Displaying publications 21 - 40 of 149 in total

Abstract:
Sort:
  1. Jayakumar R, Kanthimathi MS
    Food Chem, 2012 Oct 01;134(3):1580-4.
    PMID: 25005983 DOI: 10.1016/j.foodchem.2012.03.101
    Spices are rich sources of antioxidants due to the presence of phenols and flavonoids. In this study, the DNA protecting activity and inhibition of nicotine-induced cancer cell migration of 9 spices were analysed. Murine fibroblasts (3T3-L1) and human breast cancer (MCF-7) cells were pre-treated with spice extracts and then exposed to H₂O₂ and nicotine. The comet assay was used to analyse the DNA damage. Among the 9 spices, ginger, at 50 μg/ml protected against 68% of DNA damage in 3T3-L1 cells. Caraway, cumin and fennel showed statistically significant (p<0.05) DNA protecting activity. Treatment of MCF-7 cells with nicotine induced cell migration, whereas pre-treatment with spices reduced this migration. Pepper, long pepper and ginger exhibited a high rate of inhibition of cell migration. The results of this study prove that spices protect DNA and inhibit cancer cell migration.
    Matched MeSH terms: DNA Damage/drug effects*
  2. Taridi NM, Yahaya MF, Teoh SL, Latiff AA, Ngah WZ, Das S, et al.
    Clin Ter, 2011;162(2):93-8.
    PMID: 21533313
    Oxidative stress is caused by imbalance between the productions of reactive oxygen species (ROS) and antioxidant defense mechanisms. Palm oil antioxidants such as tocotrienol rich fraction (TRF) is known to have neuroprotective effects on neurones by acting against free radical induced neuronal cell death. This study was undertaken to elucidate the effect of TRF on oxidative DNA damage and cognitive functions in experimental rats.
    Matched MeSH terms: DNA Damage/drug effects*
  3. Noushad M, Kannan TP, Husein A, Abdullah H, Ismail AR
    Toxicol In Vitro, 2009 Sep;23(6):1145-50.
    PMID: 19505568 DOI: 10.1016/j.tiv.2009.05.025
    The aim of this study was to determine the genotoxicity of a locally produced dental porcelain (Universiti Sains Malaysia, Malaysia) using the Ames and Comet assays. In the Ames assay, four genotypic variants of the Salmonella strains (TA98, TA100, TA1537 and TA1535) carrying mutations in several genes were used. The dental porcelain was incubated with these four strains in five different doses both in the presence and absence of metabolic activation (S9) and the result was assessed based on the number of revertant colonies. Concurrently, appropriate positive controls were used so as to validate the test. The average number of revertant colonies per plate treated with locally produced dental porcelain was less than double as compared to that of negative control. In the Comet assay, L929 (CCL-1 ATCC, USA) mouse fibroblast cells were treated with the dental porcelain in three different concentrations along with concurrent negative and positive controls. The tail moment which was used as a measurement of DNA damage was almost equal to that of the negative control, suggesting that the locally produced dental porcelain did not induce any DNA damage. The results indicated that the locally produced dental porcelain is non-genotoxic under the present test conditions.
    Matched MeSH terms: DNA Damage/drug effects*
  4. Rajab NF, Yaakob TA, Ong BY, Hamid M, Ali AM, Annuar BO, et al.
    Med J Malaysia, 2004 May;59 Suppl B:170-1.
    PMID: 15468872
    Hydroxyapatite is the main component of the bone which is a potential biomaterial substance that can be applied in orthopaedics. In this study, the biocompatibility of this biomaterial was assessed using an in vitro technique. The cytotoxicity and genotoxicity effect of HA2 and HA3 against L929 fibroblast cell was evaluated using the MTT Assay and Alkaline Comet Assay respectively. Both HA2 and HA3 compound showed low cytotoxicity effect as determined using MTT Assay. Cells viability following 72 hours incubation at maximum concentration of both HA2 and HA3 (200 mg/ml) were 75.3 +/- 8.8% and 86.7 +/- 13.1% respectively. However, the cytotoxicity effect of ZnSO4.7H2O as a positive control showed an IC50 values of 46 mg/ml (160 microM). On the other hand, both HA2 and HA3 compound showed a slight genotoxicity effect as determined using the Alkaline Comet Assay following incubation at the concentration 200 mg/ml for 72 hours. This assay has been widely used in genetic toxicology to detect DNA strand breaks and alkali-labile site. The percentage of the cells with DNA damage for both substance was 27.7 +/- 1.3% and 15.6 +/- 1.0% for HA2 and HA3 respectively. Incubation of the cells for 24 hours with 38 microg/ml (IC25) of positive control showed an increase in percentage of cells with DNA damage (67.5 +/- 0.7%). In conclusion, our study indicated that both hydroxyapatite compounds showed a good biocompatibility in fibroblast cells.
    Matched MeSH terms: DNA Damage*
  5. Namazi H, Kiminezhadmalaie M
    Comput Math Methods Med, 2015;2015:242695.
    PMID: 26539245 DOI: 10.1155/2015/242695
    Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers.
    Matched MeSH terms: DNA Damage*
  6. Wong CY, Teoh ML, Phang SM, Lim PE, Beardall J
    PLoS One, 2015;10(10):e0139469.
    PMID: 26427046 DOI: 10.1371/journal.pone.0139469
    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain, suggesting negative effects of global climate change on microalgae inhabiting (circum-) polar regions. For temperate and tropical strains of Chlorella, damage from UVR was independent of temperature but the repair constant increased with increasing temperature, implying an improved ability of these strains to recover from UVR stress under global warming.
    Matched MeSH terms: DNA Damage/radiation effects*
  7. Yong KW, Safwani WKZW, Xu F, Zhang X, Choi JR, Abas WABW, et al.
    J Tissue Eng Regen Med, 2017 08;11(8):2217-2226.
    PMID: 26756982 DOI: 10.1002/term.2120
    Cryopreservation represents an efficient way to preserve human mesenchymal stem cells (hMSCs) at early culture/passage, and allows pooling of cells to achieve sufficient cells required for off-the-shelf use in clinical applications, e.g. cell-based therapies and regenerative medicine. To fully apply cryopreserved hMSCs in a clinical setting, it is necessary to evaluate their biosafety, e.g. chromosomal abnormality and tumourigenic potential. To date, many studies have demonstrated that cryopreserved hMSCs display no chromosomal abnormalities. However, the tumourigenic potential of cryopreserved hMSCs has not yet been evaluated. In the present study, we cryopreserved human adipose-derived mesenchymal stem cells (hASCs) for 3 months, using a slow freezing method with various cryoprotective agents (CPAs), followed by assessment of the tumourigenic potential of the cryopreserved hASCs after thawing and subculture. We found that long-term cryopreserved hASCs maintained normal levels of the tumour suppressor markers p53, p21, p16 and pRb, hTERT, telomerase activity and telomere length. Further, we did not observe significant DNA damage or signs of p53 mutation in cryopreserved hASCs. Our findings suggest that long-term cryopreserved hASCs are at low risk of tumourigenesis. These findings aid in establishing the biosafety profile of cryopreserved hASCs, and thus establishing low hazardous risk perception with the use of long-term cryopreserved hASCs for future clinical applications. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: DNA Damage*
  8. Ahmad U, Ahmed I, Keong YY, Abd Manan N, Othman F
    Biomed Res Int, 2015;2015:127828.
    PMID: 25821783 DOI: 10.1155/2015/127828
    Breast cancer is the malignant tumour that developed from cells of the breast and is the first leading cause of cancer death among women worldwide. Surgery, radiotherapy, and chemotherapy are the available treatments for breast cancer, but these were reported to have side effects. Newcastle disease virus (NDV) known as Avian paramyxovirus type-1 (APMV1) belongs to the genus Avulavirus in a family Paramyxoviridae. NDV is shown to be a promising anticancer agent, killing tumour cells while sparing normal cells unharmed. In this study, the oncolytic and cytotoxic activities of NDV AF2240 strain were evaluated on MDA-MB-231, human mammary carcinoma cell line, using MTT assay, and its inhibitory effects were further studied using proliferation and migration assays. Morphological and apoptotic-inducing effects of NDV on MD-MB-231 cells were observed using phase contrast and fluorescence microscopes. Detection of DNA fragmentation was done following terminal deoxyribonucleotide transferase-mediated Br-dUTP nick end labeling staining (TUNEL) assay, which confirmed that the mode of death was through apoptosis and was quantified by flow cytometry. Furthermore, analysis of cellular DNA content demonstrated that the virus caused an increase in the sub-G1 phase (apoptotic peak) of the cell cycle. It appears that NDV AF2240 strain is a potent anticancer agent that induced apoptosis in time-dependent manner.
    Matched MeSH terms: DNA Damage*
  9. Koh AE, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Saleh MFBM, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Jul;196:111514.
    PMID: 31154277 DOI: 10.1016/j.jphotobiol.2019.111514
    Retinal disorders account for a large proportion of ocular disorders that can lead to visual impairment or blindness, and yet our limited knowledge in the pathogenesis and choice of appropriate animal models for new treatment modalities may contribute to ineffective therapies. Although genetic in vivo models are favored, the variable expressivity and penetrance of these heterogeneous disorders can cause difficulties in assessing potential treatments against retinal degeneration. Hence, an attractive alternative is to develop a chemically-induced model that is both cost-friendly and standardizable. Sodium iodate is an oxidative chemical that is used to simulate late stage retinitis pigmentosa and age-related macular degeneration. In this study, retinal degeneration was induced through systemic administration of sodium iodate (NaIO3) at varying doses up to 80 mg/kg in Sprague-Dawley rats. An analysis on the visual response of the rats by electroretinography (ERG) showed a decrease in photoreceptor function with NaIO3 administration at a dose of 40 mg/kg or greater. The results correlated with the TUNEL assay, which revealed signs of DNA damage throughout the retina. Histomorphological analysis also revealed extensive structural lesions throughout the outer retina and parts of the inner retina. Our results provided a detailed view of NaIO3-induced retinal degeneration, and showed that the administration of 40 mg/kg NaIO3 was sufficient to generate disturbances in retinal function. The pathological findings in this model reveal a degenerating retina, and can be further utilized to develop effective therapies for RPE, photoreceptor, and bipolar cell regeneration.
    Matched MeSH terms: DNA Damage/drug effects
  10. Elgorashi EE, Eldeen IMS, Makhafola TJ, Eloff JN, Verschaeve L
    J Ethnopharmacol, 2022 Mar 01;285:114868.
    PMID: 34826541 DOI: 10.1016/j.jep.2021.114868
    ETHNOBOTANICAL RELEVANCE: Smoke from the wood of Acacia seyal Delile has been used by Sudanese women for making a smoke bath locally called Dukhan. The ritual is performed to relieve rheumatic pain, smooth skin, heal wounds and achieve general body relaxation.

    AIM OF THE STUDY: The present study was designed to investigate the in vitro anti-inflammatory effect of the smoke condensate using cyclooxygenase -1 (COX-1) and -2 (COX-2) as well as its potential genotoxic effects using the bacterial-based Ames test and the mammalian cells-based micronucleus/cytome and comet assays.

    MATERIAL AND METHODS: The smoke was prepared in a similar way to that commonly used traditionally by Sudanese women then condensed using a funnel. Cyclooxygenase assay was used to evaluate its in vitro anti-inflammatory activity. The neutral red uptake assay was conducted to determine the range of concentrations in the mammalian cells-based assays. The Ames, cytome and comet assays were used to assess its potential adverse (long-term) effects.

    RESULTS: The smoke condensate did not inhibit the cyclooxygenases at the highest concentration tested. All smoke condensate concentrations tested in the Salmonella/microsome assay induced mutation in both TA98 and TA100 in a dose dependent manner. A significant increase in the frequency of micronucleated cells, nucleoplasmic bridges and nuclear buds was observed in the cytome assay as well as in the % DNA damage in the comet assay.

    CONCLUSIONS: The findings indicated a dose dependent genotoxic potential of the smoke condensate in the bacterial and human C3A cells and may pose a health risk to women since the smoke bath is frequently practised. The study highlighted the need for further rigorous assessment of the risks associated with the smoke bath practice.

    Matched MeSH terms: DNA Damage/drug effects
  11. Chew MT, Nisbet A, Suzuki M, Matsufuji N, Murakami T, Jones B, et al.
    J Radiat Res, 2019 Jan 01;60(1):59-68.
    PMID: 30452663 DOI: 10.1093/jrr/rry081
    Glioblastoma (GBM), a Grade IV brain tumour, is a well-known radioresistant cancer. To investigate one of the causes of radioresistance, we studied the capacity for potential lethal damage repair (PLDR) of three altered strains of GBM: T98G, U87 and LN18, irradiated with various ions and various levels of linear energy transfer (LET). The GBM cells were exposed to 12C and 28Si ion beams with LETs of 55, 100 and 200 keV/μm, and with X-ray beams of 1.7 keV/μm. Mono-energetic 12C ions and 28Si ions were generated by the Heavy Ion Medical Accelerator at the National Institute of Radiological Science, Chiba, Japan. Clonogenic assays were used to determine cell inactivation. The ability of the cells to repair potential lethal damage was demonstrated by allowing one identical set of irradiated cells to repair for 24 h before subplating. The results show there is definite PLDR with X-rays, some evidence of PLDR at 55 keV/μm, and minimal PLDR at 100 keV/μm. There is no observable PLDR at 200 keV/μm. This is the first study, to the authors' knowledge, demonstrating the capability of GBM cells to repair potential lethal damage following charged ion irradiations. It is concluded that a GBM's PLDR is dependent on LET, dose and GBM strain; and the more radioresistant the cell strain, the greater the PLDR.
    Matched MeSH terms: DNA Damage*
  12. Makpol S, Yaacob N, Zainuddin A, Yusof YA, Ngah WZ
    Afr J Tradit Complement Altern Med, 2009 Jul 03;6(4):560-72.
    PMID: 20606778
    The objective of this study was to investigate the modulatory effect of Chlorella vulgaris on cultured fibroblast cells derived from young and old aged individuals focusing on DNA damage, telomere length and telomerase activity. Dose-response test of the algal extract on cells in both age groups revealed that optimum viability was observed at a concentration of 50 microg/ml. Results obtained showed that Chlorella vulgaris exhibited protective effects against H(2)O(2)-induced oxidative stress as shown by the reduction in damaged DNA caused by H(2)O(2) treatment (p<0.05) in Chlorella vulgaris pre- and post-treated groups (p<0.05). Pre-treatment of Chlorella vulgaris resulted in a significant decrease in DNA damage suggesting a bioprotective effect against free radical attacks. A decline in DNA damage was observed in post-treated cells which proves Chlorella vulgaris to present bioremediative properties. In cells induced with oxidative stress, telomere length decreased significantly coupled with a concomitant decline of telomerase activity (p<0.05). However, these reductions were prevented with prior and post treatment of Chlorella vulgaris. Therefore, we concluded that Chlorella vulgaris exhibited bioprotective effects especially in cells obtained from young donor but were more bioremediative for cells obtained from old donor as indicated by DNA damage, telomere shortening and reduction in telomerase activity.
    Matched MeSH terms: DNA Damage/drug effects*; DNA Damage/genetics
  13. Zaman WS, Makpol S, Sathapan S, Chua KH
    J Tissue Eng Regen Med, 2014 Jan;8(1):67-76.
    PMID: 22552847 DOI: 10.1002/term.1501
    In the field of cell-based therapy and regenerative medicine, clinical application is the ultimate goal. However, one major concern is: does in vitro manipulation during culture expansion increases tumourigenicity risk on the prepared cells? Therefore, the aim of this study was to investigate the effect of long-term in vitro expansion on human adipose-derived stem cells (ASCs). The ASCs were harvested from lipo-aspirate samples and cultured until passage 20 (P20), using standard culture procedures. ASCs at P5, P10, P15 and P20 were analysed for morphological changes, DNA damage (Comet assay), tumour suppressor gene expression level (quantitative PCR), p53 mutation, telomerase activity, telomere length determination and in vivo tumourigenicity test. Our data showed that ASCs lost their fibroblastic feature in long-term culture. The population doubling time of ASCs increased with long-term culture especially at P15 and P20. There was an increase in DNA damage at later passages (P15 and P20). No significant changes were observed in both p53 and p21 genes expression throughout the long-term culture. There was also no p53 mutation detected and no significant changes were recorded in the relative telomerase activity (RTA) and mean telomere length (TRF) in ASCs at all passages. In vivo implantation of ASCs at P15 and P20 into the nude mice did not result in tumour formation after 4 months. The data showed that ASCs have low risk of tumourigenicity up to P20, with a total population doubling of 42 times. This indicates that adipose tissue should be a safe source of stem cells for cell-based therapy.
    Matched MeSH terms: DNA Damage
  14. Al-Zubairi A, Ismail P, Pei Pei C, Rahmat A
    Environ Toxicol Pharmacol, 2008 May;25(3):298-303.
    PMID: 21783866 DOI: 10.1016/j.etap.2007.10.032
    The aim of this study was to evaluate the genotoxic effects of a crude extract of khat (Catha edulis, Forsk) leaves in rats. Two groups were fed khat crude extract, 1000 and 2000mg/kg body weight, for 90 days and were compared with a control group. The alkaline (pH>13) version of comet assay was used in this study. However, no previous published work has been undertaken and showed the effect of khat on DNA migration in the comet assay. To compare the comet assay results with another genetic endpoint, blood samples were analyzed for chromosomal aberrations. These results showed no DNA damage detected using comet assay in both the khat treated groups, while the results of chromosomal aberrations assay showed a significant increase (P<0.05) in the 2000mg/kg body weight treated group compared to the control group.
    Matched MeSH terms: DNA Damage
  15. Kusrini E, Hashim F, Azmi WN, Amin NM, Estuningtyas A
    PMID: 26474244 DOI: 10.1016/j.saa.2015.09.021
    The terbium trinitrate.trihydrate.18-crown ether-6, Tb(NO3)3(OH2)3.(18C6) complex has been characterized by elemental analysis, photoluminescence and single X-ray diffraction. The IC50 values were determined based on MTT assay while light and fluorescence microscopy imaging were employed to evaluate the cellular morphological changes. Alkaline comet assay was performed to analyze the DNA damage. The photoluminescence spectrum of the Tb complex excited at 325 nm displayed seven luminescence peaks corresponding to the (5)D4→(7)F(0, 1, 2, 3, 4, 5, 6) transitions. The cytotoxicity and genotoxicity studies indicated that the Tb(NO3)3(OH2)3.(18C6) complex and its salt form as well as the 18C6 molecule have excellent anti-amoebic activity with very low IC50 values are 7, 2.6 and 1.2 μg/mL, respectively, with significant decrease (p<0.05) in Acanthamoeba viability when the concentration was increased from 0 to 30 μg/mL. The mode of cell death in Acanthamoeba cells following treatment with the Tb complex was apoptosis. This is in contrast to the Tb(NO3)3.6H2O salt- and 18C6 molecule-treated Acanthamoeba, which exhibited necrotic type cells. The percentage of DNA damage following treatment with all the compounds at the IC25 values showed high percentage of type 1 with the % nuclei damage are 14.15±2.4; 46.00±4.2; 36.36±2.4; 45.16±0.6%, respectively for untreated, treated with Tb complex, Tb salt and 18C6 molecule. The work features promising potential of Tb(NO3)3(OH2)3.(18C6) complex as anti-amoebic agent, representing a therapeutic option for Acanthamoeba keratitis infection.
    Matched MeSH terms: DNA Damage
  16. Lim SM, Mohamad Hanif EA, Chin SF
    Cell Biosci, 2021 Mar 20;11(1):56.
    PMID: 33743781 DOI: 10.1186/s13578-021-00570-z
    Autophagy is a conserved cellular process required to maintain homeostasis. The hallmark of autophagy is the formation of a phagophore that engulfs cytosolic materials for degradation and recycling to synthesize essential components. Basal autophagy is constitutively active under normal conditions and it could be further induced by physiological stimuli such as hypoxia, nutrient starvation, endoplasmic reticulum stress,energy depletion, hormonal stimulation and pharmacological treatment. In cancer, autophagy is highly context-specific depending on the cell type, tumour microenvironment, disease stage and external stimuli. Recently, the emerging role of autophagy as a double-edged sword in cancer has gained much attention. On one hand, autophagy suppresses malignant transformation by limiting the production of reactive oxygen species and DNA damage during tumour development. Subsequently, autophagy evolved to support the survival of cancer cells and promotes the tumourigenicity of cancer stem cells at established sites. Hence, autophagy is an attractive target for cancer therapeutics and researchers have been exploiting the use of autophagy modulators as adjuvant therapy. In this review, we present a summary of autophagy mechanism and controlling pathways, with emphasis on the dual-role of autophagy (double-edged sword) in cancer. This is followed by an overview of the autophagy modulation for cancer treatment and is concluded by a discussion on the current perspectives and future outlook of autophagy exploitation for precision medicine.
    Matched MeSH terms: DNA Damage
  17. Syhidatul Farhana Othman, Juliana Jalaludin, Nur Hazirah Hisamuddin, Noeroel Widajati
    MyJurnal
    Introduction: Exposure of PM2.5 and PM10 released from combustion of biomass activity caused respiratory health among children. Objective: This study aims to determine the association between exposure of PM2.5 and PM10 with DNA damage in primary school children living nearby palm oil combustion activity at Semenyih. Methods: A cross sectional comparative study were conducted among Malay primary school children in school A located 2.7km from palm oil activity (N=82) and school B located about 40km away from the palm oil area (N=85). A standardized ques- tionnaire were distributed to respondent’s parents. Concentrations of PM2.5 and PM10 were measured by using Dust Trak DRX Aerosol Monitor Model 8534 and Escort LC Personal Sampling Pump. Measurement of indoor and outdoor air pollutants were conducted in schools and home. Buccal cells were collected, which then followed by micronu- cleus assay. Results: Concentration of PM10 and PM2.5 at home of studied group were significantly higher compared to comparative group with p value (p=0.007) and (p=0.018) respectively. PM10 and PM2.5 of studied schools were significantly higher compared to comparative schools with p value (p=0.014) and (p=0.04) respectively. MN fre- quencies of studied group were significantly higher compared to comparative group (p=0.001). Significant difference of respiratory symptoms were found between two groups which are cough, phlegm, wheezing and chest tightness (p=0.001). There were significant correlation between PM10 with MN frequency of studied group and comparative group with r= 0.562; p=0.001. Conclusion: This study indicated that the exposure of PM10 and PM2.5 would increase the risk of having respiratory health symptoms and might induce the micronuclei formation among children who lived near palm oil activity area.
    Matched MeSH terms: DNA Damage
  18. Sopian NA, Jalaludin J, Abu Bakar S, Hamedon TR, Latif MT
    PMID: 33806616 DOI: 10.3390/ijerph18052575
    This study aimed to assess the association of exposure to particle-bound (PM2.5) polycyclic aromatic hydrocarbons (PAHs) with potential genotoxicity and cancer risk among children living near the petrochemical industry and comparative populations in Malaysia. PM2.5 samples were collected using a low-volume sampler for 24 h at three primary schools located within 5 km of the industrial area and three comparative schools more than 20 km away from any industrial activity. A gas chromatography-mass spectrometer was used to determine the analysis of 16 United States Environmental Protection Agency (USEPA) priority PAHs. A total of 205 children were randomly selected to assess the DNA damage in buccal cells, employing the comet assay. Total PAHs measured in exposed and comparative schools varied, respectively, from 61.60 to 64.64 ng m-3 and from 5.93 to 35.06 ng m-3. The PAH emission in exposed schools was contributed mainly by traffic and industrial emissions, dependent on the source apportionment. The 95th percentiles of the incremental lifetime cancer risk estimated using Monte Carlo simulation revealed that the inhalation risk for the exposed children and comparative populations was 2.22 × 10-6 and 2.95 × 10-7, respectively. The degree of DNA injury was substantially more severe among the exposed children relative to the comparative community. This study reveals that higher exposure to PAHs increases the risk of genotoxic effects and cancer among children.
    Matched MeSH terms: DNA Damage
  19. Siti Balkis Budin, Norfadilah Rejab, Abdul Gapor Mohd Top, Wan Nazaimoon Wan Mohamud, Mokhtar Abu Bakar, Khairul Osman, et al.
    MyJurnal
    This study was conducted to evaluate the oxidative damage in diabetic mellitus induced rats. The evaluation of DNA damage was carried out by the Alkaline Comet Assay using peripheral lymphocyte cells taken from streptozotocin-induced diabetic rats (50 mg/kg) and control rats. The levels of malondealdehyde (MDA), 4-hydroxynonenal (4-HNE), fasting blood glucose (FBG) and HbA1c were also measured. All the induced diabetic rats were hyperglycemic until the end of the study with significantly higher levels of FBG and HbA1c as compared to the control rats. The results showed the percentage of tail DNA and tail moment values were also significantly higher in the diabetic induced rats. The same observations were made on the levels of plasma MDA and 4-HNE. In conclusion, this study indicated that hyperglycemic condition in diabetic induced rats could generate oxidative DNA damage.
    Matched MeSH terms: DNA Damage
  20. Abdul Sani NF, Ahmad Damanhuri MH, Amir Hamzah AIZ, Abu Bakar ZH, Tan JK, Nor Aripin KN, et al.
    Free Radic Res, 2018 Sep;52(9):1000-1009.
    PMID: 30079776 DOI: 10.1080/10715762.2018.1506877
    Ageing is associated with increased oxidative stress accompanied by cognitive decline. The aim of this study was to evaluate oxidative stress biomarkers and their possible relationship with cognitive performances during ageing among the Malay population. Approximately 160 healthy Malay adults aged between 28 and 79 years were recruited around Selangor and Klang Valley. Cognitive function was assessed by Montreal Cognitive Assessment (MoCA), forward digit span (FDS), backward digit span (BDS), digit symbol, Rey Auditory Verbal Learning Test immediate recalled [RAVLT(I)] and delayed recalled [RAVLT(D)], and visual reproduction immediate recalled (VR-I) and delayed recalled (VR-II). DNA damage, plasma protein carbonyl and malondialdehyde (MDA) levels were also determined. Cognitive function test showed significant lower scores of MoCA, BDS, RAVLT(I), RAVLT(D), digit symbol, VR-I, and VR-II in the older age group (60 years old) compared with the 30-, 40-, and 50-year-old group. The extent of DNA damage was sequential with age: 60 > 50 > 40 > 30, whereas protein carbonyl was higher in 40-, 50-, and 60-year-old groups compared with the youngest group (30 years old). However, the MDA level was observed unchanged in all age groups. Approximately 21.88% of the participants had cognitive impairment. Multiple logistic regression analysis revealed that DNA damage and protein carbonyl levels are predictors for cognitive impairment in healthy Malays. In conclusion, cognitive decline occurred in healthy adult Malay population at an early age of 30 years old with corresponding higher DNA damage and protein oxidation.
    Matched MeSH terms: DNA Damage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links