Displaying publications 21 - 40 of 137 in total

Abstract:
Sort:
  1. Rahman RN, Salleh AB, Basri M, Wong CF
    Int J Mol Sci, 2011;12(9):5797-814.
    PMID: 22016627 DOI: 10.3390/ijms12095797
    Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3) was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.
    Matched MeSH terms: Organic Chemicals/chemistry*
  2. Mhd Haniffa MAC, Ching YC, Abdullah LC, Poh SC, Chuah CH
    Polymers (Basel), 2016 Jun 29;8(7).
    PMID: 30974522 DOI: 10.3390/polym8070246
    The properties of a composite material depend on its constituent materials such as natural biopolymers or synthetic biodegradable polymers and inorganic or organic nanomaterials or nano-scale minerals. The significance of bio-based and synthetic polymers and their drawbacks on coating film application is currently being discussed in research papers and articles. Properties and applications vary for each novel synthetic bio-based material, and a number of such materials have been fabricated in recent years. This review provides an in-depth discussion on the properties and applications of biopolymer-based nanocomposite coating films. Recent works and articles are cited in this paper. These citations are ubiquitous in the development of novel bionanocomposites and their applications.
    Matched MeSH terms: Organic Chemicals
  3. Din MF, Ponraj M, Low WP, Fulazzaky MA, Iwao K, Songip AR, et al.
    Water Environ Res, 2016 Feb;88(2):118-30.
    PMID: 26803100 DOI: 10.2175/106143015X14362865227913
    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.
    Matched MeSH terms: Organic Chemicals/isolation & purification*
  4. Woon KL, Chong ZX, Ariffin A, Chan CS
    J Mol Graph Model, 2021 06;105:107891.
    PMID: 33765526 DOI: 10.1016/j.jmgm.2021.107891
    Fused tricyclic organic compounds are an important class of organic electronic materials. In designing molecules for organic electronics, knowing what chemical structure that be used to tune the molecular property is one of the keys that can help to improve the material performance. In this research, we applied machine learning and data analytic approaches in addressing this problem. The energy states (Lowest Unoccupied Molecular Orbital (HOMO), Highest Occupied Molecular Orbitals (LUMO), singlet (Es) and triplet (ET) energy) of more than 10 thousand fused tricyclics are calculated. Corresponding descriptors are also generated. We find that the Coulomb matrix is a poorer descriptor than high-level descriptors in a multilayer perceptron neural network. Correlations as high as 0.95 is obtained using a multilayer perceptron neural network with Mean Absolute Error as low as 0.08 eV. The descriptors that are important in tuning the energy levels are revealed using the Random Forest algorithm. Correlations of such descriptors are also plotted. We found that the higher the number of tertiary amines, the deeper are the HOMO and LUMO levels. The presence of NN in the aromatic rings can be used to tune the ES. However, there is no single dominant descriptor that can be correlated with the ET. A collection of descriptors is found to give a far better correlation with ET. This research demonstrated that machine learning and data analytics in guiding how certain chemical substructures correlate with the molecule energy states.
    Matched MeSH terms: Organic Chemicals*
  5. Breadmore MC, Wuethrich A, Li F, Phung SC, Kalsoom U, Cabot JM, et al.
    Electrophoresis, 2017 01;38(1):33-59.
    PMID: 27678139 DOI: 10.1002/elps.201600331
    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biennial reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods in capillaries and microchips, covering the period July 2014-June 2016. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.
    Matched MeSH terms: Inorganic Chemicals/analysis; Organic Chemicals/analysis
  6. Haque ST, Chowdhury EH
    Curr Drug Deliv, 2018;15(4):485-496.
    PMID: 29165073 DOI: 10.2174/1567201814666171120114034
    BACKGROUND: Delivery of conventional small molecule drugs and currently evolving nucleic acid-based therapeutics, such as small interfering RNAs (siRNAs) and genes, and contrast agents for high resolution imaging, to the target site of action is highly demanding to increase the therapeutic and imaging efficacy while minimizing the off-target effects of the delivered molecules, as well as develop novel therapeutic and imaging approaches.

    METHODS: We have undertaken a structured search for peer-reviewed research and review articles predominantly indexed in PubMed focusing on the organic-inorganic hybrid nanoparticles with evidence of their potent roles in intracellular delivery of therapeutic and imaging agents in different animal models.

    RESULTS: Organic-inorganic hybrid nanoparticles offer a number of advantages by combining the unique properties of the organic and inorganic counterparts, thus improving the pharmacokinetic behavior and targetability of drugs and contrast agents, and conferring the exclusive optical and magnetic properties for both therapeutic and imaging purposes. Different polymers, lipids, dendrimers, peptides, cell membranes, and small organic molecules are attached via covalent or non-covalent interactions with diverse inorganic nanoparticles of gold, mesoporous silica, magnetic iron oxide, carbon nanotubes and quantum dots for efficient drug delivery and imaging purposes.

    CONCLUSION: We have thus highlighted here the progress made so far in utilizing different organicinorganic hybrid nanoparticles for in vivo delivery of anti-cancer drugs, siRNA, genes and imaging agents.

    Matched MeSH terms: Inorganic Chemicals/administration & dosage; Inorganic Chemicals/chemistry*; Organic Chemicals/administration & dosage; Organic Chemicals/chemistry*
  7. Tan LL, Ahmed SA, Ng SK, Citartan M, Raabe CA, Rozhdestvensky TS, et al.
    Food Chem, 2020 Mar 30;309:125654.
    PMID: 31678669 DOI: 10.1016/j.foodchem.2019.125654
    A specialized DNA extraction method and a SYBR Green quantitative polymerase chain reaction (SyG-qPCR) assay were combined to generate a ready-to-use kit for rapid detection of porcine admixtures in processed meat products. Our qPCR assay utilized repetitive LINE-1 elements specific to the genome of Sus scrofa domesticus (pig) as a target and incorporated internal controls. We improved the genomic DNA extraction method, and reduced extraction times to the minimum. The method was validated for specificity, sensitivity (0.001% w/w) and robustness, and values were compared with those of a commercially available kit. We also tested our method using 121 processed food products and consistently detected amplification only in samples containing pork. Due to its efficiency and cost-effectiveness, our method represents a valuable new method for detecting food adulteration with pork that is superior to existing quality control approaches.
    Matched MeSH terms: Organic Chemicals/chemistry*
  8. Chang LY, Ali AR, Hassan SS, AbuBakar S
    Virol J, 2006;3:47.
    PMID: 16784519
    Nipah virus is a zoonotic virus isolated from an outbreak in Malaysia in 1998. The virus causes infections in humans, pigs, and several other domestic animals. It has also been isolated from fruit bats. The pathogenesis of Nipah virus infection is still not well described. In the present study, Nipah virus replication kinetics were estimated from infection of African green monkey kidney cells (Vero) using the one-step SYBR Green I-based quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay.
    Matched MeSH terms: Organic Chemicals
  9. Ali MS, Yun CC, Chor AL, Rahman RN, Basri M, Salleh AB
    Protein J, 2012 Mar;31(3):229-37.
    PMID: 22350313 DOI: 10.1007/s10930-012-9395-8
    A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40-60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8-9. Metal ions such as Ca(2+), Mn(2+), Na(+), and K(+) enhanced the lipase activity, but Mg(2+), Zn(2+), and Fe(2+) inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.
    Matched MeSH terms: Organic Chemicals/chemistry
  10. Ravee R, Baharin A, Cho WT, Ting TY, Goh HH
    Physiol Plant, 2021 Dec;173(4):1967-1978.
    PMID: 34455610 DOI: 10.1111/ppl.13540
    Nepenthes ampullaria is a unique carnivorous tropical pitcher plant with the detritivorous capability of sequestering nutrients from leaf litter apart from being insectivorous. The changes in the protein composition and protease activity of its pitcher fluids during the early opening of pitchers (D0 and D3C) were investigated via a proteomics approach and a controlled protein depletion experiment (D3L). A total of 193 proteins were identified. Common proteins such as pathogenesis-related protein, proteases (Nep [EC:3.4.23.12], SCP [EC:3.4.16.-]), peroxidase [EC:1.11.1.7], GDSL esterase/lipase [EC:3.1.1.-], and purple acid phosphatase [EC:3.1.3.2] were found in high abundance in the D0 pitchers and were replenished in D3L samples. This reflects their importance for biological processes upon pitcher opening. Meanwhile, prey-inducible chitinases [EC:3.2.1.14] were found in D0 but not in D3C and D3L samples, which suggests their degradation in the absence of prey. Protease activity assays demonstrated the replenishment of proteases in D3L with similar levels of proteolytic activities to that of D3C samples. This supports a feedback mechanism and signaling in the molecular regulation of endogenous protein secretion, turnover, and activity in Nepenthes pitcher fluids. Furthermore, we also discovered several new enzymes (XTH [EC:2.4.1.207], PAE [EC:3.1.1.98]) with possible functions in cell wall degradation that could contribute to the detritivory habit of N. ampullaria.
    Matched MeSH terms: Organic Chemicals
  11. Gurdeep Singh HK, Yusup S, Quitain AT, Kida T, Sasaki M, Cheah KW, et al.
    Environ Sci Pollut Res Int, 2019 Nov;26(33):34039-34046.
    PMID: 30232774 DOI: 10.1007/s11356-018-3223-4
    Employment of edible oils as alternative green fuel for vehicles had raised debates on the sustainability of food supply especially in the third-world countries. The non-edible oil obtained from the abundantly available rubber seeds could mitigate this issue and at the same time reduce the environmental impact. Therefore, this paper investigates the catalytic cracking reaction of a model compound named linoleic acid that is enormously present in the rubber seed oil. Batch-scale experiments were conducted using 8.8 mL Inconel batch reactor having a cyclic horizontal swing span of 2 cm with a frequency of 60 cycles per minute at 450 °C under atmospheric condition for 90 min. The performance of HZSM-5, HBeta, HFerrierite, HMordenite and HY catalysts was tested for their efficiency in favouring gasoline range hydrocarbons. The compounds present in the organic liquid product were then analysed using GC-MS and classified based on PIONA which stands for paraffin, isoparaffin, olefin, naphthenes and aromatics respectively. The results obtained show that HZSM-5 catalyst favoured gasoline range hydrocarbons that were rich in aromatics compounds and promoted the production of desired isoparaffin. It also gave a higher cracking activity; however, large gaseous as by-products were produced at the same time.
    Matched MeSH terms: Organic Chemicals
  12. Oladoja NA, Adelagun RO, Ahmad AL, Unuabonah EI, Bello HA
    Colloids Surf B Biointerfaces, 2014 May 1;117:51-9.
    PMID: 24632030 DOI: 10.1016/j.colsurfb.2014.02.006
    A novel adsorbent, magnetic, macro-reticulated cross-linked chitosan (MRC) was synthesised for the removal of tetracycline (TC) from water using a source of biogenic waste (gastropod shells) as a pore-forming agent. The insertion of crosslinks into the chitosan frame was confirmed by FTIR analysis, while the stability of the MRC was demonstrated via a stability test performed in an acidic solution. The enhanced porosity of the MRC was confirmed by the evaluation of its porosity, a swelling test and the determination of its specific surface area. The time-concentration profile of the sorption of TC onto the MRC demonstrated that equilibrium was attained relatively quickly (120 min), and the data obtained fitted a pseudo second order (r(2)>0.99) kinetic equation better than a pseudo first order or reversible first order kinetic equation. The optimisation of process variables indicated that the sorption of TC onto the MRC was favoured at a low solution pH and that the presence of organics (simulated by the addition of humic acid) negatively impacted the magnitude of TC removal. The area of coverage of TC on the MRC (2.51 m(2)/g) was low compared to the specific surface area of the MRC (47.95 m(2)/g). The value of the calculated energy of adsorption of TC onto the MRC was 100 kJ/mol, which is far above the range of 1-16 kJ/mol stipulated for physical adsorption.
    Matched MeSH terms: Organic Chemicals/chemistry
  13. Aznin Baharudin, Nor Akmalazura Jani, Azyati Azreen, A. A. Assyura, Hawa Pornomo, M. Hafiz Mehat
    Borneo Akademika, 2020;4(1):1-12.
    MyJurnal
    This study is focused on formulating a natural-based fabric softener using baking
    soda and vinegar with the addition of insect repellent finish of citronella oil and
    vanillin. The effectiveness of the fabric softener was evaluated by conducting a fabric
    stiffness test on both untreated and treated fabric samples with the softener
    formulated in this study. The assessment for the efficacy of insect repellence was
    carried out using 3 human participants of the same gender and build but different
    blood type, positioned at a mosquito infested area. Three tests; negative, positive, and
    normal tests were conducted to evaluate the effectiveness of the formulated mosquito
    repellent finishes in the fabric softener. The results show that the formulated fabric
    softener is good mosquito repellent and it is good at giving a soft effect on the treated
    fabric.
    Matched MeSH terms: Organic Chemicals
  14. Abioye OP, Agamuthu P, Abdul Aziz AR
    Biodegradation, 2012 Apr;23(2):277-86.
    PMID: 21870160 DOI: 10.1007/s10532-011-9506-9
    Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.
    Matched MeSH terms: Organic Chemicals/analysis
  15. Bin Sintang MD, Danthine S, Brown A, Van de Walle D, Patel AR, Tavernier I, et al.
    Food Res Int, 2017 10;100(Pt 1):832-840.
    PMID: 28873756 DOI: 10.1016/j.foodres.2017.07.079
    Monoglycerides (MGs) and phytosterols (PS) are known to form firm oleogels with liquid oil. However, the oleogels are prone to undergo polymorphic transition over time that lead to crystals' aggregation thus, compromises physical properties. Thus, we combined MGs with PS to control the crystallization and modify the morphology of the combination oleogels, as both components are reported to interact together. The oleogels were prepared at different ratio combinations and characterized in their rheological, thermal, morphology, and diffraction properties. The results showed that the 8:2 MGP:PS exhibited higher storage modulus (G') than the MGP mono-component. The combination oleogels exhibited effects on the crystallization and polymorphic transition. Consequently, the effects led to change in the morphology of the combination oleogels which was visualized using optical and electron microscope. The resultant effect on the morphology is associated with crystal defect. Due to observable crystals of MGP and PS, it is speculated that the combination oleogels formed a mixed crystal system. This was confirmed with diffraction analysis in which the corresponding peaks from MGP and PS were observed in the combination oleogels. However, the 8:2 oleogel exhibited additional peak at 35.41Å. Ultimately, the 8:2 was the optimum combination observed in our study. Interestingly, this combination is inspired by nature as sterols (phytosterols) are natural component of lipid membrane whilst MGP has properties similar to phospholipids. Hence, the results of our study not only beneficial for oil structuring, but also for the fields of biophysical and pharmaceutical.
    Matched MeSH terms: Organic Chemicals/chemistry
  16. Rahman RN, Geok LP, Basri M, Salleh AB
    Bioresour Technol, 2005 Mar;96(4):429-36.
    PMID: 15491823
    The physical factors affecting the production of an organic solvent-tolerant protease from Pseudomonas aeruginosa strain K was investigated. Growth and protease production were detected from 37 to 45 degrees C with 37 degrees C being the optimum temperature for P. aeruginosa. Maximum enzyme activity was achieved at static conditions with 4.0% (v/v) inoculum. Shifting the culture from stationary to shaking condition decreased the protease production (6.0-10.0% v/v). Extracellular organic solvent-tolerant protease was detected over a broad pH range from 6.0 to 9.0. However, the highest yield of protease was observed at pH 7.0. Neutral media increased the protease production compared to acidic or alkaline media.
    Matched MeSH terms: Organic Chemicals/chemistry*
  17. Diyana ZN, Jumaidin R, Selamat MZ, Ghazali I, Julmohammad N, Huda N, et al.
    Polymers (Basel), 2021 Apr 26;13(9).
    PMID: 33925897 DOI: 10.3390/polym13091396
    Thermoplastic starch composites have attracted significant attention due to the rise of environmental pollutions induced by the use of synthetic petroleum-based polymer materials. The degradation of traditional plastics requires an unusually long time, which may lead to high cost and secondary pollution. To solve these difficulties, more petroleum-based plastics should be substituted with sustainable bio-based plastics. Renewable and natural materials that are abundant in nature are potential candidates for a wide range of polymers, which can be used to replace their synthetic counterparts. This paper focuses on some aspects of biopolymers and their classes, providing a description of starch as a main component of biopolymers, composites, and potential applications of thermoplastics starch-based in packaging application. Currently, biopolymer composites blended with other components have exhibited several enhanced qualities. The same behavior is also observed when natural fibre is incorporated with biopolymers. However, it should be noted that the degree of compatibility between starch and other biopolymers extensively varies depending on the specific biopolymer. Although their efficacy is yet to reach the level of their fossil fuel counterparts, biopolymers have made a distinguishing mark, which will continue to inspire the creation of novel substances for many years to come.
    Matched MeSH terms: Organic Chemicals
  18. Rashid T, Sher F, Jusoh M, Joya TA, Zhang S, Rasheed T, et al.
    Environ Res, 2023 Mar 01;220:115160.
    PMID: 36580987 DOI: 10.1016/j.envres.2022.115160
    Humic acid (HA) is a complex organic compound made up of small molecules. A variety of raw materials are used to manufacture HA, due to which the structure and composition of HA vary widely. In this study, nitric acid oxidation of two coal samples from Lakhra (Pakistan) was followed by HA extraction using 2.5, 3.0 and 3.5% KOH solutions. The impact of different operating parameters such as; the effect of KOH concentrations, KOH-coal proportion, extraction time and pH range influencing the HA extraction efficiency was optimally investigated. Commercial HA applications possess numerous challenges, including valuable applications and sub-optimal extraction techniques. A significant limitation of conventional experimental methods is that they can only investigate one component at a time. It is necessary to improve the current processing conditions, this can only be achieved by modelling and optimization of the process conditions to meet market demands. A comprehensive evaluation and prediction of HA extraction using Response Surface Methodology (RSM) are also being reported for the first time in this study. The maximum HA extraction efficiency of 89.32% and 87.04% for coal samples 1 and 2 respectively was achieved with the lowest possible pH of 1.09 (coal sample 1) and 1(coal sample 2), which is remarkably lower as compared to those reported in the literature for conventional alkaline extraction process. The model was evaluated for two coal samples through the coefficient of determination (R2), Root Means Square Error (RMSE), and Mean Average Error (MEE). The results of RSM for coal sample 1 (R2 = 0.9795, RMSE = 4.784) and coal sample 2 (R2 = 0.9758, RMSE = 4.907) showed that the model is well suited for HA extraction efficiency predictions. The derived humic acid from lignite coal was analyzed using elemental analysis, UV-Visible spectrophotometry and Fourier-transformed infrared (FTIR) spectroscopy techniques. Scanning Electron Microscopy (SEM) was applied to analyze the morphological modifications of the extracted HA after treatment with 3.5% KOH solution. For agricultural objectives, such as soil enrichment, enhancing plant growth conditions, and creating green energy solutions, this acquired HA can be made bioactive. This study not only establishes a basis for research into the optimized extraction of HA from lignite coal, but it also creates a new avenue for the efficient and clean use of lignite.
    Matched MeSH terms: Organic Chemicals
  19. Hu J, Yew CT, Chen X, Feng S, Yang Q, Wang S, et al.
    Talanta, 2017 Apr 01;165:419-428.
    PMID: 28153277 DOI: 10.1016/j.talanta.2016.12.086
    The identification and quantification of chemicals play a vital role in evaluation and surveillance of environmental health and safety. However, current techniques usually depend on costly equipment, professional staff, and/or essential infrastructure, limiting their accessibility. In this work, we develop paper-based capacitive sensors (PCSs) that allow simple, rapid identification and quantification of various chemicals from microliter size samples with the aid of a handheld multimeter. PCSs are low-cost parallel-plate capacitors (~$0.01 per sensor) assembled from layers of aluminum foil and filter paper via double-sided tape. The developed PCSs can identify different kinds of fluids (e.g., organic chemicals) and quantify diverse concentrations of substances (e.g., heavy metal ions) based on differences in dielectric properties, including capacitance, frequency spectrum, and dielectric loss tangent. The PCS-based method enables chemical identification and quantification to take place much cheaply, simply, and quickly at the point-of-care (POC), holding great promise for environmental monitoring in resource-limited settings.
    Matched MeSH terms: Organic Chemicals
  20. Lim PE, Wong TF, Lim DV
    Environ Int, 2001 May;26(5-6):425-31.
    PMID: 11392762
    This study was conducted to: (1) assess the role of wetland vegetation in the removal of oxygen demand and nitrogen under tropical conditions, (2) estimate the uptake of nitrogen and copper by wetland plants and (3) investigate the speciation of Cu in wetland media among four operationally defined host fractions, namely exchangeable, carbonate, reducible and organically bound. Four laboratory-scale wetland units, two free-water-surface (FWS) and two subsurface-flow (SF) with one of each planted with cattails (Typha augustifolia), were fed with primary-treated sewage and operated at nominal retention times of 0.6-7 days. The influent and effluent BOD/COD and nitrogen concentrations were monitored to assess the performance of the wetland units for various mass loading rates. At the end of the study, all cattail plants were harvested and analyzed for total Kjeldahl nitrogen (TKN). Four other wetland units, which were identical to the first four, were fed with domestic wastewater spiked with copper in increasing concentrations. Copper speciation patterns in the sand layer were determined at the end of the study. The results showed that wetland vegetation did not play an important role in oxygen demand removal but were capable of removing about 22% and 26% of the nitrogen input in the FWS and SF wetland units, respectively. Mass balance analysis indicated that less than 1% of copper introduced was taken up by the cattails. Copper speciation patterns in the sand media showed that the exchangeable fraction contributed 30-57% and 63-80% of the nonresidual copper in the planted and unplanted FWS wetlands, respectively. For SF units, the percentages were 52-62% and 59-67%, respectively. This indicates that large amount of copper in the media were potentially remobilizable.
    Matched MeSH terms: Organic Chemicals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links