METHODS: To find related studies, the WoS, PubMed, ScienceDirect, Scopus, Embase, and Google Scholar databases were systematically searched without a lower time limit. Heterogeneity among the identified studies was checked using the I2 index, and the Begg and Mazumdar correlation test examined the existence of published bias. Comprehensive Meta-Analysis (v.2) software was adopted to analyze the data.
RESULTS: In the review of 18 studies with a sample size of 5,840, the overall pooled prevalence of sleep disorders among AS patients based on the random effects method was found to be 53% (95% CI: 44.9-61). The highest and lowest prevalence was in Egypt at 90% and Australia at 19.2%, respectively. Our meta-regression results show that with the increase in 'sample size' and 'year of publication', the overall prevalence of sleep disorders in patients with AS decreases (p
METHOD: Based on a pre-registered protocol (PROSPERO: CRD42021256352), we searched PubMed, Web of Knowledge/Science, Ovid Medline, Embase and APA PsycINFO up to 16th November 2021, with no language/type of document restrictions. We included observational studies reporting at least one measure of vision in people of any age meeting DSM/ICD criteria for ADHD and in people without ADHD; or the prevalence of ADHD in people with and without vision disorders. Study quality was assessed with the Appraisal tool for Cross-Sectional Studies (AXIS). Random effects meta-analyses were used for data synthesis.
RESULTS: We included 42 studies in the narrative synthesis and 35 studies in the meta-analyses (3,250,905 participants). We found meta-analytic evidence of increased risk of astigmatism (OR = 1.79 [CI: 1.50, 2.14]), hyperopia and hypermetropia (OR = 1.79 [CI: 1.66, 1.94]), strabismus (OR = 1.93 [CI: 1.75, 2.12]), unspecified vision problems (OR = 1.94 [CI: 1.38, 2.73]) and reduced near point of convergence (OR = 5.02 [CI: 1.78, 14.11]); increased lag (Hedge's g = 0.63 [CI: 0.30, 0.96]) and variability (Hedge's g = 0.40 [CI: 0.17, 0.64]) of the accommodative response; and increased self-reported vision problems (Hedge's g = 0.63 [CI: 0.44, 0.82]) in people with ADHD compared to those without ADHD (with no significant heterogeneity). We also found meta-analytic evidence of no differences between people with and without ADHD on retinal nerve fiber layer thickness (Hedge's g = -0.19 [CI: -0.41, 0.02]) and refractive error (Hedge's g = 0.08 [CI: -0.26, 0.42]) (with no significant heterogeneity).
DISCUSSION: ADHD is associated with some self-reported and objectively ascertained functional vision problems, but not with structural alterations of the eye. Further studies should clarify the causal relationship, if any, between ADHD and problems of vision.
TRIAL REGISTRATION: PROSPERO registration: CRD42021256352.