 10.1016/j.aca.2016.06.012
    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond.
    Matched MeSH terms: Nanostructures/chemistry*
  15. Alayan HM, Alsaadi MA, Das R, Abo-Hamad A, Ibrahim RK, AlOmar MK, et al.
    Water Sci Technol, 2018 Mar;77(5-6):1714-1723.
    PMID: 29595174 DOI: 10.2166/wst.2018.057
    In this study, carbon species were grown on the surface of Ni-impregnated powder activated carbon to form a novel hybrid carbon nanomaterial by chemical vapor deposition. The carbon nanomaterial was obtained by the precipitation of the methane elemental carbon atoms on the surface of the Ni catalyst. The physiochemical properties of the hybrid material were characterized to illustrate the successful growth of carbon species on the carbon substrate. The response surface methodology was used for the evaluation of adsorption parameters effect such as pH, adsorbent dose and contact time on the percentage removal of MB dye from aqueous solution. The optimum conditions were found to be pH = 11, adsorbent dose = 15 mg and contact time of 120 min. The material we prepared showed excellent removal efficiency of 96% for initial MB concentration of 50 mg/L. The adsorption of MB was described accurately by the pseudo-second-order model with R2 of 0.998 and qe of 163.93 (mg/g). The adsorption system showed the best agreement with Langmuir model with R2 of 0.989 and maximum adsorption capacity (Qm) of 250 mg/g.
    Matched MeSH terms: Nanostructures/chemistry*
  16. Mohamed MA, Abd Mutalib M, Mohd Hir ZA, M Zain MF, Mohamad AB, Jeffery Minggu L, et al.
    Int J Biol Macromol, 2017 Oct;103:1232-1256.
    PMID: 28587962 DOI: 10.1016/j.ijbiomac.2017.05.181
    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy.
    Matched MeSH terms: Nanostructures/chemistry*
  17. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
    Matched MeSH terms: Nanostructures/chemistry
  18. Ong CC, Siva Sangu S, Illias NM, Chandra Bose Gopinath S, Saheed MSM
    Biosens Bioelectron, 2020 Apr 15;154:112088.
    PMID: 32056954 DOI: 10.1016/j.bios.2020.112088
    Deoxynivalenol (DON), a cosmopolitan mycotoxin found in agricultural commodities causes serious health maladies to human and animals when accidently consumed even at a low quantity. It necessitates selective and sensitive devices to analyse DON as the conventional methods are complex and time-consuming. This study is focused on developing a selective biosensing system using iron nanoflorets graphene nickel (INFGN) as the transducer and a specific aptamer as the biorecognition element. 3D-graphene is incorporated using a low-pressure chemical vapour deposition followed by the decoration of iron nanoflorets using electrochemical deposition. INFGN enables a feasible bio-capturing due to its large surface area. The X-ray photoelectron spectroscopy analysis confirms the presence of the hydroxyl groups on the INFGN surface, which acts as the linker. Clear Fourier-transform infrared peak shifts affirm the changes with surface chemical modification and biomolecular assembly. The limit of detection attained is 2.11 pg mL-1 and displays high stability whereby it retains 30.65% of activity after 48 h. The designed INFGN demonstrates remarkable discrimination of DON against similar mycotoxins (zearalenone and ochratoxin A). Overall, the high-performance biosensor shown here is an excellent, simple and cost-effective alternative for detecting DON in food and feed samples.
    Matched MeSH terms: Nanostructures/chemistry
  19. Foo ME, Gopinath SCB
    Biomed Pharmacother, 2017 Oct;94:354-361.
    PMID: 28772213 DOI: 10.1016/j.biopha.2017.07.122
    Nanotechnology is the developing field, bringing the materials in the nanoscale level, has been applied in the interdisciplinary sciences. Different nanomaterials, such as gold, silver, zinc, copper and graphene are shown to have a wide range of applications. Among these, graphene is one of the faster upcoming two-dimensional nanomaterials utilized in various fields due to its positive features including the properties of thermal, electrical, strength and elasticity. Biomedical applications of graphene have been widely attested to be popular among academician and industrial partners for creating next generation medical systems and therapies. In this review, we selectively revealed the current applications of graphene in the interdisciplinary medical sciences.
    Matched MeSH terms: Nanostructures/chemistry*
  20. Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK
    Curr Pharm Des, 2017;23(17):2504-2531.
    PMID: 27908273 DOI: 10.2174/1381612822666161201143600
    BACKGROUND: Most of the active pharmaceutical ingredients discovered recently in pharmaceutical field exhibits poor aqueous solubility that pose major problem in their oral administration. The oral administration of these drugs gets further complicated due to their short bioavailability, inconsistent absorption and inter/intra subject variability.

    METHODS: Pharmaceutical emulsion holds a significant place as a primary choice of oral drug delivery system for lipophilic drugs used in pediatric and geriatric patients. Pharmacokinetic studies on nanoemulsion mediated drugs delivery approach indicates practical feasibility in regards to their clinical translation and commercialization.

    RESULTS: This review article is to provide an updated understanding on pharmacokinetic and pharmacodynamic features of nanoemulsion delivered via oral, intravenous, topical and nasal route.

    CONCLUSION: The article is of huge interest to formulation scientists working on range of lipophilic drug molecules intended to be administered through oral, intravenous, topical and nasal routes for vivid medical benefits.

    Matched MeSH terms: Nanostructures/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links