Displaying publications 21 - 40 of 135 in total

Abstract:
Sort:
  1. Dong J, Tao L, Abourehab MAS, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:1268-1281.
    PMID: 29782984 DOI: 10.1016/j.ijbiomac.2018.05.116
    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to fracture. Despite having availability of a wide range of pharmacological agents, prevalence of osteoporosis is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo-delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR) in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles (NPs) were decorated with hyaluronic acid (HA) which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was then evaluated for bone regeneration efficacy by assessing time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblastic model. Moreover, the time-mannered expression of various bone-forming protein biomarkers such as bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in the proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy of employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for scientists as an efficient alternative pharmacotherapy for the management of osteoporosis.
    Matched MeSH terms: Osteoblasts/metabolism*; Osteoblasts/pathology
  2. Vimalraj S, Rajalakshmi S, Raj Preeth D, Vinoth Kumar S, Deepak T, Gopinath V, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Feb 01;83:187-194.
    PMID: 29208278 DOI: 10.1016/j.msec.2017.09.005
    Copper(II) complex of quercetin Cu+Q, mixed ligand complexes, quercetin-Cu(II)-phenanthroline [Cu+Q(PHt)] and quercetin-Cu(II)-neocuproine [Cu+Q(Neo)] have been synthesized and characterized. From the FT-IR spectroscopic studies, it was evident that C-ring of quercetin is involved in the metal chelation in all the three copper complexes. C-ring chelation was further proven by UV-Visible spectra and the presence of Cu(II) from EPR spectroscopic investigations. These complexes were found to have osteogenic and angiogenic properties, observed through in vitro osteoblast differentiation and chick embryo angiogenesis assay. In osteoblast differentiation, quercetin-Cu(II) complexes treatment increased calcium deposition and alkaline phosphatase activity (ALP) activity at the cellular level and stimulated Runx2 mRNA and protein, ALP mRNA and type 1 collagen mRNA expression at the molecular level. Among the complexes, Q+Cu(PHt) showed more effects on osteoblast differentiation when compared to that of other two copper complexes. Additionally, Q+Cu(Neo) showed more effect compared to Q+Cu. Furthermore, the effect of these complexes on osteoblast differentiation was confirmed by the expression of osteoblast specific microRNA, pre-mir-15b. The chick embryo angiogenesis assay showed that angiogenic parameters such as blood vessel length, size and junctions were stimulated by these complexes. Thus, the present study demonstrated that quercetin copper(II) complexes exhibit as a pharmacological agent for the orthopedic application.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/drug effects
  3. Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F
    Molecules, 2020 Jul 08;25(14).
    PMID: 32650572 DOI: 10.3390/molecules25143129
    A hydroxyapatite scaffold is a suitable biomaterial for bone tissue engineering due to its chemical component which mimics native bone. Electronic states which present on the surface of hydroxyapatite have the potential to be used to promote the adsorption or transduction of biomolecules such as protein or DNA. This study aimed to compare the morphology and bioactivity of sinter and nonsinter marine-based hydroxyapatite scaffolds. Field emission scanning electron microscopy (FESEM) and micro-computed tomography (microCT) were used to characterize the morphology of both scaffolds. Scaffolds were co-cultured with 5 × 104/cm2 of MC3T3-E1 preosteoblast cells for 7, 14, and 21 days. FESEM was used to observe the cell morphology, and MTT and alkaline phosphatase (ALP) assays were conducted to determine the cell viability and differentiation capacity of cells on both scaffolds. Real-time polymerase chain reaction (rtPCR) was used to identify the expression of osteoblast markers. The sinter scaffold had a porous microstructure with the presence of interconnected pores as compared with the nonsinter scaffold. This sinter scaffold also significantly supported viability and differentiation of the MC3T3-E1 preosteoblast cells (p < 0.05). The marked expression of Col1α1 and osteocalcin (OCN) osteoblast markers were also observed after 14 days of incubation (p < 0.05). The sinter scaffold supported attachment, viability, and differentiation of preosteoblast cells. Hence, sinter hydroxyapatite scaffold from nacreous layer is a promising biomaterial for bone tissue engineering.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/metabolism*
  4. Shi X, Xu L, Le TB, Zhou G, Zheng C, Tsuru K, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:542-548.
    PMID: 26652406 DOI: 10.1016/j.msec.2015.10.024
    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O3) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100°C since higher temperatures would impair the hardness of TiN coating. By contrast, O3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/drug effects*
  5. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/ultrastructure
  6. Hadzir SN, Ibrahim SN, Abdul Wahab RM, Zainol Abidin IZ, Senafi S, Ariffin ZZ, et al.
    Cytotherapy, 2014 May;16(5):674-82.
    PMID: 24176546 DOI: 10.1016/j.jcyt.2013.07.013
    Suspension mononuclear cells (MNCs) can be differentiated into osteoblasts with the induction of ascorbic acid and β-glycerophosphate. The aim of this study was to determine the ability of suspension MNCs to differentiate into osteoblasts using ascorbic acid only.
    Matched MeSH terms: Osteoblasts/cytology*; Osteoblasts/drug effects
  7. Ueda M
    Med J Malaysia, 2004 May;59 Suppl B:29.
    PMID: 15468803
    Matched MeSH terms: Osteoblasts/cytology*; Osteoblasts/transplantation
  8. Rozila I, Azari P, Munirah S, Wan Safwani WK, Gan SN, Nur Azurah AG, et al.
    J Biomed Mater Res A, 2016 Feb;104(2):377-87.
    PMID: 26414782 DOI: 10.1002/jbm.a.35573
    The osteogenic potential of human adipose-derived stem cells (HADSCs) co-cultured with human osteoblasts (HOBs) using selected HADSCs/HOBs ratios of 1:1, 2:1, and 1:2, respectively, is evaluated. The HADSCs/HOBs were seeded on electrospun three-dimensional poly[(R)-3-hydroxybutyric acid] (PHB) blended with bovine-derived hydroxyapatite (BHA). Monocultures of HADSCs and HOBs were used as control groups. The effects of PHB-BHA scaffold on cell proliferation and cell morphology were assessed by AlamarBlue assay and field emission scanning electron microscopy. Cell differentiation, cell mineralization, and osteogenic-related gene expression of co-culture HADSCs/HOBs were examined by alkaline phosphatase (ALP) assay, alizarin Red S assay, and quantitative real time PCR, respectively. The results showed that co-culture of HADSCs/HOBs, 1:1 grown into PHB-BHA promoted better cell adhesion, displayed a significant higher cell proliferation, higher production of ALP, extracellular mineralization and osteogenic-related gene expression of run-related transcription factor, bone sialoprotein, osteopontin, and osteocalcin compared to other co-culture groups. This result also suggests that the use of electrospun PHB-BHA in a co-culture HADSCs/HOBs system may serve as promising approach to facilitate osteogenic differentiation activity of HADSCs through direct cell-to-cell contact with HOBs.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/metabolism*
  9. Hapidin H, Romli NAA, Abdullah H
    Microsc Res Tech, 2019 Nov;82(11):1928-1940.
    PMID: 31423711 DOI: 10.1002/jemt.23361
    Tannic acid (TA) is a phenolic compound that might act directly on osteoblast metabolism. The study was performed to investigate the effects of TA on the proliferation, mineralization, and morphology of human fetal osteoblast cells (hFOB 1.19). The cells were divided into TA-treated, untreated, and pamidronate-treated (control drug) groups. Half maximal effective concentration (EC50 ) values for TA and pamidronate were measured using MTT assay. The EC50 of hFOB 1.19 cells treated with TA was 2.94 M. This concentration was more effective compared to the pamidronate (15.27 M). Cell proliferation assay was performed to compare cell viability from Day 1 until Day 14. The morphology of hFOB 1.19 was observed via inverted microscope and scanning electron microscope. Calcium (Ca) and phosphate (P) were assessed using energy-dispersive X-ray (EDX) analysis. Furthermore, the mineralization of hFOB 1.19 was determined by von Kossa staining (P depositions) and Alizarin Red S staining (Ca depositions). The number of cells treated with TA was significantly higher than the two control groups at Day 10 and Day 14. The morphology of cells treated with TA was uniformly fusiform-shaped with filopodia extensions. Besides, globular-like structures of deposited minerals were observed in the TA-treated group. In line with other findings, EDX spectrum analysis confirmed the presence of Ca and P. The cells treated with TA had significantly higher percentage of both minerals at Day 3 and Day 10 compared to the two control groups. In conclusion, TA enhances cell proliferation and causes cell morphology changes, as well as improved mineralization.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/metabolism*
  10. Thent ZC, Froemming GRA, Ismail ABM, Fuad SBSA, Muid S
    Life Sci, 2018 Oct 01;210:214-223.
    PMID: 30145154 DOI: 10.1016/j.lfs.2018.08.057
    AIMS: Phytoestrogens and xenoestrogens act as agonists/antagonists in bone formation and differentiation. Strong bones are depending of the ability of osteoblasts to form new tissue and to mineralize the newly formed tissue. Dysfunctional or loss of mineralization leads to weak bone and increased fracture risk. In this study, we reported the effect of different types of phytoestrogens (daidzein, genistein and equol) on mineralization in hFOB 1.19 cells stimulated with bisphenol A (BPA).

    MAIN METHODS: Cell mineralization capacity of phytoestrogens was investigated by evaluating calcium, phosphate content and alkaline phosphatase activity. Bone related markers, osteocalcin and osteonectin, responsible in maintaining mineralization were also measured.

    KEY FINDINGS: BPA is significantly interfering with bone mineralization in hFOB 1.19 cells. However, the enhanced mineralization efficacy of daidzein and genistein (particularly at a dose of 5 and 40 μg/mL, respectively) was evidenced by increasing calcium and phosphate content, higher ALP activity, compared to the untreated BPA group. The quantitative analyses were confirmed through morphological findings. Osteocalcin and osteonectin levels were increased in phytoestrogens-treated cells. These findings revealed the potential effect of phytoestrogens in reverting the demineralization process due to BPA exposure in hFOB 1.19 cells.

    SIGNIFICANCE: We found that osteoblast differentiation and mineralization were maintained following treatment with phytoestrogens under BPA exposure.

    Matched MeSH terms: Osteoblasts/cytology*; Osteoblasts/drug effects
  11. Kouhi M, Jayarama Reddy V, Ramakrishna S
    Appl Biochem Biotechnol, 2019 Jun;188(2):357-368.
    PMID: 30456599 DOI: 10.1007/s12010-018-2922-0
    Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/metabolism
  12. Wong SK, Mohamad NV, Ibrahim N', Chin KY, Shuid AN, Ima-Nirwana S
    Int J Mol Sci, 2019 Mar 22;20(6).
    PMID: 30909398 DOI: 10.3390/ijms20061453
    Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/β-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.
    Matched MeSH terms: Osteoblasts/drug effects; Osteoblasts/metabolism
  13. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2013 Dec;14(14):1632-41.
    PMID: 24354587
    The Asian population whose soy intake is higher compared to Western populations shows a significantly lower incidence of osteoporotic fracture. Several meta-analyses have revealed that supplementation of soy isoflavones improve bone health status in women. This review examined the current evidence as to whether soy could exhibit similar bone protective effects on the male population. In vivo studies revealed that supplementation of soy protein or soy isoflavones improved bone health in both normal and osteoporotic male rodents. Cell culture studies showed that soy isoflavones influenced osteogenesis and osteoclastogenesis through mechanisms such as estrogen receptor binding activity, antiinflammatory activity and anti-parathyroid hormone activity. Soy isoflavones also affected calcium channel signaling and might exhibit direct effects on the osteoblastogenesis modulator, core binding factor 1. However, limited clinical trials involving soy intervention in males generally showed insignificant results. This could be attributed to the short duration of intervention, characteristics of the subjects or method of bone health assessment. More well-planned clinical trials are required to establish possible bone protective effects of soy in men.
    Matched MeSH terms: Osteoblasts/drug effects; Osteoblasts/metabolism; Osteoblasts/pathology
  14. Sugiatno E, Samsudin AR, Sosroseno W
    J Appl Biomater Biomech, 2009 Jan-Apr;7(1):29-33.
    PMID: 20740436
    The aim of this study was to test the hypothesis that the proliferation of hydroxyapatite (HA)-induced human osteoblast cell line (HOS cells) may be up-regulated by exogenous nitric oxide (NO).
    Matched MeSH terms: Osteoblasts
  15. Ng AM, Saim AB, Tan KK, Tan GH, Mokhtar SA, Rose IM, et al.
    J Orthop Sci, 2005;10(2):192-9.
    PMID: 15815868
    Osteoprogenitor cells have been reported to be present in periosteum, cancellous and cortical bone, and bone marrow; but no attempt to identify the best cell source for bone tissue engineering has yet been reported. In this study, we aimed to investigate the growth and differentiation pattern of cells derived from these four sources in terms of cell doubling time and expression of osteoblast-specific markers in both monolayer cells and three-dimensional cell constructs in vitro. In parallel, human plasma derived-fibrin was evaluated for use as biomaterial when forming three-dimensional bone constructs. Our findings showed osteoprogenitor cells derived from periosteum to be most proliferative followed by cortical bone, cancellous bone, and then bone marrow aspirate. Bone-forming activity was observed in constructs formed with cells derived from periosteum, whereas calcium deposition was seen throughout the constructs formed with cells derived from cancellous and cortical bones. Although no mineralization activity was seen in constructs formed with osteoprogenitor cells derived from bone marrow, well-organized lacunae as would appear in the early phase of bone reconstruction were noted. Scanning electron microscopy evaluation showed cell proliferation throughout the fibrin matrix, suggesting the possible application of human fibrin as the bioengineered tissue scaffold at non-load-bearing sites.
    Matched MeSH terms: Osteoblasts
  16. Ahmad Hairi H, Jamal JA, Aladdin NA, Husain K, Mohd Sofi NS, Mohamed N, et al.
    Molecules, 2018 Jul 11;23(7).
    PMID: 29997309 DOI: 10.3390/molecules23071686
    Phytoestrogens have attracted considerable attention for their potential in the prevention of postmenopausal osteoporosis. Recently, a phytoestrogen-rich herbal plant, Marantodes pumilum var. alata (Blume) Kuntze was reported to protect against bone loss in ovariectomized rat. However, the bioactive compound responsible for these effects and the underlying mechanism were not known. Through bioassay-guided isolation, demethylbelamcandaquinone B (Dmcq B) was isolated and identified from Marantodes pumilum var. alata leaf extract. In terms of its bone anabolic effects, Dmcq B was at par with 17β-estradiol (E2), in promoting the proliferation, differentiation and mineralization of osteoblast cells. Dmcq-B increased early differentiation markers, collagen content and enzymatic ALP activity. It was demonstrated to regulate BMP2 signaling pathway which further activated the transcription factor, osterix. Subsequently, Dmcq B was able to increase the osteocalcin expression which promoted matrix mineralization as evidenced by the increase in calcium deposition. Dmcq B also reduced the protein level of receptor activator of NF-κβ ligand (RANKL) and promoted osteoprotegerin (OPG) protein expression by osteoblast cells, therefore hastening bone formation rate by decreasing RANKL/OPG ratio. Moreover, Dmcq B was able to increase ER expression, postulating its phytoestrogen property. As the conclusion, Dmcq B is the active compound isolated from Marantodes pumilum var. alata leaves, regulating osteoanabolic activities potentially through the BMP2 and ER signaling pathways.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/drug effects; Osteoblasts/metabolism*
  17. Ebrahimi S, Hanim YU, Sipaut CS, Jan NBA, Arshad SE, How SE
    Int J Mol Sci, 2021 Sep 06;22(17).
    PMID: 34502544 DOI: 10.3390/ijms22179637
    Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/drug effects; Osteoblasts/metabolism
  18. Touri M, Moztarzadeh F, Osman NAA, Dehghan MM, Mozafari M
    Mater Sci Eng C Mater Biol Appl, 2018 Mar 01;84:236-242.
    PMID: 29519434 DOI: 10.1016/j.msec.2017.11.037
    Tissue engineering scaffolds with oxygen generating elements have shown to be able to increase the level of oxygen and cell survivability in specific conditions. In this study, biphasic calcium phosphate (BCP) scaffolds with the composition of 60% hydroxyapatite (HA) and 40% beta-tricalcium phosphate (β-TCP), which have shown a great potential for bone tissue engineering applications, were fabricated by a direct-write assembly (robocasting) technique. Then, the three-dimensional (3D)-printed scaffolds were coated with different ratios of an oxygen releasing agent, calcium peroxide (CPO), which encapsulated within a polycaprolactone (PCL) matrix through dip-coating, and used for in situ production of oxygen in the implanted sites. The structure, composition and morphology of the prepared scaffolds were characterized by different techniques. The oxygen release kinetics and biological investigations of the scaffolds were also studied in vitro. The results showed that oxygen release behaviour was sustained and dependant on the concentration of CPO encapsulated in the PCL coating matrix. It was also demonstrated that the coated scaffolds, having 3% CPO in the coating system, could provide a great potential for promoting bone ingrowth with improving osteoblast cells viability and proliferation under hypoxic conditions. The findings indicated that the prepared scaffolds could play a significant role in engineering of large bone tissue implants with limitations in oxygen diffusion.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/drug effects; Osteoblasts/metabolism
  19. Zainal Ariffin SH, Lim KW, Megat Abdul Wahab R, Zainal Ariffin Z, Rus Din RD, Shahidan MA, et al.
    PeerJ, 2022;10:e14174.
    PMID: 36275474 DOI: 10.7717/peerj.14174
    BACKGROUND: There have been promising results published regarding the potential of stem cells in regenerative medicine. However, the vast variety of choices of techniques and the lack of a standard approach to analyse human osteoblast and osteoclast differentiation may reduce the utility of stem cells as a tool in medical applications. Therefore, this review aims to systematically evaluate the findings based on stem cell differentiation to define a standard gene expression profile approach.

    METHODS: This review was performed following the PRISMA guidelines. A systematic search of the study was conducted by retrieving articles from the electronic databases PubMed and Web of Science to identify articles focussed on gene expression and approaches for osteoblast and osteoclast differentiation.

    RESULTS: Six articles were included in this review; there were original articles of in vitro human stem cell differentiation into osteoblasts and osteoclasts that involved gene expression profiling. Quantitative polymerase chain reaction (qPCR) was the most used technique for gene expression to detect differentiated human osteoblasts and osteoclasts. A total of 16 genes were found to be related to differentiating osteoblast and osteoclast differentiation.

    CONCLUSION: Qualitative information of gene expression provided by qPCR could become a standard technique to analyse the differentiation of human stem cells into osteoblasts and osteoclasts rather than evaluating relative gene expression. RUNX2 and CTSK could be applied to detect osteoblasts and osteoclasts, respectively, while RANKL could be applied to detect both osteoblasts and osteoclasts. This review provides future researchers with a central source of relevant information on the vast variety of gene expression approaches in analysing the differentiation of human osteoblast and osteoclast cells. In addition, these findings should enable researchers to conduct accurately and efficiently studies involving isolated human stem cell differentiation into osteoblasts and osteoclasts.

    Matched MeSH terms: Osteoblasts
  20. Hapidin H, Rozelan D, Abdullah H, Wan Hanaffi WN, Soelaiman IN
    Malays J Med Sci, 2015 Jan-Feb;22(1):12-22.
    PMID: 25892946 MyJurnal
    The present study investigated the effects of Quercus infectoria (QI) gall extract on the proliferation, alkaline phosphatase (ALP), osteocalcin, and the morphology of a human fetal osteoblast cell line (hFOB 1.19).
    Matched MeSH terms: Osteoblasts
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links