Displaying publications 21 - 40 of 273 in total

Abstract:
Sort:
  1. Krishna SS, Farhana SA, T P A, Hussain SM, Viswanad V, Nasr MH, et al.
    Front Immunol, 2023;14:1229667.
    PMID: 37744376 DOI: 10.3389/fimmu.2023.1229667
    The increasing prevalence of food allergies worldwide and the subsequent life-threatening anaphylactic reactions often have sparse treatment options, providing only symptomatic relief. Great strides have been made in research and in clinics in recent years to offer novel therapies for the treatment of allergic disorders. However, current allergen immunotherapy has its own shortcomings in terms of long-term efficacy and safety, due to the local side effects and the possibility of anaphylaxis. Allergen-specific immunotherapy is an established therapy in treating allergic asthma, allergic rhinitis, and allergic conjunctivitis. It acts through the downregulation of T cell, and IgE-mediated reactions, as well as desensitization, a process of food tolerance without any allergic events. This would result in a protective reaction that lasts for approximately 3 years, even after the withdrawal of therapy. Furthermore, allergen-specific immunotherapy also exploits several routes such as oral, sublingual, and epicutaneous immunotherapy. As the safety and efficacy of allergen immunotherapy are still under research, the exploration of newer routes such as intra-lymphatic immunotherapy would address unfulfilled needs. In addition, the existence of nanoparticles can be exploited immensely in allergen immunotherapy, which would lead to safer and efficacious therapy. This manuscript highlights a novel drug delivery method for allergen-specific immunotherapy that involves the administration of specific allergens to the patients in gradual increasing doses, to induce desensitization and tolerance, as well as emphasizing different routes of administration, mechanism, and the application of nanoparticles in allergen-specific immunotherapy.
    Matched MeSH terms: Immunity
  2. Arshad L, Jantan I, Bukhari SNA
    Drug Des Devel Ther, 2019;13:1421-1436.
    PMID: 31118577 DOI: 10.2147/DDDT.S185191
    Background: 3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one (BBP), a novel synthetic curcumin analogue has been revealed to possess strong in vitro and in vivo immunosuppressive effects. Purpose: The aim of present study was to prepare and characterize BBP-encapsulated polylactic-co-glycolic acid-block-polyethylene glycol (PLGA-b-PEG) nanoparticles and to evaluate its in vivo efficacy against innate and adaptive immune responses. Methods: Male BALB/c mice were orally administered with BBP alone and BBP- encapsulated nanoparticles equivalent to 5, 10 and 20 mg/kg of BBP in distilled water for a period of 14 days. The immunomodulatory potential was appraised by determining its effects on non-specific and specific immune parameters. Results: The results showed that BBP was successfully encapsulated in PLGA-b-PEG polymer with 154.3 nm size and high encapsulation efficiency (79%) while providing a sustained release for 48 hours. BBP nanoparticles showed significant enhanced dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity, reactive oxygen species (ROS) production, serum levels of ceruloplasmin and lysozyme, immunoglobulins and myloperoxidase (MPO) plasma levels when compared to unencapsulated BBP. Enhanced dose-dependent inhibition was also observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines, and reduction in rat paw oedema in BBP nanoparticles treated mice. At higher doses the suppressive effects of the BBP nanoparticles on various cellular and humoral parameters of immune responses were comparable to that of cyclosporine-A at 20 mg/kg. Conclusion: These findings suggest that the immunosuppressive effects of BBP were enhanced as PLGA-b-PEG nanoparticles.
    Matched MeSH terms: Immunity, Innate/drug effects*; Immunity, Innate/immunology; Adaptive Immunity/drug effects*; Adaptive Immunity/immunology
  3. Hossain MM, Norazmi MN
    Biomed Res Int, 2013;2013:179174.
    PMID: 24350246 DOI: 10.1155/2013/179174
    Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis (Mtb), remains a major cause of human death worldwide. Innate immunity provides host defense against Mtb. Phagocytosis, characterized by recognition of Mtb by macrophages and dendritic cells (DCs), is the first step of the innate immune defense mechanism. The recognition of Mtb is mediated by pattern recognition receptors (PRRs), expressed on innate immune cells, including toll-like receptors (TLRs), complement receptors, nucleotide oligomerization domain like receptors, dendritic cell-specific intercellular adhesion molecule grabbing nonintegrin (DC-SIGN), mannose receptors, CD14 receptors, scavenger receptors, and FCγ receptors. Interaction of mycobacterial ligands with PRRs leads macrophages and DCs to secrete selected cytokines, which in turn induce interferon-γ- (IFNγ-) dominated immunity. IFNγ and other cytokines like tumor necrosis factor-α (TNFα) regulate mycobacterial growth, granuloma formation, and initiation of the adaptive immune response to Mtb and finally provide protection to the host. However, Mtb can evade destruction by antimicrobial defense mechanisms of the innate immune system as some components of the system may promote survival of the bacteria in these cells and facilitate pathogenesis. Thus, although innate immunity components generally play a protective role against Mtb, they may also facilitate Mtb survival. The involvement of selected PRRs and cytokines on these seemingly contradictory roles is discussed.
    Matched MeSH terms: Immunity, Innate/immunology
  4. Reneshwary C, Rajalakshmi M, Marimuthu K, Xavier R
    Eur Rev Med Pharmacol Sci, 2011 Jan;15(1):53-60.
    PMID: 21381499
    An experiment was conducted to evaluate the use of Bacillus thuringiensis (Bt) as a probiotic to enhance the cellular innate immune response of the African catfish (Clarias gariepinus) challenged with a bacterial fish pathogen, Aeromonas hydrophila.
    Matched MeSH terms: Immunity, Innate*
  5. Voon DC, Hor YT, Ito Y
    Immunology, 2015 Dec;146(4):523-36.
    PMID: 26399680 DOI: 10.1111/imm.12535
    Among their diverse roles as transcriptional regulators during development and cell fate specification, the RUNX transcription factors are best known for the parts they play in haematopoiesis. RUNX proteins are expressed throughout all haematopoietic lineages, being necessary for the emergence of the first haematopoietic stem cells to their terminal differentiation. Although much progress has been made since their discoveries almost two decades ago, current appreciation of RUNX in haematopoiesis is largely grounded in their lineage-specifying roles. In contrast, the importance of RUNX to immunity has been mostly obscured for historic, technical and conceptual reasons. However, this paradigm is likely to shift over time, as a primary purpose of haematopoiesis is to resource the immune system. Furthermore, recent evidence suggests a role for RUNX in the innate immunity of non-haematopoietic cells. This review takes a haematopoiesis-centric approach to collate what is known of RUNX's contribution to the overall mammalian immune system and discuss their growing prominence in areas such as autoimmunity, inflammatory diseases and mucosal immunity.
    Matched MeSH terms: Immunity, Innate; Immunity, Mucosal
  6. Ilangkovan M, Jantan I, Mesaik MA, Bukhari SN
    Phytother Res, 2016 Aug;30(8):1330-8.
    PMID: 27137750 DOI: 10.1002/ptr.5633
    Phyllanthus amarus has been shown to have strong inhibitory effects on phagocytic activity of human neutrophils and on cellular immune responses in Wistar-Kyoto rats. In this study, we investigated the effects of daily treatment of standardized extract of P. amarus at 50, 100 and 200 mg/kg for 14 days in Balb/C mice by measuring the myeloperoxidase activity (MPO), nitric oxide (NO) release, macrophage phagocytosis, swelling of footpad in delayed type hypersensitivity (DTH), and serum immunoglobulins, ceruloplasmin and lysozyme levels. Qualitative and quantitative analyses of the extract using validated reversed-phase HPLC methods identified phyllanthin, hypophyllanthin, corilagin and geraniin as the biomarkers. Significant dose-dependent inhibitions of MPO activity and NO release were observed in treated mice. The extract also inhibited E. coli phagocytic capacity of peritoneal macrophages of treated mice and inhibited the sheep red blood cells (sRBC)-induced swelling rate of mice paw in the DTH. There was also a significant decrease in non-specific humoral immunity including ceruloplasmin and lysozyme levels in the extract-fed groups as well as the release of serum level immunoglobulins. The strong inhibitory effects of the extract on the cellular and humoral immune responses suggest the potential of the plant to be developed as an effective immunosuppressive agent. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Immunity, Humoral/drug effects*
  7. Chang CC, Connahs H, Tan ECY, Norma-Rashid Y, Mrinalini, Li D, et al.
    Mol Ecol, 2020 07;29(14):2626-2638.
    PMID: 32510793 DOI: 10.1111/mec.15502
    Identifying the genetic architecture underlying phenotypic variation in natural populations and assessing the consequences of polymorphisms for individual fitness are fundamental goals in evolutionary and molecular ecology. Consistent between-individual differences in behaviour have been documented for a variety of taxa. Dissecting the genetic basis of such behavioural differences is however a challenging endeavour. The molecular underpinnings of natural variation in aggression remain elusive. Here, we used comparative gene expression (transcriptome analysis and RT-PCR), genetic association analysis and pharmacological experiments to gain insight into the genetic basis of aggression in wild-caught jumping spiders (Portia labiata). We show that spider aggression is associated with a putative viral infection response gene, BTB/POZ domain-containing protein 17 (BTBDH), in addition to a putative serotonin receptor 1A (5-HT1A) gene. Spider aggression varies with virus loads, and BTBDH is upregulated in docile spiders and exhibits a genetic variant associated with aggression. We also identify a putative serotonin receptor 5-HT1A gene upregulated in docile P. labiata. Individuals that have been treated with serotonin become less aggressive, but individuals treated with a nonselective serotonin receptor antagonist (methiothepin) also reduce aggression. Further, we identify the genetic variants in the 5-HT1A gene that are associated with individual variation in aggression. We therefore conclude that co-evolution of the immune and nervous systems may have shaped the between-individual variation in aggression in natural populations of jumping spiders.
    Matched MeSH terms: Immunity*
  8. Noushad M, Al-Saqqaf IS
    Int J Infect Dis, 2021 May;106:79-82.
    PMID: 33737135 DOI: 10.1016/j.ijid.2021.03.030
    The first case of COVID-19 in Yemen was confirmed on 10 April 2020. Having faced with a six-year long conflict that has destroyed half of its healthcare facilities and displaced millions, predictions of infections and mortality in Yemen suggested a looming healthcare catastrophe. Difficulty in implementing coordinated lockdowns and preventive measures due to the daily labor working nature of the majority of the population, provided the perfect breeding ground for the SARS-CoV-2 virus. However, official figures of infections and mortality are very low and there have not been confirmed reports of excess mortality. This could indicate that Yemen is silently marching towards forced herd immunity. Seroprevalence studies will provide useful insight into the COVID-19 transmission trajectory in Yemen, which can serve as a guide in planning vaccine distribution strategies and allocating the limited funds wisely.
    Matched MeSH terms: Immunity, Herd*
  9. Wong RSY
    Malays J Pathol, 2021 Aug;43(2):203-217.
    PMID: 34448786
    The coronavirus disease 2019 (COVID-19) is one of the biggest public health threats in the 21st century. Nearly every country in the world has been affected by COVID-19. The magnitude of the problem, with over 179 million confirmed cases and 3.8 million deaths worldwide, has driven researchers to search for vaccines to combat the disease. The discovery and development of a new vaccine, from the initial stage to the vaccine finally reaching the patients, usually take many years. However, given the urgency of the situation, many clinical trials on the COVID-19 vaccines have been conducted at extraordinary speed, whereas several vaccines against SARS-CoV-2 are being administered worldwide. This article gives an overview of the different types of COVID-19 vaccines, with a focus on those with promising results and are commonly used worldwide. It also gives an overview of herd immunity and discusses the challenges in achieving herd immunity through the global vaccination campaigns. Last but not least, some strategies that may be used to address these challenges are discussed.
    Matched MeSH terms: Immunity, Herd/immunology*
  10. Kwa BH, Mak JW
    Trans R Soc Trop Med Hyg, 1980;74(4):522-7.
    PMID: 7445050
    The possible depression of cell-mediated immunity by long-term Brugia malayi infection in jirds (Meriones unguiculatus) was investigated. Different groups of infected jirds were sensitized with dinitrofluorobenzene, sheep red blood cells, Dirofilaria immitis adult antigens and B. malayi adult antigens. The 24-hour delayed type hypersensitivity skin response to testing with antigen was measured as an in vivo correlate of cell-mediated immunity. The delayed-type hypersensitivity responses to dinitrofluorobenzene, sheep red blood cells and D. immitis antigens were normal but the response to B. malayi antigens was significantly depressed, confirming that long-term B. malayi infection depresses cell-mediated immunity and that this depression is specific to B. malayi antigens.
    Matched MeSH terms: Immunity, Cellular*
  11. Sultan MT, Butt MS, Karim R, Ahmad N, Ahmad RS, Ahmad W
    Pak J Pharm Sci, 2015 Mar;28(2):589-95.
    PMID: 25730812
    The onset of 21st century witnessed the awareness among the masses regarding the diet-health linkages. The researchers attempted to explore traditional products/plants were in the domain of pharmacy and nutrition focussing on their health benefits. In the present research intervention, we investigate the role of Nigella sativa fixed oil (NSFO) and essential oil (NSEO) in improving antioxidant status and modulation of enzymes. The National Institute of Health (NIH) provided us 30 Sprague Dawley rats that were equally placed in three groups. The groups were fed on their respective diets (56 days) two experimental diets i.e. D2 (NSFO @ 4.0%) and D3 (NSEO @ 0.30%) and control. The indices pertaining to antioxidant status, antioxidant enzymes, and parameters pertaining to immunity were evaluated at 4 weeks interval. The experimental diets (NSFO@ 4.0% & NSEO@ 0.30%) modulated the activities of antioxidant enzymes i.e., catalase (CAT), superoxide dismutase (SOD), glutathione transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx), positively. Indices of antioxidant status like tocopherols and glutathione were in linear relationship with that of GPx, GR and GST (P<0.01). Myeloperoxidase activities were in negative correlation with GST (P<0.01) but positive correlation with some other parameters. In the nutshell, the fixed and essential oil of Nigella sativa are effective in improving the indices pertaining to antioxidant status, however, the immune boosting potential needs further clarification. However, authors are of the view that there is need to explore the molecular targets of Nigella sativa fixed and essential oils. Findings from such studies would be useful to validate this instant study for health promoting potential against diabetes mellitus and cardiovascular disorders.
    Matched MeSH terms: Immunity/drug effects*
  12. Anand K, Vadivalagan C, Joseph JS, Singh SK, Gulati M, Shahbaaz M, et al.
    Chem Biol Interact, 2021 Aug 01;344:109497.
    PMID: 33991505 DOI: 10.1016/j.cbi.2021.109497
    Extracellular vesicles like exosomes are important therapeutic tactics for treating COVID -19. By utilizing convalescent plasma derived exosomes (CPExo) from COVID-19 recovered persistence could accelerate the treatment strategies in the current state of affairs. Adequate literature has shown that administering the exosome to the in vivo system could be beneficial and could target the pathogens in an effective and precise manner. In this hypothesis we highlight the CPExo instead of convalescent plasma (CP), perhaps to dispense of exosomes are gratified and it's more effectively acquired immune response conferral through antibodies. COVID-19 convalescent plasma has billions of exosomes and it has aptitudes to carry molecular constituents like proteins, lipids, RNA and DNA, etc. Moreover, exosomes are capable of recognizing antigens with adequate sensitivity and specificity. Many of these derivatives could trigger an immune modulation into the cells and act as an epigenetic inheritor response to target pathogens through RNAs. COIVID-19 resistance activated plasma-derived exosomes are either responsible for the effects of plasma beyond the contained immune antibodies or could be inhibitory. The proposed hypothesis suggests that preselecting the plasma-derived antibodies and RNAs merged exosomes would be an optimized therapeutic tactic for COVID-19 patients. We suggest that, the CPExo has a multi-potential effect for treatment efficacy by acting as immunotherapeutic, drug carrier, and diagnostic target with noncoding genetic materials as a biomarker.
    Matched MeSH terms: Adaptive Immunity/immunology
  13. Mohd Shaufi MA, Sieo CC, Chong CW, Gan HM, Ho YW
    Gut Pathog, 2015;7:4.
    PMID: 25806087 DOI: 10.1186/s13099-015-0051-7
    Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation.
    Matched MeSH terms: Immunity
  14. Intan Juliana Abd Hamid, Zarina Thasneem Zainudeen, Ilie Fadzilah Hashim
    MyJurnal
    Primary immunodeficiency disease (PID) or inborn error of immunity is a heterogeneous group of inherited diseases affecting the immune system resulting in increased susceptibility to infections, immune dysregulation, autoimmune manifestations, lymphoproliferation and malignancy. Cases of PIDs have been reported in Malaysia since 1977 and the numbers of reported cases steadily increased for the past 30 years with more trained clinical immunologist available, better immunodiagnostic facilities, wider immunoglobulin replacement therapy availability and improved techniques in haematopoietic stem cell transplantation for PIDs. In this article, we highlight some of the limitations and challenges in the diagnosis and therapy of PID, and more recent efforts to establish PID services in Malaysia.
    Matched MeSH terms: Immunity
  15. Arshad L, Jantan I, Bukhari SNA, Fauzi MB
    Curr Pharm Biotechnol, 2018;19(6):468-482.
    PMID: 29968535 DOI: 10.2174/1389201019666180703092723
    BACKGROUND: 3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one (BBP), a novel synthetic curcumin analogue has previously been shown to manifest potent immunosuppressive effects on the in vitro phagocytosis process of human neutrophils.

    OBJECTIVE: In the present study, BBP was investigated for it's in vivo innate and adaptive immune responses mediated by different humoral and cellular immune factors.

    METHODS: Male Balb/c mice were orally fed with BBP (5, 10 and 20 mg/kg) for a period of 14 days and immunized with sheep red blood cells (sRBC) on day 0 for the determination of adaptive responses. The effects of BBP on phagocytosis process of neutrophils isolated from blood of treated/untreated animals were determined. The ceruloplasmin and lysozyme serum levels and myeloperoxidase (MPO) plasma level were also monitored. The mechanism was further explored by assessing its effects on the proliferation of T and B lymphocytes, T-lymphocytes subsets CD4+ and CD8+ and on the secretion of Th1/Th2 cytokines as well as serum immunoglobulins (IgG, IgM) and delayed type hypersensitivity (DTH) reaction.

    RESULTS: BBP showed a significant dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity and reactive oxygen species (ROS) production. In comparison to the sensitized control group, a dose-dependent inhibition was observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines. Moreover, a statistically significant decrease was perceived in serum levels of ceruloplasmin, lysozyme and immunoglobulins and MPO plasma level of BBP-treated mice. BBP also dose-dependently inhibited sheep red blood cells (sRBC)-induced swelling rate of mice paw in DTH.

    CONCLUSION: These findings suggest the potential of BBP as a potent immunosuppressive agent.

    Matched MeSH terms: Immunity, Cellular/drug effects*; Immunity, Humoral/drug effects*
  16. Lau JZH, Chua CL, Chan YF, Nadarajan VS, Lee CLL, Sam IC
    J Gen Virol, 2023 Apr;104(4).
    PMID: 37043371 DOI: 10.1099/jgv.0.001842
    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus, which causes epidemics of fever, joint pain and rash. There are three genotypes: West African, East/Central/South/Africa (ECSA) and Asian, with the latter two predominant globally. Genotype-specific differences in clinical presentations, virulence and immunopathology have been described. Macrophages are key cells in immune responses against CHIKV. Circulating blood monocytes enter tissue to differentiate into monocyte-derived macrophages (MDMs) in response to CHIKV infection at key replication sites such as lymphoid organs and joints. This study analyses differences in replication and induced immune mediators following infection of MDMs with Asian and ECSA CHIKV genotypes. Primary human MDMs were derived from residual blood donations. Replication of Asian (MY/06/37348) or ECSA (MY/08/065) genotype strains of CHIKV in MDMs was measured by plaque assay. Nineteen immune mediators were measured in infected cell supernatants using multiplexed immunoassay or ELISA. MY/08/065 showed significantly higher viral replication at 24 h post-infection (h p.i.) but induced significantly lower expression of proinflammatory cytokines (CCL-2, CCL-3, CCL-4, RANTES and CXCL-10) and the anti-inflammatory IL-1Ra compared to MY/06/37348. No differences were seen at later time points up to 72 h p.i. During early infection, MY/08/065 induced lower proinflammatory immune responses in MDMs. In vivo, this may lead to poorer initial control of viral infection, facilitating CHIKV replication and dissemination to other sites such as joints. This may explain the consistent past findings that the ECSA genotype is associated with greater viremia and severity of symptoms than the Asian genotype. Knowledge of CHIKV genotype-specific immunopathogenic mechanisms in human MDMs is important in understanding of clinical epidemiology, biomarkers and therapeutics in areas with co-circulation of different genotypes.
    Matched MeSH terms: Immunity, Innate
  17. Al-Najjar MAA, Abdulrazzaq SB, Alzaghari LF, Mahmod AI, Omar A, Hasen E, et al.
    Sci Rep, 2024 Mar 26;14(1):7126.
    PMID: 38531887 DOI: 10.1038/s41598-024-56622-0
    Probiotics are a mixture of beneficial live bacteria and/or yeasts that naturally exist in our bodies. Recently, numerous studies have focused on the immunostimulatory effects of single-species or killed multi-species probiotic conditioned mediums on macrophages. This study investigates the immunostimulatory effect of commercially available active, multi-species probiotic conditioned medium (CM) on RAW264.7 murine macrophages. The probiotic CM was prepared by culturing the commercially available probiotic in a cell-culture medium overnight at 37 °C, followed by centrifugation and filter-sterilization to be tested on macrophages. The immunostimulatory effect of different dilution percentages (50%, 75%, 100%) of CM was examined using the MTT assay, proinflammatory cytokine (tumor necrosis factor TNF-alpha) production in macrophages, migration, and phagocytosis assays. For all the examined CM ratios, the percentages of cell viability were > 80%. Regarding the migration scratch, TNF-alpha and phagocytosis assays, CM demonstrated a concentration-dependent immunostimulatory effect. However, the undiluted CM (100%) showed a significant (p-value 
    Matched MeSH terms: Immunity
  18. Mohamad Razif MI, Nizar N, Zainal Abidin NH, Muhammad Ali SN, Wan Zarimi WNN, Khotib J, et al.
    Expert Rev Vaccines, 2023;22(1):629-642.
    PMID: 37401128 DOI: 10.1080/14760584.2023.2232450
    INTRODUCTION: mRNA vaccines have been developed as a promising cancer management. It is noted that specification of the antigen sequence of the target antigen is necessary for the design and manufacture of an mRNA vaccine.

    AREAS COVERED: The steps involved in preparing the mRNA-based cancer vaccines are isolation of the mRNA cancer from the target protein using the nucleic acid RNA-based vaccine, sequence construction to prepare the DNA template, in vitro transcription for protein translation from DNA into mRNA strand, 5' cap addition and poly(A) tailing to stabilize and protect the mRNA from degradation and purification process to remove contaminants produced during preparation.

    EXPERT OPINION: Lipid nanoparticles, lipid/protamine/mRNA nanoparticles, and cell-penetrating peptides have been used to formulate mRNA vaccine and to ensure vaccine stability and delivery to the target site. Delivery of the vaccine to the target site will trigger adaptive and innate immune responses. Two predominant factors of the development of mRNA-based cancer vaccines are intrinsic influence and external influence. In addition, research relating to the dosage, route of administration, and cancer antigen types have been observed to positively impact the development of mRNA vaccine.

    Matched MeSH terms: Immunity, Innate
  19. Lani R, Thariq IM, Suhaimi NS, Hassandarvish P, Abu Bakar S
    Hum Vaccin Immunother, 2024 Dec 31;20(1):2306675.
    PMID: 38263674 DOI: 10.1080/21645515.2024.2306675
    Arboviruses are a significant threat to global public health, with outbreaks occurring worldwide. Toll-like receptors (TLRs) play a crucial role in the innate immune response against these viruses by recognizing pathogen-associated molecular patterns and initiating an inflammatory response. Significantly, TLRs commonly implicated in the immune response against viral infections include TLR2, TLR4, TLR6, TLR3, TLR7, and TLR8; limiting or allowing them to replicate and spread within the host. Modulating TLRs has emerged as a promising approach to combat arbovirus infections. This review summarizes recent advances in TLR modulation as a therapeutic target in arbovirus infections. Studies have shown that the activation of TLRs can enhance the immune response against arbovirus infections, leading to increased viral clearance and protection against disease. Conversely, inhibition of TLRs can reduce the excessive inflammation and tissue damage associated with arbovirus infection. Modulating TLRs represents a potential therapeutic strategy to combat arbovirus infections.
    Matched MeSH terms: Immunity, Innate
  20. Morozova OV, Panov VV, Bakhvalova VN
    Infect Genet Evol, 2020 Jun;80:104187.
    PMID: 31927073 DOI: 10.1016/j.meegid.2020.104187
    Two dominant species of wild small rodents trapped in Novosibirsk region, South-Western Siberia, Russia differed in their susceptibility to the tick-borne encephalitis virus (TBEV) infection. TBEV RNA average detection rate for Northern red-backed vole Myodes rutilus (Pallas, 1779) (82.2 ± 5.8% blood samples and 63.1 ± 2.7% organ samples) significantly exceeded the corresponding values for the striped field mouse Apodemus agrarius (Pallas, 1771) (47.0 ± 8.7% blood and 24.5 ± 2.8% organ samples) (p <0.001). Innate immunity may be one of possible reasons of the differences. Th1 cytokine gene expression distinguished between M. rutilus (12.5 ± 8.5%) and A. agrarius (66.6 ± 11.4%), whereas Th2 cytokine frequencies were statistically similar (81.8 ± 12.2% and 100.0%, respectively). Polarization indexes (PI) of the innate immunity calculated as ratio of Th2 to Th1 cytokine RNA detection rates for both M. rutilus (6.5) and A. agrarius (1.5) suggested Th2 mainly humoral immune response against persistent TBEV in natural mammalian hosts. Therefore, the TBEV-induced antibodies were analyzed by ELISA and hemagglutination inhibition (HI) tests. The TBEV-specific antibodies were detected in 74.8 ± 4.3% sera of M. rutilus and 67.3 ± 6.8% of A. agrarius. Among them HI antibodies were found in 4.8 ± 2.1% of the same analyzed sera of M. rutilus and in 6.0 ± 3.4% blood samples of A. agrarius only. To model the TBEV persistence both M. rutilus and A. agrarius were infected with the suspensions of the TBEV-infected ticks with further observations during 4 subsequent months. Detection rate of the TBEV RNA and antigen E remained high during the whole period, however, pathogenic for laboratory suckling mice virus was isolated up to 8 days postinfection. At late stages of the persistent infection (1-4 months) the TBEV RNA detection rate in northern red-backed voles remained high 70.6 ± 7.9% whereas in striped field mice significantly declined to 26.7 ± 9.2% (p  .05) but Th1 cytokine mRNA detection rates were different (44.4 ± 12.5% and 85.7 ± 9.7%, respectively) (p 
    Matched MeSH terms: Immunity, Innate*; Adaptive Immunity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links