MATERIALS AND METHODS: This collaborative research between the National Space Agency (ANGKASA), Universiti Teknologi MARA, Malaysia and Institute of Biomedical Problems (IBMP), Russia was conducted at the Russian Academy of Sciences IBMP, Moscow, Russia. Six multi-national cosmonauts were assigned to live in a ground-based confined module for 520 days. Standard exercise and diet regime were instituted throughout the isolation phase. Six age, ethnic and gender-matched healthy, free-living ground controls were recruited in parallel. Serial serum and whole blood were analysed for biomarkers of prothrombogenesis [plasminogen activator inhibitor-1 (PAI-1) and homocysteine] and oxidative stress [oxidised low-density lipoprotein (ox-LDL) and malondialdehyde (MDA)].
RESULTS: There were significantly lower concentrations of PAI-1 and homocysteine in cosmonauts during confinement compared to the controls. There were no significant differences seen in the concentrations of biomarkers of oxidative stress during confinement but there was a significant percentage change increment for serum MDA in cosmonauts.
CONCLUSION: Long-term confinement decreased the risk of prothrombogenesis and this could be attributed to the exercise and diet regime which includes omega-3 fatty acids supplementation given to the crew members during their confinement period. However, oxidative damage could not be excluded and may be attributed to the influence of psychological stress during this prolonged confinement.
AIMS OF THE STUDY: This study aims to investigate the ability of T. diffusa to ameliorate the impairment in testicular steroidogenesis and spermatogenesis in DM that might help to improve testicular function, and subsequently restore male fertility.
MATERIALS AND METHODS: DM-induced adult male rats were given 100 mg/kg/day and 200 mg/kg/day T. diffusa leaf extract orally for 28 consecutive days. Rats were then sacrificed; sperm and testes were harvested and sperm parameter analysis were performed. Histo-morphological changes in the testes were observed. Biochemical assays were performed to measure testosterone and testicular oxidative stress levels. Immunohistochemistry and double immunofluorescence were used to monitor oxidative stress and inflammation levels in testes as well as Sertoli and steroidogenic marker proteins' expression.
RESULTS: Treatment with T. diffusa restores sperm count, motility, and viability near normal and reduces sperm morphological abnormalities and sperm DNA fragmentation in diabetic rats. T. diffusa treatment also reduces testicular NOX-2 and lipid peroxidation levels, increases testicular antioxidant enzymes (SOD, CAT, and GPx) activities, ameliorates testicular inflammation via downregulating NF-ΚB, p-Ikkβ and TNF-α and upregulating IκBα expression. In diabetic rats, T. diffusa treatment increases testicular steroidogenic proteins (StAR, CYP11A1, SHBG, and ARA54, 3 and 17β-HSD) and plasma testosterone levels. Furthermore, in diabetic rats treated with T. diffusa, Sertoli cell marker proteins including Connexin 43, N-cadherin, and occludin levels in the testes were elevated.
CONCLUSION: T. diffusa treatment could help to ameliorate the detrimental effects of DM on the testes, thus this plant has potential to be used to restore male fertility.
PURPOSE: The present study seeks to determine if TLP would prevent HFD-induced NAFLD in vivo and its underlying mechanisms from the perspectives of gut microbiota, metabolites, and hepatic inflammation.
METHODS: TLP was subjected to extraction and chemo-profiling, and in vivo evaluation in HFD-fed rats on hepatic lipid and inflammation, intestinal microbiota, short-chain fatty acids (SCFAs) and permeability, and body weight and fat content profiles.
RESULTS: The TLP was primarily constituted of gallic acid, corilagin and chebulagic acid. Orally administered HFD-fed rats with TLP were characterized by the growth of Ligilactobacillus and Akkermansia, and SCFAs (acetic/propionic/butyric acid) secretion which led to increased claudin-1 and zonula occludens-1 expression that reduced the mucosal permeability to migration of lipopolysaccharides (LPS) into blood and liver. Coupling with hepatic cholesterol and triglyceride lowering actions, the TLP mitigated both inflammatory (ALT, AST, IL-1β, IL-6 and TNF-α) and pro-inflammatory (TLR4, MYD88 and NF-κB P65) activities of liver, and sequel to histopathological development of NAFLD in a dose-dependent fashion.
CONCLUSION: TLP is promisingly an effective therapy to prevent NAFLD through modulating gut microbiota, mucosal permeability and SCFAs secretion with liver fat and inflammatory responses.
METHODS: Endotoxemic shock was induced in sheep by administration of an escalating dose of lipopolysaccharide, after which they subsequently received either no fluid bolus resuscitation or a 0.9% saline bolus. Lung tissue, bronchoalveolar fluid (BAL) and plasma were analysed by real-time PCR, ELISA, flow cytometry and immunohistochemical staining to assess inflammatory cells, cytokines, hyaluronan and matrix metalloproteinases.
RESULTS: Endotoxemia was associated with decreased serum albumin and total protein levels, with activated neutrophils, while the glycocalyx glycosaminoglycan hyaluronan was significantly increased in BAL. Quantitative real-time PCR studies showed higher expression of IL-6 and IL-8 with saline resuscitation but no difference in matrix metalloproteinase expression. BAL and tissue homogenate levels of IL-6, IL-8 and IL-1β were elevated.
CONCLUSIONS: This data shows that the inflammatory response is enhanced when a host with endotoxemia is resuscitated with saline, with a comparatively higher release of inflammatory cytokines and endothelial/glycocalyx damage, but no change in matrix metalloproteinase levels.