Displaying publications 21 - 40 of 85 in total

Abstract:
Sort:
  1. Ashyap AYI, Elamin NIM, Dahlan SH, Abidin ZZ, See CH, Majid HA, et al.
    PLoS One, 2021;16(1):e0246057.
    PMID: 33508025 DOI: 10.1371/journal.pone.0246057
    A compact fabric antenna structure integrated with electromagnetic bandgap structures (EBGs) covering the desired frequency spectrum between 2.36 GHz and 2.40 GHz for Medical Body-Area Networks (MBANs), is introduced. The needs of flexible system applications, the antenna is preferably low-profile, compact, directive, and robust to the human body's loading effect have to be satisfied. The EBGs are attractive solutions for such requirements and provide efficient performance. In contrast to earlier documented EBG backed antenna designs, the proposed EBG behaved as shielding from the antenna to the human body, reduced the size, and acted as a radiator. The EBGs reduce the frequency detuning due to the human body and decrease the back radiation, improving the antenna efficiency. The proposed antenna system has an overall dimension of 46×46×2.4 mm3. The computed and experimental results achieved a gain of 7.2 dBi, a Front to Back Ratio (FBR) of 12.2 dB, and an efficiency of 74.8%, respectively. The Specific Absorption Rate (SAR) demonstrates a reduction of more than 95% compared to the antenna without EBGs. Moreover, the antenna performance robustness to human body loading and bending is also studied experimentally. Hence, the integrated antenna-EBG is a suitable candidate for many wearable applications, including healthcare devices and related applications.
    Matched MeSH terms: Textiles
  2. Shafqat SR, Bhawani SA, Bakhtiar S, Ibrahim MNM
    BMC Chem, 2020 Dec;14(1):27.
    PMID: 32266334 DOI: 10.1186/s13065-020-00680-8
    Congo red (CR) is an anionic azo dye widely used in many industries including pharmaceutical, textile, food and paint industries. The disposal of huge amount of CR into the various streams of water has posed a great threat to both human and aquatic life. Therefore, it has become an important aspect of industries to remove CR from different water sources. Molecular imprinting technology is a very slective method to remove various target pollutant from environment. In this study a precipitation polymerization was employed for the effective and selective removal of CR from contaminated aqueous media. A series of congo red molecularly imprinted polymers (CR-MIPs) of uniform size and shape was developed by changing the mole ratio of the components. The optimum ratio (0.1:4: 20, template, functional monomer and cross-linking monomer respectively) for CR1-MIP from synthesized polymers was able to rebind about 99.63% of CR at the optimum conditions of adsorption parameters (contact time 210 min, polymer dosage 0.5 g, concentration 20 ppm and pH 7). The synthesized polymers were characterized by various techniques such as Fourier Infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), and Brumauer-Emmett-Teller (BET). The polymer particles have successfully removed CR from different aqueous media with an efficiency of about ~ 90%.
    Matched MeSH terms: Textiles
  3. Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, et al.
    J Mech Behav Biomed Mater, 2020 10;110:103884.
    PMID: 32957191 DOI: 10.1016/j.jmbbm.2020.103884
    Cellulose constitutes most of a plant's cell wall, and it is the most abundant renewable polymer source on our planet. Given the hierarchical structure of cellulose, nanocellulose has gained considerable attention as a nano-reinforcement for polymer matrices in various industries (medical and healthcare, oil and gas, packaging, paper and board, composites, printed and flexible electronics, textiles, filtration, rheology modifiers, 3D printing, aerogels and coating films). Herein, nanocellulose is considered as a sustainable nanomaterial due to its substantial strength, low density, excellent mechanical performance and biocompatibility. Indeed, nanocellulose exists in several forms, including bacterial cellulose, nanocrystalline cellulose and nanofibrillated cellulose, which results in biodegradable and environmentally friendly bionanocomposites with remarkably improved material properties. This paper reviews the recent advances in production, physicochemical properties, and structural characterization of nanocelluloses. It also summarises recent developments in several multifunctional applications of nanocellulose with an emphasis on bionanocomposite properties. Besides, various challenges associated with commercialisation and economic aspects of nanocellulose for current and future markets are also discussed inclusively.
    Matched MeSH terms: Textiles
  4. Basiron N, Sreekantan S, Kang LJ, Akil HM, Mydin RBSMN
    Polymers (Basel), 2020 Feb 09;12(2).
    PMID: 32050485 DOI: 10.3390/polym12020394
    The polyvinyl alcohol (PVA) and neem extract were grafted onto coupled oxides (3ZT-CO) via reflux process to stabilize the particles to form 3ZT-CO/PVA and 3ZT-CO/Neem. These were then incorporated into LLDPE by melt blending process to give LLDPE/3ZT-CO/PVA and LLDPE/3ZT-CO/Neem composites. The Neem and PVA stabilized particles showed high zeta potential and dispersed homogeneously in water. The stabilization process altered the shape of the particles due to plane growth along the (002) polar direction. The stabilizers acted as capping agents and initiated the one-dimensional growth. The alkyl chain groups from PVA increased the polarity of the LLDPE/3ZT-CO/PVA and played a dominant role in the water adsorption process to activate the photocatalytic activity. This was further enhanced by the homogeneous distribution of the particles and low degree of crystallinity (20.87%) of the LLDPE composites. LLDPE/3ZT-CO/PVA exhibited the highest photodegradation (93.95%), which was better than the non-stabilized particles. Therefore, the photocatalytic activity of a polymer composite can be enhanced by grafting PVA and neem onto couple oxides. The LLDPE/3ZT-CO/PVA composite was further used to treat textile effluent. The results showed the composite was able to remove dye color by 93.95% and to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) by 99.99%.
    Matched MeSH terms: Textiles
  5. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC
    Environ Sci Pollut Res Int, 2020 Jan;27(3):2522-2565.
    PMID: 31865580 DOI: 10.1007/s11356-019-07193-5
    Photocatalysis is an ecofriendly technique that emerged as a promising alternative for the degradation of many organic pollutants. The weaknesses of the present photocatalytic system which limit their industrial applications include low-usage of visible light, fast charge recombination, and low migration ability of the photo-generated electrons and holes. Therefore, various elements such as noble metals and transition metals as well as non-metals and metalloids (i.e., graphene, carbon nanotube, and carbon quantum dots) are doped into the photocatalyst as co-catalysts to enhance the photodegradation performance. The incorporation of the co-catalyst which alters the photocatalytic mechanism was discussed in detail. The application of photocatalysts in treating persistent organic pollutants such as pesticide, pharmaceutical compounds, oil and grease and textile in real wastewater was also discussed. Besides, a few photocatalytic reactors in pilot scale had been designed for the effort of commercializing the system. In addition, hybrid photocatalytic system integrating with membrane filtration together with their membrane fabrication methods had also been reviewed. This review outlined various types of heterogeneous photocatalysts, mechanism, synthesis methods of biomass supported photocatalyst, photocatalytic degradation of organic substances in real wastewater, and photocatalytic reactor designs and their operating parameters as well as the latest development of photocatalyst incorporated membrane.
    Matched MeSH terms: Textiles
  6. Wan Syazehan Ruznan, Suraya Ahmad Suhaimi, Nazzuha Pairan, Aimi Umairah Mazlan, Anis Naziihah Azrain, Intan Shahirah Md Rosli, et al.
    MyJurnal
    Fibres from banana’s stem are abundantly available in Malaysia. This study focused on the production
    of woven fabric from banana pseudo-stem fibres. Yarn made of 100% banana stem and 100% cotton
    yarn were produced. Two types of retting techniques were conducted, which are water retting and
    retting using softening agent. The fibres were spun and weaved into plain weave fabric. All specimens
    were evaluated for yarn twist, yarn evenness, yarn linear density and selected fabric physical
    properties. The results obtained showed that banana stem fabric treated with softening agent has lower
    area density and higher thickness. Weft sample retted in softening agent has higher bending length and
    flexural rigidity than sample retted in water. This might be due to the decrement of yarn’s stiffness,
    which eases the insertion of yarn during shedding process. Weft sample retted in water has lower
    bending length due to coarser yarn and tends to break easily. It is found that retting banana stem fibres
    with softening agent affect the yarn linear density, area density, fabric stiffness properties and flexural
    rigidity of the fabric.
    Matched MeSH terms: Textiles
  7. Farah Izza Jais, Sharifah Mastura, Naji Arafat Mahat, Dzulkiflee Ismail, Muhammad Naeim Mohamad Asri
    MyJurnal
    Introduction: Accelerants and fabrics are commonly used to spread fire attributable to their highly flammable prop- erties. Hence, having the ability to discriminate the different types of accelerants on various types of fabrics after fire and/or arson using the non-destructive Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spec- troscopy coupled with chemometric techniques appears forensically relevant. Methods: Six types of fabrics viz. cotton, wool, silk, rayon, satin, and polyester, were burnt completely with RON95 and RON97 gasoline as well as diesel. Subsequently, the samples were analyzed by ATR-FTIR spectroscopy followed by Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for discriminating the different types of accelerants on such burned fabrics. Results: RON95 showed the fastest rate of burning on all fabric types. Results also revealed that while wool had the slowest burning rate for all the three different accelerants, polyester, cotton, and satin demon- strated the highest rate of burning in RON95, RON97, and diesel, respectively. FTIR spectra revealed the presence of alkane, alcohol, alkene, alkyne, aromatic, and amine compounds for all fabrics. The two dimensional PCA (PC1 versus PC2) demonstrated 71% of variance and it was improved by cross-validation through the three dimensional LDA technique with correct classification of 77.8%. Conclusion: ATR-FTIR spectroscopy coupled with chemometric techniques had enabled identification of the functional groups, as well as statistically supported discrimination of the different accelerants, a matter of relevance in forensic fire and arson investigations.
    Matched MeSH terms: Textiles
  8. Aznin Baharudin, Nor Akmalazura Jani, Azyati Azreen, A. A. Assyura, Hawa Pornomo, M. Hafiz Mehat
    Borneo Akademika, 2020;4(1):1-12.
    MyJurnal
    This study is focused on formulating a natural-based fabric softener using baking
    soda and vinegar with the addition of insect repellent finish of citronella oil and
    vanillin. The effectiveness of the fabric softener was evaluated by conducting a fabric
    stiffness test on both untreated and treated fabric samples with the softener
    formulated in this study. The assessment for the efficacy of insect repellence was
    carried out using 3 human participants of the same gender and build but different
    blood type, positioned at a mosquito infested area. Three tests; negative, positive, and
    normal tests were conducted to evaluate the effectiveness of the formulated mosquito
    repellent finishes in the fabric softener. The results show that the formulated fabric
    softener is good mosquito repellent and it is good at giving a soft effect on the treated
    fabric.
    Matched MeSH terms: Textiles
  9. Ainil Huda Abu Talib, Siti Nuranis Syazana Misron, Nurul ‘izzah Mohd Fu’ad, Nurul Ariesha Zamri, Eryna Nasir
    Borneo Akademika, 2020;4(1):13-24.
    MyJurnal
    The Silver Reed Model LK150 knitting machine is a home knitting machine which is
    extremely lightweight and compact, making it preferable by most home knitters.
    There are various knitwears with interesting patterns can be made using this model. In
    the field of garments manufacturing by using flatbed knitting machines, it is
    important to understand the physical properties of fabric so that their impact on
    dimensional changes can be predicted to produce the most suitable end use. The
    samples were produced by using a blended bamboo/cotton yarn, with a composition
    of 30% cotton and 70% bamboo. The main objectives of this study are to to evaluate
    the physical properties of single jersey fabric knitted on home knitting machine by
    using different stitch dials and to relate the physical properties with different stitch
    lengths. Then, all tests were conducted to compare the physical properties of samples
    between three different stitch dials and the effects of before and after washing. The
    physical properties measured in this research were stitch length, stitch density, weight,
    thickness, absorbency and shrinkage. The result indicated that the longer the stitch
    length, the higher the percentage of the water impact penetration. Meanwhile, there
    was a slight reduction on the density, thickness and fabric weight. In addition, the
    result after three times washing showed that the samples only had slight changes in
    density, thickness, weight and stitch length, but has significant changes on the water
    impact penetration.
    Matched MeSH terms: Textiles
  10. Muthukumaran M, Dhinagaran G, Narayanan V, Raju T, Venkatachalam K, Karthika PC, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7215-7220.
    PMID: 31039878 DOI: 10.1166/jnn.2019.16671
    Graphene oxide/Cuprous oxide (GO/Cu₂O) composite is a visible light photocatalyst for the degradation of dyes. A simple and efficient approach for preparing GO/Cu₂O composite adopted in this study involves reducing cuprous oxide precursors in the presence of graphene oxide using an aqueous solution of pulp derived from banana fruit. The GO/Cu₂O composite was characterized by Fourier transform infrared spectroscopy (FT-IR), Diffused reflectance Ultraviolet visible spectroscopy (DRS UV-Vis), Raman spectroscopy and Field Emission Scanning electron microscopy (FE-SEM). Cu₂O particles were distributed randomly on the graphene oxide sheets due to the template effect of GO. The results showed higher photocatalytic activity for the composite (band gap 2.13 eV), for the degradation of the organic dyes (Methylene blue and Rhodamine-B). The enhanced photocatalytic activity is due to effective charge transfer from GO to Cu₂O, and high specific surface area which improves the effective separation of the generated electron-hole pairs. Our present study is inspired by a facile, low cost, green production of (GO/Cu₂O) composite whose photocatalytic activity can be extended to degradation of all other water-born textile dyes.
    Matched MeSH terms: Textiles
  11. Teow YH, Nordin NI, Mohammad AW
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33747-33757.
    PMID: 29754300 DOI: 10.1007/s11356-018-2189-6
    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.
    Matched MeSH terms: Textiles
  12. Asghar A, Bello MM, Raman AAA, Daud WMAW, Ramalingam A, Zain SBM
    Heliyon, 2019 Sep;5(9):e02396.
    PMID: 31517121 DOI: 10.1016/j.heliyon.2019.e02396
    In this work, quantum chemical analysis was used to predict the degradation potential of a recalcitrant dye, Acid blue 113, by hydrogen peroxide, ozone, hydroxyl radical and sulfate radical. Geometry optimization and frequency calculations were performed at 'Hartree Fock', 'Becke, 3-parameter, Lee-Yang-Parr' and 'Modified Perdew-Wang exchange combined with PW91 correlation' levels of study using 6-31G* and 6-31G** basis sets. The Fourier Transform-Raman spectra of Acid blue 113 were recorded and a complete analysis on vibrational assignment and fundamental modes of model compound was performed. Natural bond orbital analysis revealed that Acid blue 113 has a highly stable structure due to strong intermolecular and intra-molecular interactions. Mulliken charge distribution and molecular electrostatic potential map of the dye also showed a strong influence of functional groups on the neighboring atoms. Subsequently, the reactivity of the dye towards the oxidants was compared based on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. The results showed that Acid blue 113 with a HOMO value -5.227 eV exhibits a nucleophilic characteristic, with a high propensity to be degraded by ozone and hydroxyl radical due to their lower HOMO-LUMO energy gaps of 4.99 and 4.22 eV respectively. On the other hand, sulfate radical and hydrogen peroxide exhibit higher HOMO-LUMO energy gaps of 7.92 eV and 8.10 eV respectively, indicating their lower reactivity towards Acid blue 113. We conclude that oxidation processes based on hydroxyl radical and ozone would offer a more viable option for the degradation of Acid blue 113. This study shows that quantum chemical analysis can assist in selecting appropriate advanced oxidation processes for the treatment of textile effluent.
    Matched MeSH terms: Textiles
  13. Mostafa AA, Elshikh MS, Al-Askar AA, Hadibarata T, Yuniarto A, Syafiuddin A
    Bioprocess Biosyst Eng, 2019 Sep;42(9):1483-1494.
    PMID: 31076865 DOI: 10.1007/s00449-019-02144-3
    Due to environmental concern, the research to date has tended to focus on how textile dye removal can be carried out in a greener manner. Therefore, this study aims to evaluate the decolorization and biotransformation pathway of Mordant Orange-1 (MO-1) by Cylindrocephalum aurelium RY06 (C. aurelium RY06). Decolorization study was conducted in a batch experiment including the investigation of the effects of physio-chemical parameters. Enzymatic activity of C. aurelium RY06 during the decolorization was also investigated. Moreover, transformation and biodegradation of MO-1 by C. aurelium RY06 were observed using the gas chromatography-mass spectrometry. Manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase enzymes were detected during the decolorization. In general, the present work concluded that the MO-1 was successfully degraded by C. aurelium RY06 and transformed to be maleic acid and to be isophtalic acid.
    Matched MeSH terms: Textiles*
  14. Nurhanisah MH, Jawaid M, Ahmad Azmeer R, Paridah MT
    Disabil Rehabil Assist Technol, 2019 07;14(5):513-520.
    PMID: 29933703 DOI: 10.1080/17483107.2018.1479782
    This study describes a newly developed prosthetic leg socket design for a below-knee amputation. Excessive heat and the resulted perspiration within a prosthetic socket were the most common causes for reporting a reduced quality of life for prosthetic users. The product namely AirCirc means air circulation and it has been designed by approach of medical device design process in providing the amputees to maintain the skin temperature inside the socket. This device has been designed to provide the amputees with comfort and ultimate breathable. In order to design the device, the small hole was made in prosthetic socket surface since it has a function as air circulation. Four types of proposed sockets namely P1, P2, P3 and P4 and one control socket were compared on a single patient to determine the best design of prosthetic socket. The result successfully reveals that by using holes can be maintain the temperature inside prosthetic socket. In addition to the eco-friendly material, the woven kenaf was used as material that provides good strength as compared to glass fibre and offer sustainable and biodegradable product yet provides unique and aesthetic surface as came from woven kenaf itself. The objective of this paper is to provide the airflow prosthetic socket design and optimize the use of natural fibre in prostheses field. Thus, with the use of the environmental friendly material, functionality device and heat removal capability make the device suitable for maintaining a comfortable and healthy environment for prosthesis. Implications of Rehabilitation Newly developed prosthetic leg socket design for a below-knee amputation Device has been designed to provide the amputees with comfort and ultimate breathable Woven kenaf was used as material that provides good strength as compared to glass fibre for sustainable and biodegradable product Results show that by using holes can be maintain the temperature inside prosthetic socket.
    Matched MeSH terms: Textiles
  15. Noman E, Al-Gheethi A, Mohamed RMSR, Talip BA
    Top Curr Chem (Cham), 2019 May 27;377(3):17.
    PMID: 31134390 DOI: 10.1007/s41061-019-0241-8
    In this article, the utilization of fungi for the degradation of xenobiotic organic compounds (XOCs) from different wastewater and aqueous solutions has been reviewed. The myco-remediation (myco-enzymes, myco-degradation, and myco-sorption) process is widely used to remove XOCs, which are not easily biodegradable. The removal of XOCs from textile wastewaters through chemical and physical processes has been addressed by many researchers. Currently, the application of oxidative enzymes [manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase] and myco-adsorption is becoming more common for the removal of XOCs from wastewater. Although the advanced oxidation process (AOPs) is a preferred technology for removing XOCs, its use is restricted due to its relatively high cost, which led to research studies on non-traditional and low-cost technology. The current review aimed to organize the scattered available information on the potential of myco-remediation for XOC removal. Moreover, the utilization of agricultural wastes as a production substrate for oxidative enzymes has been reported by many authors. Agricultural waste materials are highly inducible for oxidative enzyme production by fungi and are cost-effective in comparison to commercial substances. It is evident from the literature survey of 80 recently published papers that myco-enzymes have demonstrated outstanding XOC removal capabilities. Fungal laccase enzyme is the first step to degrade the lignin and then to get the carbon source form the cellulose by cellulose enzyme.
    Matched MeSH terms: Textiles
  16. Abd Rahman NH, Yamada Y, Amin Nordin MS
    Materials (Basel), 2019 May 19;12(10).
    PMID: 31109128 DOI: 10.3390/ma12101636
    Previous works have shown that wearable antennas can operate ideally in free space; however, degradation in performance, specifically in terms of frequency shifts and efficiency was observed when an antenna structure was in close proximity to the human body. These issues have been highlighted many times yet, systematic and numerical analysis on how the dielectric characteristics may affect the technical behavior of the antenna has not been discussed in detail. In this paper, a wearable antenna, developed from a new electro-textile material has been designed, and the step-by-step manufacturing process is presented. Through analysis of the frequency detuning effect, the on-body behavior of the antenna is evaluated by focusing on quantifying the changes of its input impedance and near-field distribution caused by the presence of lossy dielectric material. When the antenna is attached to the top of the body fat phantom, there is an increase of 17% in impedance, followed by 19% for the muscle phantom and 20% for the blood phantom. These phenomena correlate with the electric field intensities (V/m) observed closely at the antenna through various layers of mediums (z-axis) and along antenna edges (y-axis), which have shown significant increments of 29.7% in fat, 35.3% in muscle and 36.1% in blood as compared to free space. This scenario has consequently shown that a significant amount of energy is absorbed in the phantoms instead of radiated to the air which has caused a substantial drop in efficiency and gain. Performance verification is also demonstrated by using a fabricated human muscle phantom, with a dielectric constant of 48, loss tangent of 0.29 and conductivity of 1.22 S/m.
    Matched MeSH terms: Textiles
  17. Nur Fitrah Che Nan, Norhazlin Zainuddin, Mansor Ahmad
    MyJurnal
    Carboxymethylcellulose (CMC) is a water-soluble polymer, which is widely used in various
    fields such as food additives, textiles, pharmaceuticals and cosmetics. In this study, hydrogel
    was prepared from CMC by using calcium chloride as a crosslinking agent. Optimization
    of the reaction was done through investigation of four different parameters which had
    different percentage of CMC (w/v), percentage of calcium chloride (w/v), reaction time and
    temperature. The gel content and swelling properties of the CMC hydrogel were studied.
    The highest gel content was 85.33% at 7% of CMC (w/v) with 2% of calcium chloride (w/v)
    in 24 hours reaction time at room temperature. The gel content increased with the increasing
    concentration of CMC and CaCl2. This was due to the higher number of functional groups
    of COO- that were available in more concentrated CMC which could crosslink with CaCl2
    to give higher gel content. Increasing the percentage of CaCl2 will increase the electrostatic
    attraction between anionic charges of polymer chains and multivalent cation (Ca2+) that
    leads to increase in ionic crosslinking of CMC. The swelling properties of CMC hydrogel
    showed that the optimum degree of swelling was 45.33 (g/g). The swelling capacity of the
    hydrogel in water decreased with the increase of the gel content of CMC hydrogel. This
    could be due to the increase in the degree of crosslinking of the CMC hydrogel.
    Matched MeSH terms: Textiles
  18. Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, et al.
    Bioresour Technol, 2018 Oct;266:1-10.
    PMID: 29936405 DOI: 10.1016/j.biortech.2018.06.051
    A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m2/g) and pore volume (≤0.80 cm3/g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption.
    Matched MeSH terms: Textiles
  19. Aziz HA, Razak MHA, Rahim MZA, Kamar WISW, Abu Amr SS, Hussain S, et al.
    Data Brief, 2018 Jun;18:920-927.
    PMID: 29900259 DOI: 10.1016/j.dib.2018.03.113
    Wastewater treatment is a key challenge in the textile industry. The current treatment methods for textile wastewater are insufficient or ineffective for complex dyes generated from the textile industry. This study evaluated the performances of two novel inorganic coagulants with high cationic charges, namely, titanium tetrachloride (TiCl4) and zirconium tetrachloride (ZrCl4). They were utilised to treat textile industry wastewater. Both coagulation processes were performed under the same experimental operational conditions. Turbidity, suspended solids (SS), colour, chemical oxygen demand (COD) and ammonia were measured to assess the efficiencies of the coagulants. Results indicated that ZrCl4 and TiCl4 exhibited high potentials for textile wastewater treatment. ZrCl4 presented high removal efficiency in COD and SS, whereas TiCl4 showed excellent removal in ammonia.
    Matched MeSH terms: Textiles
  20. Abdul Rahman Hassan, Nurul Hannan Mohd Safari, Sabariah Rozali, Hafizan Juahir, Mohd Khairul Amri Kamarudin
    MyJurnal
    Nanofiltration membranes technology commonly used for wastewater treatment especially
    wastewater containing charged and/or uncharged species. Commonly, textile wastewater
    possesses high chemical oxygen demand (COD) and non-biodegradable compounds such as
    pigments and dyes which lead to environmental hazard and serious health problem. Therefore, the
    objective of this study was to investigate the effects of hydrophilic surfactant on the preparation and
    performance of Active Nanofiltration (ANF) membrane. The polymeric ANF membranes were
    prepared via dry/wet phase inversion technique by immersion precipitation process. The
    Cetyletrimethylammonium bromide (CTAB) as cationic surfactant was added in casting solution at
    concentrations from 0 to 2.5 wt%. The synthesized membrane performance was evaluated in terms
    of pure water permeation (PWP) and dye rejection. The experimental data showed that the
    membrane demonstrated good increment of PWP ranging from 0.27 to 10.28 L/m2
    h at applied
    pressure from 100 to 500kPa, respectively. Meanwhile, the ANF membranes achieved high
    removal of Methyl Blue and Reactive Black 5 dye up to 99.5% and 91.6%, respectively.
    Matched MeSH terms: Textiles
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links