Displaying publications 21 - 40 of 842 in total

Abstract:
Sort:
  1. Shahar S, Shafurah S, Hasan Shaari NS, Rajikan R, Rajab NF, Golkhalkhali B, et al.
    Asian Pac J Cancer Prev, 2011;12(3):605-11.
    PMID: 21627352
    BACKGROUND: There is a paucity of information on risk factors of prostate cancer, especially those related to dietary and lifestyle among Asian populations.

    OBJECTIVE: This study aimed to determine the relationship between dietary intake (macronutrients, fruits, vegetables and lycopene), lifetime physical activity and oxidative DNA damage with prostate cancer.

    DESIGN: A case control study was carried out among 105 subjects (case n=35, control n=70), matched for age and ethnicity. Data on sociodemographic, medical, dietary intake, consumption of lycopene rich food and lifetime physical activity were obtained through an interview based questionnaire. Anthropometric measurements including weight, height and waist hip circumferences were also carried out on subjects. A total of 3 mL fasting venous blood was drawn to assess lymphocyte oxidative DNA damage using the alkaline comet assay.

    RESULTS: Cases had a significantly higher intake of fat (27.7 ± 5.5%) as compared to controls (25.1 ± 5.9%) (p < 0.05). Mean intakes of fruits and vegetables (3.11 ± 1.01 servings/d)(p < 0.05), fruits (1.23 ± 0.59 servings/d) (p<0.05) and vegetables (1.97 ± 0.94 servings/d) were higher in controls than cases (2.53 ± 1.01, 0.91 ∓ 0.69, 1.62 ± 0.82 servings/d). A total of 71% of cases did not met the recommendation of a minimum of three servings of fruits and vegetables daily, as compared to 34% of controls (p < 0.05) (adjusted OR 6.52 (95% CI 2.3-17.8)) (p < 0.05). Estimated lycopene intake among cases (2,339 ∓ 1,312 mcg/d) were lower than controls (3881 ∓ 3120 mcg/d) (p< 0.01). Estimated lycopene intake of less than 2,498 mcg/day (50th percentile) increased risk of prostate cancer by double [Adjusted OR 2.5 (95%CI 0.99-6.31)]. Intake of tomatoes, watermelon, guava, pomelo, papaya, mango, oranges, dragon fruit, carrot, tomato sauce and barbeque sauce were higher in controls compared to cases. Intake of tomato sauce of more than 2.24 g/d (25th percentile), papaya more than 22.7 g/d (50th percentile) and oranges more than 19.1g/h (50th percentile) reduced prostate cancer risk by 7.4 (Adjusted OR 7.4 (95% CI 1.17-46.8)), 2.7 (adjusted OR 2.75 (95% CI 1.03-7.39)) and 2.6 times (adjusted OR = 2.6 (95% CI=1.01-6.67)), respectively (p < 0.05 for all parameters). No oxidative damage was observed among subjects. Past history of not engaging with any physical activities at the age of 45 to 54 years old increased risk of prostate cancer by approximately three folds (Adjusted OR 2.9(95% CI = 0.8-10.8)) (p < 0.05). In conclusion, low fat diet, high intake of fruits, vegetables and lycopene rich foods and being physical active at middle age were found to be protective. Thus, it is essential for Malaysian men to consume adequate fruits and vegetables, reduce fat intake and engage in physical activity in order to reduce prostate cancer risk.

    Matched MeSH terms: Oxidative Stress
  2. Si LY, Kamisah Y, Ramalingam A, Lim YC, Budin SB, Zainalabidin S
    Appl Physiol Nutr Metab, 2017 Jul;42(7):765-772.
    PMID: 28249121 DOI: 10.1139/apnm-2016-0506
    Vascular endothelial dysfunction (VED) plays an important role in the initiation of cardiovascular diseases. Roselle, enriched with antioxidants, demonstrates high potential in alleviating hypertension. This study was undertaken to investigate the effects of roselle supplementation of VED and remodelling in a rodent model with prolonged nicotine administration. Male Sprague-Dawley rats (n = 6 per group) were administered with 0.6 mg/kg nicotine for 28 days to induce VED. The rats were given either aqueous roselle (100 mg/kg) or normal saline orally 30 min prior to nicotine injection daily. One additional group of rats served as control. Thoracic aorta was isolated from rats to measure vascular reactivity, vascular remodelling and oxidative stress. Roselle significantly lowered aortic sensitivity to phenylephrine-induced vasoconstriction (Endo-(+) Cmax = 234.5 ± 3.9%, Endo-(-) Cmax = 247.6 ± 5.2%) compared with untreated nicotine group (Endo-(+) Cmax = 264.5 ± 6.9%, Endo-(-) Cmax = 276.5 ± 6.8%). Roselle also improved aortic response to endothelium-dependent vasodilator, acetylcholine (Endo-(+) Rmax = 73.2 ± 2.1%, Endo-(-) Rmax = 26.2 ± 0.8%) compared to nicotine group (Endo-(+) Rmax = 57.8 ± 1.7%, Endo-(-) Rmax = 20.9 ± 0.8%). In addition, roselle prevented an increase in intimal media thickness and elastic lamellae proliferation to preserve vascular architecture. Moreover, we also observed a significantly lowered degree of oxidative stress in parallel with increased antioxidant enzymes in aortic tissues of the roselle-treated group. This study demonstrated that roselle prevents VED and remodelling, and as such it has high nutraceutical value as supplement to prevent cardiovascular diseases.
    Matched MeSH terms: Oxidative Stress/drug effects
  3. Ramalingam A, Santhanathas T, Shaukat Ali S, Zainalabidin S
    PMID: 31726798 DOI: 10.3390/ijerph16224445
    Prolonged exposure to nicotine accelerates onset and progression of renal diseases in habitual cigarette smokers. Exposure to nicotine, either via active or passive smoking is strongly shown to enhance renal oxidative stress and augment kidney failure in various animal models. In this study, we investigated the effects of resveratrol supplementation on nicotine-induced kidney injury and oxidative stress in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg, i.p.) alone or in combination with either resveratrol (8 mg/kg, i.p.), or angiotensin II type I receptor blocker, irbesartan (10 mg/kg, p.o.) for 28 days. Upon completion of treatment, kidneys were investigated for changes in structure, kidney injury markers and oxidative stress. Administration of nicotine alone for 28 days resulted in significant renal impairment as shown by marked increase in plasma creatinine, blood urea nitrogen (BUN) and oxidative stress. Co-administration with resveratrol however successfully attenuated these changes, with a concomitant increase in renal antioxidants such as glutathione similar to the conventionally used angiotensin II receptor blocker, irbesartan. These data altogether suggest that targeting renal oxidative stress with resveratrol could alleviate nicotine-induced renal injury. Antioxidants may be clinically important for management of renal function in habitual smokers.
    Matched MeSH terms: Oxidative Stress/drug effects
  4. Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S
    Front Pharmacol, 2019;10:1493.
    PMID: 31920673 DOI: 10.3389/fphar.2019.01493
    Increased exposure to nicotine contributes to the development of cardiac dysfunction by promoting oxidative stress, fibrosis, and inflammation. These deleterious events altogether render cardiac myocytes more susceptible to acute cardiac insults such as ischemia-reperfusion (I/R) injury. This study sought to elucidate the role of angiotensin II type I (AT1) receptors in cardiac injury resulting from prolonged nicotine administration in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg ip) for 28 days to induce cardiac dysfunction, alone or in combination with the AT1 receptor antagonist, irbesartan (10 mg/kg, po). Vehicle-treated rats were used as controls. Rat hearts isolated from each experimental group at study endpoint were examined for changes in function, histology, gene expression, and susceptibility against acute I/R injury determined ex vivo. Rats administered nicotine alone exhibited significantly increased cardiac expression of angiotensin II and angiotensin-converting enzyme (ACE) in addition to elevated systolic blood pressure (SBP) and heart rate. Furthermore, nicotine administration markedly reduced left ventricular (LV) performance with concomitant increases in myocardial oxidative stress, fibrosis, and inflammation. Concomitant treatment with irbesartan attenuated these effects, lowering blood pressure, heart rate, oxidative stress, and expression of fibrotic and inflammatory genes. Importantly, the irbesartan-treated group also manifested reduced susceptibility to I/R injury ex vivo. These findings suggest that AT1 receptors play an important role in nicotine-induced cardiac dysfunction, and pharmacological approaches targeting cardiac AT1 receptors may thus benefit patients with sustained exposure to nicotine.
    Matched MeSH terms: Oxidative Stress
  5. Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S
    Sci Rep, 2021 07 05;11(1):13845.
    PMID: 34226619 DOI: 10.1038/s41598-021-93234-4
    Long-term nicotine intake is associated with an increased risk of myocardial damage and dysfunction. However, it remains unclear whether targeting mitochondrial reactive oxygen species (ROS) prevents nicotine-induced cardiac remodeling and dysfunction. This study investigated the effects of mitoTEMPO (a mitochondria-targeted antioxidant), and resveratrol (a sirtuin activator) , on nicotine-induced cardiac remodeling and dysfunction. Sprague-Dawley rats were administered 0.6 mg/kg nicotine daily with 0.7 mg/kg mitoTEMPO, 8 mg/kg resveratrol, or vehicle alone for 28 days. At the end of the study, rat hearts were collected to analyze the cardiac structure, mitochondrial ROS level, oxidative stress, and inflammation markers. A subset of rat hearts was perfused ex vivo to determine the cardiac function and myocardial susceptibility to ischemia-reperfusion injury. Nicotine administration significantly augmented mitochondrial ROS level, cardiomyocyte hypertrophy, fibrosis, and inflammation in rat hearts. Nicotine administration also induced left ventricular dysfunction, which was worsened by ischemia-reperfusion in isolated rat hearts. MitoTEMPO and resveratrol both significantly attenuated the adverse cardiac remodeling induced by nicotine, as well as the aggravation of postischemic ventricular dysfunction. Findings from this study show that targeting mitochondrial ROS with mitoTEMPO or resveratrol partially attenuates nicotine-induced cardiac remodeling and dysfunction.
    Matched MeSH terms: Oxidative Stress/drug effects*
  6. Si LY, Ali SAM, Latip J, Fauzi NM, Budin SB, Zainalabidin S
    Life Sci, 2017 Dec 15;191:157-165.
    PMID: 29066253 DOI: 10.1016/j.lfs.2017.10.030
    AIMS: Obesity increase the risks of hypertension and myocardial infarction (MI) mediated by oxidative stress. This study was undertaken to investigate the actions of roselle aqueous extract (R) on cardiotoxicity in obese (OB) rats and thereon OB rats subjected to MI.

    MAIN METHODS: Male Sprague-Dawley rats were fed with either normal diet or high-fat diet for 8weeks. Firstly, OB rats were divided into (1) OB and (2) OB+R (100mg/kg, p.o, 28days). Then, OB rats were subjected to MI (ISO, 85mg/kg, s.c, 2days) and divided into three groups: (1) OB+MI, (2) OB+MI+R and (3) OB+MI+enalapril for another 4weeks.

    KEY FINDINGS: Roselle ameliorated OB and OB+MI's cardiac systolic dysfunction and reduced cardiac hypertrophy and fibrosis. The increased oxidative markers and decreased antioxidant enzymes in OB and OB+MI groups were all attenuated by roselle.

    SIGNIFICANCE: These observations indicate the protective effect of roselle on cardiac dysfunction in OB and OB+MI rats, which suggest its potential to be developed as a nutraceutical product for obese and obese patients with MI in the future.

    Matched MeSH terms: Oxidative Stress/drug effects
  7. Syahputra RA, Harahap U, Harahap Y, Gani AP, Dalimunthe A, Ahmed A, et al.
    Molecules, 2023 May 24;28(11).
    PMID: 37298779 DOI: 10.3390/molecules28114305
    Doxorubicin (DOX) has been extensively utilized in cancer treatment. However, DOX administration has adverse effects, such as cardiac injury. This study intends to analyze the expression of TGF, cytochrome c, and apoptosis on the cardiac histology of rats induced with doxorubicin, since the prevalence of cardiotoxicity remains an unpreventable problem due to a lack of understanding of the mechanism underlying the cardiotoxicity result. Vernonia amygdalina ethanol extract (VAEE) was produced by soaking dried Vernonia amygdalina leaves in ethanol. Rats were randomly divided into seven groups: K- (only given doxorubicin 15 mg/kgbw), KN (water saline), P100, P200, P400, P4600, and P800 (DOX 15 mg/kgbw + 100, 200, 400, 600, and 800 mg/kgbw extract); at the end of the study, rats were scarified, and blood was taken directly from the heart; the heart was then removed. TGF, cytochrome c, and apoptosis were stained using immunohistochemistry, whereas SOD, MDA, and GR concentration were evaluated using an ELISA kit. In conclusion, ethanol extract might protect the cardiotoxicity produced by doxorubicin by significantly reducing the expression of TGF, cytochrome c, and apoptosis in P600 and P800 compared to untreated control K- (p < 0.001). These findings suggest that Vernonia amygdalina may protect cardiac rats by reducing the apoptosis, TGF, and cytochrome c expression while not producing the doxorubicinol as doxorubicin metabolite. In the future, Vernonia amygdalina could be used as herbal preventive therapy for patient administered doxorubicin to reduce the incidence of cardiotoxicity.
    Matched MeSH terms: Oxidative Stress
  8. Mohamed J, Shing SW, Idris MH, Budin SB, Zainalabidin S
    Clinics (Sao Paulo), 2013 Oct;68(10):1358-63.
    PMID: 24212844 DOI: 10.6061/clinics/2013(10)11
    OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes.

    METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight) for 28 days.

    RESULTS: The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained.

    CONCLUSION: The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients.

    Matched MeSH terms: Oxidative Stress/drug effects*
  9. Chiroma AA, Khaza'ai H, Abd Hamid R, Chang SK, Zakaria ZA, Zainal Z
    PLoS One, 2020;15(11):e0241112.
    PMID: 33232330 DOI: 10.1371/journal.pone.0241112
    Natural α-tocopherol (α-TCP), but not tocotrienol, is preferentially retained in the human body. α-Tocopherol transfer protein (α-TTP) is responsible for binding α-TCP for cellular uptake and has high affinity and specificity for α-TCP but not α-tocotrienol. The purpose of this study was to examine the modification of α-TTP together with other related vitamin E-binding genes (i.e., TTPA, SEC14L2, and PI-TPNA) in regulating vitamin E uptake in neuronal cells at rest and under oxidative stress. Oxidative stress was induced with H2O2 for an hour which was followed by supplementation with different ratios of α-TCP and tocotrienol-rich fraction (TRF) for four hours. The cellular levels of vitamin E were quantified to determine bioavailability at cellular levels. The expression levels of TTPA, SEC14L2, and PI-TPNA genes in 0% α-TCP were found to be positively correlated with the levels of vitamin E in resting neuronal cells. In addition, the regulation of all the above-mentioned genes affect the distribution of vitamin E in the neuronal cells. It was observed that, increased levels of α-TCP secretion occur under oxidative stress. Thus, our results showed that in conclusion vitamin E-binding proteins may be modified in the absence of α-TCP to produce tocotrienols (TCT), as a source of vitamin E. The current study suggests that the expression levels of vitamin E transport proteins may influence the cellular concentrations of vitamin E levels in the neuronal cells.
    Matched MeSH terms: Oxidative Stress/drug effects
  10. Zulkapli R, Abdul Razak F, Zain RB
    Integr Cancer Ther, 2017 09;16(3):414-425.
    PMID: 28818030 DOI: 10.1177/1534735416675950
    Cancers involving the oral cavity, head, and neck regions are often treated with cisplatin. In cancer therapy, the main target is to eliminate unwanted cancerous cells. However, reports on the nonselective nature of this drug have raised few concerns. Incorrect nutritional habits and lifestyle practices have been directly linked to cancer incidence. Nutrients with antioxidant activity inhibit cancer cells development, destroying them through oxidative stress and apoptosis. α-tocopherol, the potent antioxidant form of vitamin E is a known scavenger of free radicals. In vitro study exhibited effective antitumor activity of α-tocopherol on ORL-48 at 2.5 ± 0.42 µg/mL. Cisplatin exhibited stronger activity at 1.0 ± 0.15 µg/mL, but unlike α-tocopherol it exhibited cytotoxicity on normal human epidermal keratinocytes at very low concentration (<0.1 µg/mL). Despite the lower potency of α-tocopherol, signs of apoptosis such as the shrinkage of cells and appearance of apoptotic bodies were observed much earlier than cisplatin in time lapse microscopy. No apoptotic vesicles were formed with cisplatin, instead an increased population of cells in the holoclone form which may suggest different induction mechanisms between both agents. High accumulation of cells in the G0/G1 phase were observed through TUNEL and annexin V-biotin assays, while the exhibition of ultrastructural changes of the cellular structures verified the apoptotic mode of cell death by both agents. Both cisplatin and α-tocopherol displayed cell cycle arrest at the Sub G0 phase. α-tocopherol thus, showed potential as an antitumour agent for the treatment of oral cancer and merits further research.
    Matched MeSH terms: Oxidative Stress/drug effects
  11. Jahurul MHA, Shian OK, Sharifudin MS, Hasmadi M, Lee JS, Mansoor AH, et al.
    J Food Sci Technol, 2021 Mar;58(3):902-910.
    PMID: 33678873 DOI: 10.1007/s13197-020-04604-1
    The objective of this study was to optimize the extraction of oil from pre-dried roselle seeds using response surface methodology (RSM). We also determined the oxidative stability of oil extracted from oven and freeze-dried roselle seed in terms of iodine value (IV), free fatty acid (FFA) value, peroxide value (PV), P-anisidine and total oxidation values (TOTOX value). The RSM was designated based on the central composite design with the usage of three optimum parameters ranged from 8 to 16 g of sample weight, 250-350 mL of solvent volume, and 6-8 h of extraction time. The highest oil yielded from roselle seed using the optimization process was 22.11% with the parameters at sample weight of 14.4 g, solvent volume of 329.70 mL, and extraction time of 7.6 h. Besides, the oil extracted from the oven dried roselle seed had the values of 89.04, 2.11, 4.13, 3.76 and 12.03 for IV, FFA, PV, P-anisidine, and TOTOX values, respectively. While for the oil extracted from freeze-dried roselle seed showed IV of 90.31, FFA of 1.64, PV of 2.47, P-anisidine value of 3.48, and TOTOX value of 8.42. PV and TOTOX values showed significant differences whereas; IV, FFA, and P-anisidine values showed no significant differences between the oven and freeze-dried roselle seed oils.
    Matched MeSH terms: Oxidative Stress
  12. Khairunnuur Fairuz Azman, Rahimah Zakaria, Che Badariah Abdul Aziz, Zahiruddin Othman
    MyJurnal
    Recent evidence has exhibited dietary influence on the manifestation of depressive-like behaviour induced by stressor tasks. The present study examined the effects of Tualang honey supplement administered with the goal of preventing or attenuating the occurrence of depressive-like behaviour in male rats subjected to noise stress. Forty-eight adult male rats were randomly divided into the following groups: i) nonstressed with placebo, ii) nonstressed with honey, iii) stressed with placebo, and iv) stressed with honey. Tualang honey (200 mg/kg body weight) was administered for 28 days. Stressed rats were subjected to loud noise 100 dB(A) 4 hours daily for 14 days. Forced swimming test was performed to evaluate depressive-like behaviour. Stressed control rats displayed significant increase in depressive-like behaviour, serum adrenocorticotropic hormone (ACTH), corticosterone, and brain oxidative stress markers levels, with significant decrease in antioxidant enzymes activities and total antioxidant status. Honey supplementation successfully counteracted the stress effects whereby the honey treated rats exhibited significant decrease in depressive-like behaviour and levels of ACTH, corticosterone, and oxidative stress markers, with significant increase in antioxidant enzymes activities and total antioxidant status. In conclusion, Tualang honey mediated antidepressant-like effects in stressed rats, possibly acting via restoration of hypothalamic-pituitary-adrenal axis through its antioxidant properties.
    Matched MeSH terms: Oxidative Stress
  13. Bhatti S, Ali Shah SA, Ahmed T, Zahid S
    Drug Chem Toxicol, 2018 Oct;41(4):399-407.
    PMID: 29742941 DOI: 10.1080/01480545.2018.1459669
    The present study investigates the neuroprotective effects of Foeniculum vulgare seeds in a lead (Pb)-induced brain neurotoxicity mice model. The dried seeds extract of Foeniculum vulgare was prepared with different concentrations of organic solvents (ethanol, methanol, n-hexane). The in vitro antioxidant activity of Foeniculum vulgare seed extracts was assessed through DPPH assay and the chemical composition of the extracts was determined by high-resolution 1H NMR spectroscopy. The age-matched male Balb/c mice (divided into 9 groups) were administered with 0.1% Pb and 75% and 100% ethanol extracts of Foeniculum vulgare seeds at a dose of 200 mg/kg/day and 20 mg/kg/day. The maximum antioxidant activity was found for 75% ethanol extract, followed by 100% ethanol extract. Gene expression levels of oxidative stress markers (SOD1 and Prdx6) and the three isoforms of APP (APP common, 770 and 695), in the cortex and hippocampus of the treated and the control groups were measured. Significant increase in APP 770 expression level while a substantial decrease was observed for SOD1, Prdx6 and APP 695 expression in Pb-treated groups. Interestingly, the deranged expression levels were significantly normalized by the treatment with ethanol extracts of Foeniculum vulgare seeds (specifically at dose of 200 mg/kg/day). Furthermore, the Pb-induced morphological deterioration of cortical neurons was significantly improved by the ethanol extracts of Foeniculum vulgare seeds. In conclusion, the present findings highlight the promising therapeutic potential of Foeniculum vulgare to minimize neuronal toxicity by normalizing the expression levels of APP isoforms and oxidative stress markers.
    Matched MeSH terms: Oxidative Stress
  14. Zadeh-Ardabili PM, Rad SK, Rad SK, Khazaài H, Sanusi J, Zadeh MH
    Sci Rep, 2017 10 30;7(1):14365.
    PMID: 29085045 DOI: 10.1038/s41598-017-14765-3
    Spinal cord injury (SCI) occurs following different types of crushes. External and internal outcomes of SCI are including paralysis, cavity, and cyst formation. Effects of dietary derived antioxidants, such as palm vitamin E on central nervous system (CNS) encourage researchers to focus on the potential therapeutic benefits of antioxidant supplements. In the present study, experiments were carried out to evaluate the neuro-protective effect of the palm vitamin E on locomotor function and morphological damages induced SCI. Seventy-two male rats (Sprague-Dawley) were randomly divided into four groups: sham (laminectomy); control (supplemented with the palm vitamin E at a dose of 100 mg/kg/day); untreated-SCI (partial crush, 30-33% for 20 sec); treated-SCI (partial crush, 30-33% for 20 sec supplemented with the palm vitamin E at a dose of 100 mg/kg/day). The treatment with the palm vitamin E significantly improved the hind limb locomotor function, reduced the histopathological changes and the morphological damage in the spinal cord. Also, the palm vitamin E indicated a statistically significant decrease in the oxidative damage indicators, malondialdehyde (MDA) level and glutathione peroxidase (GPx) activity in the treated-SCI compared to the untreated-SCI.
    Matched MeSH terms: Oxidative Stress/drug effects
  15. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    J Environ Sci (China), 2018 Oct;72:140-152.
    PMID: 30244741 DOI: 10.1016/j.jes.2017.12.022
    The toxicity and kinetic uptake potential of zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials into the red bean (Vigna angularis) plant were investigated. The results obtained revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant. However, TiO2 had a positive effect on plant physiology, resulting in promoted growth. The results of biochemical experiments implied that ZnO, through the generation of oxidative stress, significantly reduced the chlorophyll content, carotenoids and activity of stress-controlling enzymes. On the contrary, no negative biochemical impact was observed in plants treated with TiO2. For the kinetic uptake and transport study, we designed two exposure systems in which ZnO and TiO2 were exposed to red bean seedlings individually or in a mixture approach. The results showed that in single metal oxide treatments, the uptake and transport increased with increasing exposure period from one week to three weeks. However, in the metal oxide co-exposure treatment, due to complexation and competition among the particles, the uptake and transport were remarkably decreased. This suggested that the kinetic transport pattern of the metal oxide mixtures varied compared to those of its individual constituents.
    Matched MeSH terms: Oxidative Stress
  16. Kwan PP, Banerjee S, Shariff M, Yusoff FM
    Vet World, 2019 Sep;12(9):1416-1421.
    PMID: 31749575 DOI: 10.14202/vetworld.2019.1416-1421
    Background and Aim: Malachite green (MG) is an effective antiparasitic and antifungal chemical for treatment of fish. However, MG is reported to be a potential carcinogen. Yet, it is widely used in aquaculture despite its prohibition for use in food-producing animals by the EU and USFDA. The present study quantified MG residues and evaluated the oxidative stress in red tilapia when exposed to subacute and sublethal concentrations of MG.

    Materials and Methods: Red tilapia exposed to subacute (0.105 mg/L for 20 days) and sublethal (0.053 mg/L for 60 days) concentrations were evaluated for total plasma protein, total immunoglobulin, nitroblue tetrazolium activity, malondialdehyde, reduced glutathione (GSH), and catalase (CAT) activity levels. The residues of MG and leuco-MG (LMG) were also quantified in the fish muscles using liquid chromatography-tandem mass spectrometry.

    Results: Fish exposed to subacute concentration showed higher CAT on day 10 in the liver and days 5 and 15 in the spleen, whereas in fish exposed to the sublethal concentration, higher levels of GSH were observed on day 1 in the kidney and day 50 in the spleen. Fish muscle was able to accumulate the sum of MG and LMG of 108.04 µg/kg for subacute (day 20) and 82.68 µg/kg for sublethal (day 60).

    Conclusion: This study showed that red tilapia was able to adapt to the stress caused by exposure to MG at sublethal concentration.

    Matched MeSH terms: Oxidative Stress
  17. Idris ZHC, Abidin AAZ, Subki A, Yusof ZNB
    Trop Life Sci Res, 2018 Mar;29(1):71-85.
    PMID: 29644016 MyJurnal DOI: 10.21315/tlsr2018.29.1.5
    Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.
    Matched MeSH terms: Oxidative Stress
  18. Aliahmat NS, Noor MR, Yusof WJ, Makpol S, Ngah WZ, Yusof YA
    Clinics (Sao Paulo), 2012 Dec;67(12):1447-54.
    PMID: 23295600
    OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris.

    METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level.

    RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments.

    CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging.

    Matched MeSH terms: Oxidative Stress/drug effects
  19. Sani NF, Belani LK, Sin CP, Rahman SN, Das S, Chi TZ, et al.
    Biomed Res Int, 2014;2014:160695.
    PMID: 24822178 DOI: 10.1155/2014/160695
    Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P < 0.05) SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P < 0.05) in STZ-induced diabetic rats compared to diabetic control rats.
    Matched MeSH terms: Oxidative Stress/drug effects*
  20. Hanapi NA, Mohamad Arshad AS, Abdullah JM, Tengku Muhammad TS, Yusof SR
    J Pharm Sci, 2021 02;110(2):698-706.
    PMID: 32949562 DOI: 10.1016/j.xphs.2020.09.015
    Neurotherapeutic potentials of Centella asiatica and its reputation to boost memory, prevent cognitive deficits and improve brain functions are widely acknowledged. The plant's bioactive compounds, i.e. asiaticoside, madecassoside and asiatic acid were reported to have central nervous system (CNS) actions, particularly in protecting the brain against neurodegenerative disorders. Hence, it is important for these compounds to cross the blood-brain barrier (BBB) to be clinically effective therapeutics. This study aimed to explore the capability of asiaticoside, madecassoside and asiatic acid to cross the BBB using in vitro BBB model from primary porcine brain endothelial cells (PBECs). Our findings showed that asiaticoside, madecassoside and asiatic acid are highly BBB permeable with apparent permeability (Papp) of 70.61 ± 6.60, 53.31 ± 12.55 and 50.94 ± 10.91 × 10-6 cm/s respectively. No evidence of cytotoxicity and tight junction disruption of the PBECs were observed in the presence of these compounds. Asiatic acid showed cytoprotective effect towards the PBECs against oxidative stress. This study reported for the first time that Centella asiatica compounds demonstrated high capability to cross the BBB, comparable to central nervous system drugs, and therefore warrant further development as therapeutics for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Oxidative Stress
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links